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Voronoi cell patterns: Theoretical model and applications
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We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated
by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution
of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again
in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a
particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single
parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend
on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical
properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several
systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car-parking problem,
the formation of second-level administrative divisions, and the pattern formed by the Paris Métro stations.
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I. INTRODUCTION

Consider a set of points—usually called centers [1–3] even
though they are not geometric centers—on a discrete lattice.
The Voronoi cell of a particular center i is defined by all lattice
points which are closer to i than any other center. Figure 1
shows a typical two-dimensional Voronoi pattern for the case
where the positions of the centers are completely uncorrelated.
This case is usually called Poisson Voronoi (PV). When the
position of the centers are correlated, the system is called
non-Poisson Voronoi (NPV).

Many different systems in nature resemble the PV patterns.
Some examples can be found in areas such as ecology,
astronomy, geology, biology, physics, and meteorology; see
Refs. [1–6]. Applications of NPV patterns are not so extensive
as those of the PV case. A couple of examples of NPV
applications can be found in Refs. [3,7–9].

One of the most important quantities in this system is the
distribution of the sizes of the Voronoi cells P̂ (S). The scaled
size is defined as s = S/ 〈S〉, where 〈S〉 is the average of S. The
scaled size distribution is given by P (s) = 〈S〉 P̂ (s 〈S〉). There
are many theoretical and numerical studies about PV systems
[1,2,10–15]. In spite of this, the patterns formed by Voronoi
cells have not been understood completely even in this simplest
case, where the positions of the centers are not correlated.
Most of our knowledge is based on empirical equations and
numerical simulations. In fact, an analytical expression for
P (s) is known just for the 1D case with uncorrelated centers
[10,11].

In this paper we focus on NPV patterns in 1D and 2D. In
Sec. II we review some important properties of the PV cells.
In Sec. III we propose a model to generate NPV cells for a
homogeneous and isotropic set of points. In Sec. IV we provide
several examples of different systems which can be described
by NPV patterns. Finally, in Sec. V we give conclusions.
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II. POISSON VORONOI CELLS

A. One-dimensional Poisson Voronoi cells

In one dimension, we have a ring divided in several sections
called gaps. For the PV case, the positions of centers are
completely random. Then, the probability density to find
a gap with a length between X and X + dX, p̂(0)(X), is
given by ρ e−ρ X, where ρ is the density of centers. The
normalized gap size is defined as x = X/〈X〉 where 〈X〉 =
ρ−1 is the average gap size. Thus, the normalized gap size
distribution can be written as p(0)(s) = e−x . By definition,
p(n)(x) is the probability density to find a gap which starts
and ends with a center subject to the condition that there
are n additional centers inside the gap. These distributions
satisfy the normalization conditions

∫ ∞
0 dx p(n)(x) = 1 and∫ ∞

0 dx x p(n)(x) = n + 1. Because sizes of the adjacent gaps
are not correlated, it is possible to write the normalized spacing
distributions for arbitrary values of n in Laplace space as

p̃(n)(l) = (p̃(0)(l))n+1, (1)

where p̃(n)(l) = ∫ ∞
0 dx e−x l p(n)(x) is the Laplace transform

of p(n)(x) [16]. Consequently, the normalized spacing distri-
butions between centers are given by

p(n)(x) = 1

n!
xne−x. (2)

The pair correlation function has the simple form

g(x) =
∞∑

n=0

p(n)(x) = 1. (3)

The size distribution of the Vononoi cells is related to the
next-nearest-neighbor distribution according to [8]

P (s) = 2 p(1)(2s). (4)

This equation is a consequence of the one-dimensional nature
of the ring. Therefore, the simple relation between P (s)
and p(1)(s) shown above is not valid for higher dimensions.
Explicitly, the distribution of sizes of Voronoi cells in 1D is

P (s) = 4 s e−2 s . (5)
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FIG. 1. Typical pattern of Poisson Voronoi cells. Note that in
general the positions of the centers inside cells do not coincide with
the geometrical centers of cells.

B. Two-dimensional Poisson Voronoi cells

Let p(n)(R) be the radial probability density that, given
an island at r = 0, its (n + 1)th neighbor is between R and
R + dR. Given that there are n additional centers inside of the
circle of radius R, the radial spacing distribution, p(n)(R), can
be calculated as follows. As usual, ρ is the density of centers.
On average, the total number of centers, c(R), within a disk
with radius R is 2πρ R. It is well known [19] that c(R) and
p̂(0)(R) are related by

p̂(0)(R) = c(R)e− ∫ R

0 dr 2πr c(r). (6)

More details about this equation are given in the Appendix.
Since c(R) = 2 π R ρ, p̂(0)(R) has the simple form

p̂(0)(R) = 2 π ρ R e−π ρ R2
. (7)

The next radial distribution p̂(1)(R) is given by

p̂(1)(R) = 2 π ρ R

∫ R

0
dR′ p̂(0)(R′)Q̂(R′,R), (8)

where Q̂(R′,R) = e−π ρ(R2−R′2) is the probability density to
have the annulus R′ � r � R free of centers. The integral in
Eq. (8) can be calculated straightforwardly to give

p̂(1)(R) = 2 π2 ρ2 R3e−π ρ R2
. (9)

