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Abstract. For detailed applications of lattice gas models to surface systems, mul-
tisite interactions often play at least as significant a role as interactions between
pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-
adatom, non-pairwise) interactions do not inevitably create phase-boundary asym-
metries about half coverage. We discuss a sophisticated application to an experi-
mental system and describe refinements in extracting lattice-gas energies from cal-
culations of total energies of several different ordered overlayers. We describe how
lateral relaxations complicate matters when there is direct interaction between the
adatoms, an issue that is important when examining the angular dependence of step
line tensions. We discuss the connector model as an alternative viewpoint and close
with a brief account of recent work on organic-molecule overlayers.

1.1 Introduction

A thorough understanding and characterization of surface energetics is impor-
tant for fabricating nanostructures with desired morphological features. To
this end, lattice-gas models have been very successful in categorizing struc-
tural properties, energetics and evolution of adatoms and steps on surfaces,
as discussed in a variety of reviews [1–4]. They have also been applied to anal-
ogous but more complicated systems [5], such as electrochemistry [6]. The
underlying viewpoint is that a set of interactions is sufficient to understand
both equilibrium and dynamic surface processes. Lattice-gas models provide
a powerful and convenient route to explore how microscopic energies influ-
ence the statistical mechanics of nanoscale to submonolayer structures on
crystalline surfaces. Such models underlie most Monte Carlo (and transfer
matrix) simulations. They assume that overlayer atoms (or other adsorbed
units) sit at particular high-symmetry sites of the substrate. The parameters
of the model are then the interaction energies between such atoms and/or the
barriers associated with hops between the high-symmetry positions.

The use of lattice-gas models proceeds in two generic ways. In the first,
one posits a few energies that are likely to dominate the physics of interest
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and then computes with Monte Carlo simulations the desired equilibrium
or dynamic properties, deriving thereby the values of these energies from
fits [1, 7, 8]. The dangers of this approach are: 1) the properties of interest
may be relatively insensitive to the specific interactions and 2) there may be
other interactions that are non-negligible, so that the deduced energies are
effective rather than actual.

The second approach [9–13] begins by actually computing the (many)
energies of importance, a task that is now possible with efficient density-
functional-theory packages such as VASP (the Vienna Ab-initio Simulation
Package) [14, 15]. This process can be used to compute interaction energies
between relatively distant neighbors. One should also compute multi-atom in-
teractions, which can also be significant [3,16]. As above, these interactions are
then used in Monte Carlo simulations to test whether they account adequately
for experimentally observed properties such as phase diagrams, equilibrium
island shapes, or step fluctuations. This approach is appealing because the
calculated interaction energies can be self-consistently checked for complete-
ness, thereby mitigating the second danger mentioned above. Assuming that
one has sufficient computational power to compute all the interactions that
contribute at the level of the desired precision, there is still the danger that
the interactions depend sensitively on the local environment, making a simple
lattice gas description inadequate. These caveats notwithstanding, lattice gas
models have been extensively used in the realm of surface physics to describe
such diverse phenomena as phase transitions, phase diagrams, equilibrium is-
land shapes, concentration-dependent diffusion, step fluctuations, and growth.

The basic assumptions that underlie lattice-gas models are: (i) all atoms
sit at high-symmetry positions and local relaxations produce the final struc-
ture, (ii) a finite set of effective interactions is sufficient to understand all the
surface processes and (iii) interactions are not sensitive to local positions of
the adatoms. In the simplest scenario, only pair interactions between near-
est neighbors are considered. However, in certain cases, like the orientation
dependence of step stiffness and the equilibrium shape of islands, long-range
pair interactions and multi-site interactions are required for a complete de-
scription [8, 13, 17–21]. The substrates in these studies are typically mid or
late transition or noble metals, where the electronic indirect interaction leads
to rich behavior [3].

Explicitly, the lattice-gas Hamiltonian of adatoms on a surface is written
as:
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where 𝑛𝑖 is the occupancy of the high-symmetry lattice site indexed 𝑖; 𝑛𝑖 = 1
denotes an occupied site and 𝑛𝑖 = 0 denotes an empty site. Interactions be-
tween adatom pairs up to the m𝑡ℎ-neighbor pair 𝐸𝑚 are included in the model;
accordingly, interactions between adatom pairs that are separated by distances
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Fig. 1.1. Illustration of NN (nearest neighbor), NNN (next NN) , and 3NNN (third
NN) pairs with interaction energies 𝐸1, 𝐸2, and 𝐸3, respectively. Also shown are
the isosceles right triangle (RT) with energy 𝐸𝑅𝑇 or, more formally, 𝐸112 (denoting
a pair of NN legs and one NNN leg), and an isosceles linear triangle (LT) with
energy 𝐸𝐿𝑇 or, more formally, 𝐸113. Lastly, the most compact quarto interaction has
interaction energy 𝐸𝑄1 or, more formally, 𝐸1111. For clarity [and physical relevance],
here and in Fig. 1.5, the adatoms are placed in center sites, as for homoepitaxy on
the (100) face of an fcc crystal like Cu, rather than atop sites as for homoepitaxy
on a simple cubic crystal.