Following the previous procedure, one can show that, for
arbitrary n,

p̂(n)(R) = 2
(π ρ)n+1

n!
R2n+1e−π ρ R2

. (10)

As for multineighbor spacing distributions in 1D [16–18],
the radial distributions have information about the structure of
the system. For example, since

2 π R ρ ĝ(R) =
∞∑

n=0

p̂(n)(R), (11)

it is possible to calculate the radial distribution function ĝ(R).
From Eqs. (10) and (11) it is easy to find

ĝ(R) = e−π ρ R2
∞∑

n=0

(π ρ R2)n

n!
= 1. (12)

This result is consistent with this case of uncorrelated centers
g(R) = 1. In general the concentration of centers c(R) can be
extracted from p̂(0)(R). From Eq. (6) it follows

c(R) = p̂(0)(R)∫ ∞
R

drp̂(0)(r)
. (13)

Even though we know the exact expression for the radial
spacing distributions for arbitrary values of n in the PV case,
the exact functional form of P (s) is not known for d � 2. In
fact, just a few exact analytical results are known in this case.
One of them was reported in 1962 by Gilbert [15], who showed
that the second moment of P (S) is 0.280〈S〉.

As mentioned previously, obtaining the exact expression of
P (s) for d > 1 is quite complicated partially due geometrical
complications. In d = 1 each new center divides just one of the
existing Voronoi cells to form two new cells. This fact leads to
the simple relation between P (x) and p(1)(x) given by Eq. (4).
In higher dimensions this does not apply; the Voronoi cell of a
new center is formed at the expense of several preexisting
Voronoi cells. An analogous relation to Eq. (4) for d > 1
remains unknown, and it could involve several p(n)(r) in a
non-trivial way. However, it is well accepted that P (s) can
be approximated by the gamma distribution �α(s). Based on
extensive numerical simulations for d = 1,2,3, Ferenc and
Néda [11] proposed

P (s) ≈ �α(s) = αα

�(α)
sα−1e−α s, (14)

where α = (3d+1)/2. Note that for d = 1 we recover Eq. (5).
The agreement between Eq. (14) and the numerical results for
P (s) is excellent, as seen in Fig. 2.

FIG. 2. (Color online) Poisson Voronoi cell-size distribution P (s)
with d = 2. The agreement between the numerical results and Eq. (14)
is excellent. The inset shows the radial distribution functions p(n)(r).
Red lines correspond to Eqs. (10) and (14).
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III. NON-POISSONIAN VORONOI CELLS

More complicate behavior arises when the centers are
correlated in some way. Although there are few studies [3,7–9]
about such systems, the NPV patterns can be used to describe
qualitatively and quantitative many different systems, as we
shall see.

A. One-dimensional non-Poissonian Voronoi cells

To generate a one-dimensional NPV set of centers we
proceed as follows. Let pg(x) be the probability density to
put a new center inside a gap with a scaled size x. In a similar
way, px(x) is the probability density that the new center is
placed at the position x with respect to the center at the left
of the gap. This kind of model proved fruitful in studying the
spatial structure of the one-dimensional point-island model for
epitaxial growth. In fact, a suitable choice of pg(x) and px(x)
leads to an excellent description of the physical properties of
this system [8,9]. The gap size distribution, p(0)(x), was shown
there to satisfy the equation

x
dp(0)(x)

dx
+ 2 p(0)(x) = −pg(x) + 2 px(x). (15)

In particular, the probability to put a new center inside a gap
has the form

pg(x) = xγ

μγ

p(0)(x), (16)

with μγ the γ th moment of p(0)(x). The probability density
px(x) can be written as

px(x) =
∫ ∞

x

dz
1

z
pg(z)p�(x/z), (17)

where p�(x/z)dx/z is the conditional probability that, given
a particular gap with size z, the new center is placed
inside [x,x + dx]. Unfortunately, in most cases the integro-
differential given by Eqs. (15), (16), and (17) cannot be
solved analytically. However, this system can be simulated
numerically without major difficulties [20].

Nonetheless, some exact results can be extracted from
Eq. (15). If we choose γ = 1 and p�(λ = x/z) = 1, the
probability to put a new center onto an empty site is the same
for all empty sites on the lattice. Then, with this selection of γ

and p�(λ), we recover the one-dimensional PV case discussed
previously in Sec. II A. As mentioned, the position of the
centers in the PV case are totally uncorrelated, and p(n)(x) is
given by Eq. (2), while P (s) is given by Eq. (5).

In general, for γ � 1 and p�(x/z) = 1, the solution of
Eq. (15) can be calculated as follows. The simple form of the
kernel p�(λ) leads to dpx(x)/dx = −xγ−1p(0)(x)/μγ . Then,
differentiating Eq. (15) we have

x
d2p(0)(x)

dx2
+

(
3 + xγ

μγ

)
dpx(x)

dx

+ (2 + γ )
xγ−1

μγ

p(0)(x) = 0. (18)

After some algebra the above equation can be written as(
d

dx
+ 2

x

) (
x

dp(0)(x)

dx
+ xγ

μγ

p(0)(x)

)
= 0, (19)

whose general solution is

p(0)(x) = 1

�
(
1 + 1

γ

)
(μγ γ )1/γ

e−xγ /γ μγ , (20)

with μγ = [�(1/γ )/�(2/γ )]γ /γ . In this case px(x) is also
given by Eq. (20). Note that p(0)(0) �= 0. For this case higher
spacing distributions, in particular P (s), cannot be calculated
easily.

Consider now a more general case where p�(x/z) depends
on x and z. We restrict our work to functions which are
symmetrical about λ = x/z = 1/2. This symmetry property
comes from the fact that in the absence of an external drift (e.g.,
a field), p�(1 − x/z) must be equal to p�(x/z). Furthermore,
we impose the additional condition p�(0) = p�(1) = 0. This
property implies that the probability to place a new center near
an existing one is small.

For large values of x, dp(0)(x)/dx is negative. Then, in
this regime the behavior of p(0)(x) is dominated by pg(x).
Consequently, for x � 1, Eq. (15) takes the form

x
dp(0)(x)

dx
≈ − xγ

μγ

p(0)(x), (21)

which implies p(0)(x) ∝ exp[−xγ /(γ μγ )] and p(0)(x) �
px(x). A first correction to this formula can be obtained by
using the ansatz p(0)(x) ∝ f (x) exp[−xγ /(γ μγ )] in Eq. (15).
This procedure gives the differential equation

x
df (x)

dx
+ 2 f (x) = 0. (22)

We conclude that p(0)(x) ∝ x−2exp[−xγ /(γ μγ )]. Then the
behavior of p(0)(x) for large values of x is completely
determined by the parameter γ . Furthermore, in the limit
x � 1 the solution of Eq. (15) does not depend on p�(λ).
However, p�(λ) controls the behavior of p(0)(x) for small
values of x. In general, for the kind of functions considered
here, for λ 
 1 we have p�(λ) ∼ λζ , with ζ a constant which
depends on the functional form of p�(λ). A series expansion
of Eqs. (15) and (17) shows that p(0)(x) ∼ xζ and px(x) ∼ xζ .
It is clear that the vanishing condition imposed on p�(λ) for
λ = 0 leads to p(0)(0) = 0. The effective entropic “repulsion
force” between centers is determined by the parameter ζ given
by the series expansion of p�(λ) around λ = 0.

B. Two-dimensional non-Poissonian Voronoi cells

In the case d = 2 we proceed as follows. Let qc(s) be the
probability density to put a new center within a Voronoi cell
having a scaled area s. Explicitly, we consider the general form

qc(s) = sγ

μ̃γ

P (s), (23)

where μ̃γ is the γ th moment of P (s). In a similar way, we
define qr (r,s) as the probability density that, for a particular
cell with scaled size s, the new center is located at a position r
with respect to the center of the preexisting cell. For the sake
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of simplicity, we consider just the isotropic case where (with
r ≡ |r|)

qr (r,s) ∼ rδ. (24)

In this simplification, the probability to put a new center inside
a cell depends on the cell itself, regardless of the positions of
neighboring centers or the areas of their surrounding cells. The
functional form of qr (r,s) depends on the shape of the Voronoi
cell. For example, in the case of a circular Voronoi cell with
scaled area s, we have

qr (r,s) = δ + 2

2 s1+δ/2
πδ/2rδ. (25)

The simplest case is γ = 1 and δ = 0, for which qr (r,s) ∝
1/s. In this case every empty point of the lattice has the
same probability to receive a new center. This, of course,
corresponds to the PV case discussed in Sec. II B and shown
in Fig. 2.

From a Taylor expansion of Eq. (6) around R = 0, it is clear
that the behavior of p̂(0)(R) is controlled by the functional form
of c(R). For small values of R, it is reasonable to suppose that
the concentration of particles within a distance R and R + dR

from a given center is proportional to the product of qr (R,s)
and the area dA = 2 π R dR; then

c(R) dR ∼ qr (R,s) dA ∼ Rδ+1dR. (26)

Then, p̂(0)(R) ∼ Rδ+1, and δ controls the effective “repulsion
force” between centers. Using this simple result in Eq. (11)
we conclude that, for R 
 1, ĝ(R) ∼ Rδ . On the other hand,
the behavior of p̂(0)(R) for large values of R depends on the
behavior of the integral

∫ R

0 dξ c(ξ ).
The equivalent of Eq. (15) for the 2D case cannot be written

easily in terms of known quantities. Following Ref. [21], the
effect of a new center on P (s) can be written as

s
dP (s)

ds
+ 2 P (s) = M p+(s) − M pA(s) + p∗(s), (27)

where M is the average number of preexisting Voronoi cells
overlapped by the Voronoi cell generated by the new center;
p+(s) is the probability density that the new center reduces
the Voronoi cell size of a preexisting cell to s, pA(s) is the
probability density that the Voronoi cell of the new center
overlaps a preexisting cell with size s; and p∗(s) is the
probability density that the new Voronoi cell has size s.