greater than the m𝑡ℎ neighbor distance are expected to be insignificant. 𝐸𝑇

stands for three-adatom non-pairwise “trio” interactions, with the index run-
ning over all trimer configurations of significant strength. Similarly, 𝐸𝑄 stands
for four-adatom non-pairwise (and with trios also subtracted) “quarto” inter-
action. (The possibility of quarto interactions has been known for over three
decades [3,22], but, to the best of our knowledge, it has been invoked only once
in an actual calculation of adsorbate energetics [23]) until very recently [24,25].
If necessary, pair interactions with a longer range and/or higher-order multi-
site interactions (possibly, five-adatom quintos) are included in the model till
adequate convergence between theoretical predictions and experimental ob-
servations is obtained. However, the inclusion of a large number of interaction
parameters makes the lattice-gas model intractable, thereby severely under-
mining the efficacy of lattice-gas models in characterizing overlayer systems.

The nature of the interactions leading to the lattice-gas pair energies have
been reviewed extensively [3,26–28] so we will present just a quick summary.
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If there is charge transfer (workfunction change) during the adsorption pro-
cess, the adsorbates can interact electrostatically. Other “direct” interactions
between the adatoms themselves can occur when the adatoms are at NN
(nearest-neighbor) or perhaps NNN (next NN) sites. These are strong in-
teractions, comparable to the binding energy, with the substrate playing a
minor, sometimes negligible role; they are liable to produce relaxations that
thwart straightfoward application of lattice-gas models (cf. Section 1.5.2).
When adatoms are sufficiently separated that there is insignificant overlap of
the electron orbitals, there can still be an “indirect” interaction—weaker but
of longer range—mediated by substrate electrons or the elastic field. Elastic
interactions tend to be of one sign and decay monotonically with adsorbate
separation distance 𝑑, like 𝑑−3 asymptotically. They are generally taken to
be isotropic, even when unjustified by the elastic tensor, since computing
elastic Green’s functions in the anisotropic case is notoriously difficult [29].
The electronic indirect interaction has richer behavior, oscillating in sign and
reflecting the isotropy or anisotropy of the substrate wavefunctions in the sur-
face plane [30]. Asymptotically it is dominated by the Fermi wavevector and
has the Friedel behavior

𝑑−𝑛 sin(2𝑘𝐹 𝑑 + 𝛷) (1.2)

where 𝑑 is the [lateral] distance between the adsorbates; this result is non-
perturbational, the phase factor 𝛷 distinguishing it from the well-known per-
turbational RKKY expression [31]. (For a non-isotropic Fermi surface, the
appropriate wavevector has velocity parallel to d; see Ref. [3] for details.) In
the bulk, 𝑛=3, but at a metal surface the leading term is cancelled by that
from its image charge, yielding 𝑛=5. For trio interactions an expression simi-
lar to Eq. (1.2) holds to lowest order, with 𝑑 replaced by the perimeter of the
triangle formed by the adatoms. Here the decay is even faster, with 𝑛=7. In
short, interactions mediated by bulk states have negligible strength for values
of 𝑑 for which the asymptotic expression is valid.

The situation is strikingly different when there is a metallic surface state
(i.e. a surface band that cross the Fermi energy), such as found near the 𝛤
point on the (111) faces of noble metals (associated with the (111) necks of
the Fermi surface). For this case 𝑛 is 2 and 5/2 for pair and trio interac-
tions, respectively, so that the asymptotic regime is physically important [32].
Indeed, trio interactions may play a role in the formation of 2D clusters of
Cu/Cu(110) [33]. Furthermore, the Fermi “surface” is circular, and 𝑘𝐹 is much
smaller than its bulk counterpart, leading to the dramatic oscillations (with
wavelength 𝜋/𝑘𝐹 ≈ 15 Å) seen in STM experiments [34].

Most of the content of this and the second, third, and fifth sections of this
paper were included in the first author’s presentation at the Vth Stranski-
Kaischew Surface Science Workshop (SK-SSW’2005): “Nanophenomena at
Surfaces-Fundamentals of Exotic Condensed Matter Properties” in Pam-
porovo, but have been updated. Each section provides references from which
the content was adapted and from which more information can be obtained.
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1.2 Recollection of Two Effects on Statistical Mechanics

In section we recall two remarkable implications of trio interactions for phase
diagrams [16]. While these ideas are not new, they have been largely ignored
by the community and so bear repeating.