From their definitions, qc(s) and pA(s) are clearly related:
qc(s) takes into account the destruction of a Voronoi cell by the
direct impact of a new center on that cell, while pA(s) is more
general and expresses that the Voronoi cell of a new center
overlaps on average M preexisting Voronoi cells. Then we
can expect that pA(s) ∼ qc(s) ∼ sγ P (s). On the other hand,
for large values of s, dP (s)/ds < 0, which means that pA(s)
controls the right side of Eq. (27). Thus, in this limit we can
expect that P (s) ∼ exp[−M sγ /(γ μ̃γ )]. In our 2D model, the
tail of P (s) for large values of s depends on the parameter γ .

In the opposite limit s 
 1, the behavior of P (s) is given
by p∗(s) because this distribution dominates the right side
of Eq. (27). Then p∗(s) ∼ sζ implies P (s) ∼ sζ . In order to
understand the behavior of p∗(s) for small values of s we
proceed as follows.

FIG. 3. In (a) is the initial configuration of centers, while in (b) the
effect of a new center on the preexisting Voronoi cells is shown. Note
that in this particular case, the new Voronoi cell is almost completely
defined by the first three neighbors of the new center.

In the simplest case a new Voronoi cell is completely
defined by just three nearby centers; see Fig. 3. Note that
the new center shown in Fig. 3(b) generates a small Voronoi
cell even though it was formed at the expense of the three
large Voronoi cells shown in Fig. 3(a). If pc is the probability
to have the initial configuration shown in Fig. 3(a), then the
probability to place a new center as in Fig. 3(b) is given by
pc Aγ where A is the area of the target region. Naturally, A

scales with the distance between centers as A ∼ r2. In the case
of noncorrelated centers, pc ∼ p(0)(r1)p(0)(r2 − r1)p(0)(r3 −
r2) ∼ c(r1)c(r2 − r1)c(r3 − r2) which leads to pc ∼ r3. In the
PV case we have γ = 1; thus, p∗(s) ∼ s2.5. Note that this
result agrees with Eq. (14). The case of correlated centers is
significantly more complicated because pc cannot be written
as an independent product of p(0)(s). In any case, it is clear that
p∗(s) for small values of s is related with the concentration
of centers c(R) through the radial distribution functions which
in turn in our model depend on δ. Then, the value of ζ in
P (s) ∼ sζ for a given value of γ increases with δ. However, a
general relation between δ and ζ remains unknown.

As noted, Eq. (27) cannot be solved analytically; however,
the numerical simulation of this system can be done without
major complications [22].

IV. APPLICATIONS OF THE NPV PATTERNS

A. Gap size distribution of parked cars

Rawal and Rodgers (RR hereafter) measured the size of
the gaps between adjacent parked cars [23]. The data (500
gaps) were gathered from four connected streets in London
without any side streets or driveways. They found that small
and large gaps are unlikely. The effective repulsion between
adjacent cars arises because drivers need to leave some space
between cars to allow exit maneuvers. RR suggest that large
gaps are unlikely because people try avoid the waste of space.
However, we believe that it is more reasonable to think that
this happens because people usually prefer to park in large
gaps where the entry maneuver is the easiest. This implies
that large gaps are often destroyed before small ones. RR
developed two different models to describe p(0)(x); however,
just one of them describes the statistical behavior of the system
properly. In their improved model they consider two different
factors: people who park anywhere and those who perform
an additional maneuver to avoid the waste of space. These
assumptions give a good description of the empirical data.
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On the other hand, Abul-Magd [24] used the Wigner
surmise (WS) with β = 2 as an approximate model for p(0)(x).
The WS describes the gap distribution of a one-dimensional
Coulomb gas at an inverse temperature β. In this system,
particles are free to move around a circle but experience a
logarithmic potential interaction. He selected this value of the
inverse temperature β because in this case the WS describes
excellently the statistical behavior of chaotic systems without
time-reversal symmetry, as is appropriate for the car-parking
problem. The WS does give a good quantitative description of
the car-parking problem; however, the physical interpretation
of the logarithmic interaction potential among cars is not
entirely clear. In Ref. [25], Šeba reported more extensive (over
1200 gaps) empirical data for the gap sizes. He modeled the car
parking with a Markov chain where the cars are allowed to get
in and get out of the gaps following prescribed probabilistic
rules.

From our model to generate one-dimensional Voronoi cells,
we can interpret the car-parking problem more simply and
intuitively. As in the models mentioned before, our NPV model
for car parking contains some simplifying assumptions for an
ensemble of drivers such as homogeneity and isotropy. Our
goal is to analyze a tractable version for the problem rather
than contend with all the subtleties. As mentioned previously,
we start with the assumption that people prefer to park in large
gaps rather than in small ones. This follows from the fact that
the parallel parking is easier in spots where there is space to
spare. Thus, it is reasonable to propose that the probability to
park in a gap with size x can be modeled by Eq. (16). Naturally
we have to choose the appropriate value of γ . Once the gap has
been selected, the driver has to choose the exact parking place
inside the gap. For gaps shorter than two car lengths the most
likely place to park would seem to be the middle of the gap.
For lack of a better simple ansatz, we extend this assumption to
gaps of arbitrary length. Additionally, the driver should avoid
parking too close to the cars on the borders of the gap in order to
guarantee enough space to leave the gap when necessary. This
implies p�(0) = p�(1) = 0. Finally, we claim that p�(λ) =
p�(1 − λ); i.e., the drivers do not have preference to park
near to the car on either side of the gap. A simple function
which satisfies those properties is p�(λ) = 2 sin2(πλ). From
our numerical results we found this functional form for p�(λ)
gives a reasonable description of the empirical data when
γ = 4.

As shown in Fig. 4, our model describes excellently the
empirical data given in Refs. [23,25]. Of course, more refined
models can be developed, but the most important result is
that a suitable selection of γ and p�(λ) leads to an excellent
description and interpretation of the statistical behavior of the
gap size of parked cars. From our previous discussion, it is
clear that p(0)(x) ∼ xζ with ζ = 2 for x 
 1. The value of ζ

is related to the effective “repulsion force” between adjacent
cars. In the limit x � 1, p(0)(x) ∼ x2 exp[−x4/(4 μγ )]. Note
that γ = 4 represents the strong preference of drivers to park
in large gaps rather than in small ones.

In the problem of parked cars, we can interpret the
Voronoi size distribution P (s) through the next-nearest spacing
distribution p(1)(x) as follows. From its definition, p(1)(x)
clearly gives the probability density that a parked car has a
spot of length x to perform the exit maneuver. From Eq. (4),

FIG. 4. (Color online) NPV case with γ = 4 and p�(λ) =
2 sin2(πλ). Here empirical data A and B correspond to the mea-
surements reported in Refs. [23] and [25], respectively.

the distribution of the Voronoi cell sizes s is proportional to
the distribution of distances x that the drivers have to perform
an exit maneuver.

B. Point-island model for epitaxial growth in 1D and 2D

In the point-island model for epitaxial growth, atoms are
deposited onto a substrate where they perform random walks.
In the simplest case, when two atoms meet they form a static
island. In the same way, the atoms which reach an island are
captured and remain attached to it. This case corresponds to
irreversible attachment and is usually called “i = 1” in the
literature. Another important characteristic of the point-island
model is the fact that the islands do not grow laterally. The
size of a particular island is given just by the number of atoms
which belong to it. This system exhibits a scaling regime in the
limit � = F/D → ∞, where F is the deposition rate of atoms
and D is their diffusion constant. This model is, of course, a
simplification of the real system but it contains most of the
relevant physical properties required to describe the processes
behind the island formation in epitaxial growth [8,9,21,26,29–
32]. In fact, the widely used point-island model gives very
accurate results in early stages of growth (low coverages) and
it is an important theoretical model in our knowledge about
epitaxial growth.

In this context, the point islands determine the pattern of
Vononoi cells, playing the role of the centers defined in Sec. I.
The atoms inside a particular Voronoi cell are usually captured
by the center of the cell (island). Because of this, the Voronoi
cells are called capture zones (CZs) in the context of epitaxial
growth. Naturally, the growth rate of an island is related to the
size of its CZ. For more details about these kinds of models
see, for examples, Refs. [8,9,26–34].

1. One-dimensional case

Consider now the case of a one-dimensional substrate
with irreversible attachment. A suitable choice to describe the
spacing and the CZ distributions of the 1D point-island model
is [8]

p�(λ) = 30 λ2(1 − λ)2 (28)
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and

γ (x) =
{

3, if x > 1.7,

4, if x � 1.7.
(29)

Blackman and Mulheran [9] originally calculated Eq. (28)
by first obtaining the average density of atoms, n1(x,y), inside
a gap of length y from its expression in the stationary state.
From this approximation and assuming that the probability
of a new nucleation at x is proportional to n1(x,y)2, they
found Eq. (28). On the other hand, Eq. (29) is based on the
numerical results reported in Ref. [8]. In Fig. 5(a), the results of
this model are shown and compared with the direct numerical
simulation of the island nucleation for three different values
of �; the agreement is excellent. This selection of γ (x) and
p�(λ) reproduce the statistical behavior of the 1D point-island
model with irreversible attachment. For additional information
see Refs. [8,9].

2. 2D in circular-cell approximation

The point-island model with irreversible attachment in two
dimensions can be modeled following a similar procedure to
that was used previously to described nucleation in one di-
mension. To make analytic progress, we follow Refs. [35–38]
by approximating the Voronoi cells as circular. (While Figs.
1, 3, etc., show that typical cells are far from circular, the
approximation is better than might be anticipated because the
average shape over an ensemble of cells does tend toward
circular.) As shown in Eq. (B2a) of Ref. [35] and Eq. (9) of
Ref. [38], the isotropic steady-state solution of the appropriate
diffusion equation with flux F inside such a circular Voronoi
cell with radius Rc, for a concentric (nonpoint) island of radius
Risl < Rc, gives the following expression for the density of
atoms:

ρ(R) = 1

2

R2
c

�
[

ln

(
R

Risl

)
+ 1

2

R2
isl

R2
c

(
1 − R2

R2
isl

)]
, (30)

where R (assuming Risl � R � Rc) is the distance from
the cell center. Note that ρ(Risl) = 0 (thence increasing
linearly with R − Risl initially) and dρ(R)/dR|Rc

= 0. The
first condition comes from the density of atoms being zero
along the island boundaries. On the other hand, the probability
of nucleation is proportional to ρ2(R), which is maximal along

the boundary of the CZ. Hence, ρ(R) is also maximal at
R = Rc, as implied in the second (Neumann) condition.

In this framework [with nucleation ∝ ρ2(R)], the proba-
bility to have a nucleation event within a particular circular
capture zone with radius Rc, Pn(Rs), can be written as

Pn(S) = qγ (S)

P̂ (S)
∝

∫ Rc

Risl

dR 2 π R ρ2(R) ∝ R6
c . (31)

Note that Pn(S) is proportional to the third power of the
scaled area of the cell, i.e., γ = 3. This is, of course, a strong
approximation. It is well known that the radius of a capture
zone fluctuates significantly around its mean value because
the centers are usually not at the geometric center of the
cells. Approximating the shape of a CZ by a circle neglects
those radial fluctuations. Furthermore, the density of atoms
inside a CZ depends on the position of neighboring centers,
which is not taken into account by Eq. (30). This also implies
that the isotropy assumption used to write Eq. (24) is poor.
From Eq. (31) it is clear that the probability of nucleation
increases with the distance from the center and reaches its
maximum along the boundary of the capture zone. There are
many ways to select the place of nucleation inside a particular
capture zone [36–38]. However, in order to keep our model
as simple as possible, we assign the same probability to all
points inside a particular CZ, regardless of their distance from
the center; i.e., α = 0. While this is a crude approximation, we
can see in Fig. 5 that it is adequate to describe P (s). However,
previous simplifications have important effects on the radial
distributions. Figure 6 shows the behavior of p(0)(r). Not
unexpectedly, our simplified model does not describe p(0)(r)
appropriately; i.e., it is not a good approximation for the island
density c(R). From Eq. (30) it is clear that the concentration
of islands in the limit R 
 1 is given by c(r) ∼ R2, which
implies δ = 1.

In order to improve our model, we must take into account
the fact that ρ(R) vanishes along the boundaries of the islands;
i.e., qr (0,s) = 0. Perhaps the simplest way to accomplish this
goal for the point-island model is to propose

qr (R,s) ∼
{
R, if 0 � R � κ Rc,

κ Rc, if κ Rc < R � Rc,
(32)

FIG. 5. (Color online) The statistical behavior of irreversible nucleation in 1D is shown in (a). The CZ distribution for 2D nucleation is
shown in (b). In all cases our results are compared with direct numerical simulations of island nucleation for several values of �.
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FIG. 6. (Color online) Behavior of the first radial distribution
p(0)(r), which is related to the concentration of islands c(r).

where 0 < κ < 1 is a constant, and Rc = (S/π )1/2 is the
average radius of the CZ. From our numerical experimentation
we estimate κ = 0.3. In this way, the nucleation probability
inside a capture zone grows linearly with R for points near the
island, while it becomes constant for points far away.

Figures 5(b) and 6 also include the results of this last model.
The description of P (s) is again excellent, but now the nearest-
neighbor radial distribution is also well fitted. Thus, in our
model for the island nucleation in 2D, the repulsion between
centers given by α seemingly has a great impact on p(0)(r) but
is not crucial to determine P (s).

C. Size distribution of second-level administrative divisions

The polygons formed by county boundaries in the size-
division model resemble Voronoi cells [6,39]. Inspired by this
fact, we explore the possibility to use our NPV model to
study the formation of second-level administrative divisions
(SLADs), such as counties in the USA or (nonurban) districts

(arrondissements) in France. The formation of SLADs de-
pends on many political, cultural, ecological, and geographical
factors [6,40]. These factors are in general difficult to include
in a mathematical model. However, our model allows us to
give a simple interpretation of the SLAD formation in terms
of qc(s) and qr (r,s).

We focus here on the results reported by Le Caër and
Delannay (LCD) for the SLADs in France [6]. The departments
(départements) comprise the first administrative division in
France. In mainland France there are 94 departments. Each
department is divided into several districts; there are a total
of 322 districts in mainland France. Each district has a chief
town, mostly with the same name as the district.

LCD compared the area distribution of the French SLADs
[6,42] to the one-parameter gamma distribution �α(s) with
α ≈ 4.4 [43]. As seen in Fig. 7(a), the agreement between
�4.4(s) and the data is satisfactory. Note that α = 4.4 is larger
than the value used to describe the size distribution of PV cells
(α = 2.5). In our model, this implies δ > 0. It follows that
the SLAD formation process in the rectangle W was not a
completely random process. In fact, taking δ = 0.5 and γ = 1
we found good agreement between the data and the results of
our model. The value of γ was chosen to have an exponential
tail for P (s) such as in Eq. (14).

In particular LCD focused on the pattern formed by the
chief towns of the districts which are located within a 544 km
× 636 km rectangle whose corners are close to the towns
Saint-Lô, Thionville, Apt, and Mont-de-Marsan. The average
distance between the enclosed 188 chief towns is 29.6 km.
As shown in Fig. 7(b), the pattern formed by the chief towns
looks similar to that in Fig. 1. However, as noted by LCD, the
formation of these SLADs was not a PV process.

The parameters δ = 0.5 and γ = 1 do not describe the
cumulative nearest-neighbor distribution,

F (r) =
∫ r

0
dξ p(0)(ξ ), (33)

FIG. 7. (Color online) (a) Size distribution of the 322 districts of mainland France (excluding Paris). (b) NPV pattern generated by the 188
chief towns in the districts in a rectangle W in France, as discussed in Ref. [6]. The points A, B, C, and D represent Saint-Lô, Thionville,
Mont-de-Marsan, and Apt, respectively. (The cluster of points in the upper part of the figure represents Paris and the nearby chief towns.) The
area distribution of these Voronoi cells is included in panel (a) and is rather similar to the distribution of actual districts for 1/2 < s < 2. The
fits are done iteratively. The improved NPV model [cf. Eqs. (35) and (36)] takes into account the finite area of the chief towns by assuming a
core radius that is 2/5 of the mean radius.
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FIG. 8. (Color online) (a) Cumulative distribution F (r) and (b) pair correlation function g(r), based on the set of points depicted in Fig. 7(b),
using the point-island NPV model and the improved NPV model incorporating the finite size of chief towns.

nor the pair correlation function,

g(r) = 1

ρ N

∑N

i �=j
〈δ(r + rj − ri)〉, (34)

as seen in Fig. 8. Increasing the value of δ improves the
estimation of F (r) and g(r) but it leads to a poor description
of P (s). This means that a model like ours is insufficient for
this kind of system.

We attribute this discrepancy to the assumption of point
islands. One must account for the actual areas of cities, which
produces an effective short-range repulsion. The simplest way
to incorporate this feature into our model is to introduce an
excluded area around each city center in the form of a hard-core
radius rcore. In particular, we modify Eqs. (23) and (24) as
follows:

qc(s) =
(
s − π r2

core

)γ

μ̃γ

P (s)�(s − π r2
core) (35)

and

qr (r,s) ∼ (r − rcore)δ �(r − rcore), (36)

where �(ξ ) is the unit step function. When rcore = 0, we
recover the original model. From numerical simulation of this
improved model, we found excellent agreement with the data
by using rcore/ 〈r〉 ≈ 0.4, δ = 2, and γ = 2 (see Figs. 7 and
8). This improved model still describes adequately P (s), but
now the fits involving p(0)(r) and g(r) are significantly better.
Note that this model does not describe the cluster given by Paris
and the nearby towns. Clearly, the population density is highest
in Paris and its surroundings. Consequently, it is reasonable
to expect the formation of clusters of towns in this region of
France, which is inconsistent with our ansatz of an excluded
area.

Our analysis has been applied to SLADs in some 20
countries, with results generally consistent with the above
analysis [41]. As we report in Ref. [41], however, there are
some subtleties and a rich range of nuances, e.g., regional
differences in the distributions of the areas of counties in the
USA.

D. Capture zones of Paris Métro stations

In analogy with the island nucleation, we can define the
Voronoi cells or CZs for Métro stations as follows. Each
Métro station represents a center. The Métro stations are in
competition for passengers in the same way that the islands
compete for atoms. If we suppose that all Métro stations
are accessible from anywhere, then most of the passengers
within a particular Voronoi cell will be “captured” by the
center of this cell. Of course, this is an oversimplification.
The passengers not only selected a Métro station because of
its proximity. They also take into account ease of access to it
(parking, bus routes, commuting possibilities, road conditions,
etc.).

As with the SLADs, in order to have a good set of data to
apply our model, we have to select a city with a near-uniform
geographical profile and with a large number of Métro stations.
These conditions are approximately satisfied by the capital of
France, Paris. Figure 9(a) shows a scale diagram of the Métro
stations of Paris (RER stops are also included). Clearly the
density of centers (Métro stations) is not constant. Naturally,
there are more Métro stations near the center of the city, where
the population density is highest. Because of this, the largest
Voronoi cells are near the outskirts of the city. However, we
can expect that our NPV model works well if we just consider
stations near the city center, where the density of Métro stations
does not change dramatically, as seen in the enlargement in the
figure.

For economic reasons it is unlikely that two or more Métro
stations are very close together. We then expect α > 0 because
there is an effective “repulsion force” between stations. In
Fig. 9(b), we compare the empirical CZ distribution of the
in-town Métro system with our NPV model. Good agreement
is found with γ = 2 and α = 1.5; the gamma function �8(s)
is also included in the comparison presented in Fig. 9(b).
Apparently the “repulsion force” between Métro stations is
bigger than that for island nucleation in 2D.

V. CONCLUSIONS

Our proposed NPV model can be used to describe and
interpret many different systems in terms of two independent
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FIG. 9. (Color online) (a) Voronoi cells (CZ) for the Paris Métro stations. The complete network of stations on the left is enlarged to show
the stations and associated cells near the heart of the city. (b) Capture-zone distribution of the Paris Métro stations.

distribution functions. In 1D, pg(x) gives the probability
density to put a new center inside a gap with a scaled size
x. This distribution is given explicitly by Eq. (16) and is
controlled by the parameter γ . This parameter determines
the behavior of the gap size distribution for large values
of x. In fact, for x � 1, p(0)(x) ≈ Ax−2exp[−xγ /(γ μγ )],
independent of the kernel p�(λ). Additionally, γ modulates
the size dependence of the destruction of gaps. For γ = 0,
the probability to put a new center within a gap is the same
for all gaps, regardless of their size. The larger γ is, the
greater is the probability of destruction of large gaps. For
the car-parking problem we use γ = 4, which reflects the
preference of drivers to park in large gaps rather than small
ones. For island nucleation in 1D it is necessary to take into
account that γ is a function of the scaled size s.

In 1D, the behavior of p(0)(s) in the limit s 
 1 is
completely determined by the fragmentation kernel p�(λ).
For the kernels considered here, we always have the generic
behavior p�(λ) ∼ λζ for λ 
 1. The parameter ζ controls
the effective repulsion force between centers. For island
nucleation in 1D and the car-parking problem, we found ζ = 2.
For the first system the value of ζ is fully determined by the
density of atoms inside the gap in the aggregation regime. In
the car-parking problem, ζ reflects the need of the drivers of
allow space between cars to perform an exit maneuver.

In 2D, the probability density qc(s) to put a new center
inside a Voronoi cell is also controlled by the parameter γ .
In the case of the SLADs, γ = 1 gives a good fit of the
empirical data. Because of this, the P (s) of many SLADs
can be approximated by using the single-parameter gamma
distribution �α(s) [40]. In the case of Paris Métro stations we
used γ = 2.

The position r of a new center inside a particular Voronoi
cell in 2D is determined in our model through pδ(r,s). For
the sake of simplicity, we consider only isotropic cases. This
probability is closely related to the concentration of centers
c(R). For example, in the case of island nucleation in two
dimensions, a good description of p(0)(r) requires taking into
account that the density of atoms vanishes along the island
boundaries, even though the CZ distribution can be well
described without taking into account this fact. This suggests
that many different fragmentation models can be used to

describe the CZ distribution of islands in epitaxial growth.
However, just a few of them fully describe the statistical
behavior of the system in a proper way. An additional example
is given by the SLADs in France. Two different sets of
parameters describe P (s) properly but just one of them gives
a good fit for F (r) and g(r).

We defined the CZs of Métro stations; an extension to other
systems defined by gas stations, public schools, coffeehouses,
post offices, etc., is straightforward. In epitaxial growth, the
CZ of an island is related to the island’s rate of capturing
atoms. It is reasonable to expect that the number of passengers
entering a Métro station or the influx of customers patronizing
a retailer is intimately related to the size of its CZ.

The model presented here allows us to describe quan-
titatively and qualitatively many systems based on simple
assumptions about them. For example, in the car-parking
problem we based our model on some assumptions of the
driver preferences related with parallel parking. Our ansatz
leads to a reasonable description of the gap size distribution.
For the description of the CZ distributions in the point-island
model, we based our simulation on an estimate of the density
of atoms (besides other observations), which comes from
the direct numerical simulation of this system. Nevertheless,
there are systems where the NPV patterns are determined by
factors difficult to establish as a mathematical expression. In
the case of the Paris Métro stations, it is clear that there is
an “effective repulsion” between stations because it is not
economically viable to put two or more stations too close.
In our model this implies δ > 0. However, there are other
political, historical, and geographical factors which also affect
the CZ formation. Something similar happens in the case of the
SLADs.

Despite its implicit simplifications (such as homogeneity
and isotropy), our model proves to be a powerful tool to
describe several complex systems which are defined through
an array of points.
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APPENDIX: RELATION BETWEEN p̂(0)(R) AND c(R)

For an arbitrary isotropic concentration in a circle of radius
R0, the expected number of particles inside a concentric disk
with radius R � R0 is

∫ R

0 dr 2πr c(r). The probability that
this disk contains no particles is

E(R) =
(

1 −
∫ R

0 dr r c(r)∫ R0

0 dr r c(r)

)∫ R0
0 dr 2πr c(r)

, (A1)

when R 
 R0. This last statement leads to∫ R

0 dr r c(r)∫ R0

0 dr r c(r)

 1. (A2)

Then, we have (for R 
 R0)

E(R) = e− ∫ R

0 dr 2πr c(r). (A3)

By definition, E(R) is the probability to have an empty
disk with radius R; then E(R) − E(R + dR) is the probability
of have an empty disk with some particles between R and
R + dR; i.e., p̂(0)(R)dR. We conclude that

p̂(0)(R) = −dE(R)

dR
. (A4)

Equation (6) can be obtained from Eqs. (A3) and (A4).
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