1.2.1 Pitfall in Transforming Trio Strength between Lattice Gas
and Ising Models

Many researchers recast the lattice gas model into an Ising model before doing
computations. This seemingly innocent procedure invites pitfalls when multi-
site interactions are involved. Here we offer a particular example: what seems
like a relatively modest 3-spin interaction can correspond to an unphysically
large trio interaction in the lattice gas Hamiltonian. Our example involves a
square lattice with M=2 (first and second neighbor pair interactions) and the
right-triangle trio 𝐸𝑅𝑇 corresponding to two 𝐸1 legs at right angles and an
𝐸2 hypotenuse (or 𝐸112 for short, in a general formal notation [3]).

The mapping to spin language, with 𝑠𝑖 = ±1, is 𝑛𝑖 = (1 + 𝑠𝑖)/2. We see

ℋ =
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4
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) ∑
⟨𝑖𝑗⟩2
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𝐸𝑅𝑇

8

∑
⟨𝑖𝑗𝑘⟩𝑅𝑇

𝑠𝑖𝑠𝑗𝑠𝑘

(1.3)
In Ising or spin language, the three coefficients are called -𝐽1 , -𝐽2, and -𝐽𝑅𝑇 ,
respectively. For the pair interactions, we easily see that

𝐽2
𝐽1

=
𝐸2/𝐸1 + 𝐸𝑅𝑇 /𝐸1

1+2𝐸𝑅𝑇 /𝐸1
≈ 𝐸2

𝐸1
for ∣𝐸𝑅𝑇 ∣ <∼ 4∣𝐸1∣. (1.4)

One might then naively—but incorrectly—expect that 𝐽𝑅𝑇 /𝐽1 ≈ 𝐸𝑅𝑇 /𝐸1.
Instead

𝐽𝑅𝑇

𝐽1
=

𝐸𝑅𝑇 /𝐸1

2+4𝐸𝑅𝑇 /𝐸1
⇔ 𝐸𝑅𝑇

𝐸1
=

2𝐽𝑅𝑇 /𝐽1
1−4𝐽𝑅𝑇 /𝐽1

(1.5)

This highly non-linear relation leads to a surprising result: For 𝐽𝑅𝑇 /𝐽1 <∼ 1/4,
𝐸𝑅𝑇 /𝐸1 ≫ 𝐽𝑅𝑇 /𝐽1. Furthermore, if 𝐽𝑅𝑇 /𝐽1 increases to slightly above 1/4,
𝐸𝑅𝑇 /𝐸1 becomes large and negative. A similar effect would occur in the
opposite direction for 𝐸𝑅𝑇 /𝐸1 ≈ −1/2, a larger magnitude than one is likely
to encounter.

Finally, it is unfortunate (to say the least) that some researchers (including
prominent ones) denote the lattice-gas energy parameters as 𝐽 . Even in the
simplest case of just a nearest neighbor interaction, the lattice gas energy
differs from the Ising energy by a factor of 4; thus, misinterpretation and
numerical inaccuracies are very likely.
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Fig. 1.2. Illustration, for a c(2×2) overlayer on a square lattice, of the heuristic
guideline, based on scaling the elementary excitation, used to predict which trios
produce observable asymmetries in phase boundaries. For the simplest case of a
NN repulsion, 𝐸𝑙, the disordering temperature is known exactly from the Onsager
solution to the Ising model; it is indicated by the × on the temperature-coverage
phase diagram. The effect of adding a right-triangle trio repulsion 𝐸𝑅𝑇 , a linear trio
repulsion 𝐸𝐿𝑇 , or both was studied using Monte Carlo for the case 𝐸𝑅𝑇 = 𝐸𝐿𝑇 =
𝐸1/4; the results for the three cases are plotted with filled triangles, squares, and
circles, with dashed, dotted, and solid curves, respectively, added to guide the eye.
The behavior at 𝜃 = 0.5 is anticipated by Eqs. (1.7) and (1.8). The dashed and
dotted curves appear symmetric about 𝜃 = 0.5 (short-dotted line); only with both
trios present does the [solid] phase boundary become noticeably asymmetric. In the
plots at the right, the ×’s and dots indicate occupied and vacant sites, respectively,
in a perfectly ordered configuration, with the large symbols denoting a vacancy (𝜃 <
1/2) or extra adatom (𝜃 > 1/2), respectively. The arrows on the plots depict the
lowest-energy excitations, with the linetype of the shaft corresponding to the linetype
of the phase boundary on the phase diagram; for each linetype, this excitation energy
is the same for 𝜃 < 1/2 and 𝜃 > 1/2. According to the heuristic prescription, these
energies scale the disordering temperature. When both trios are present, there is
”frustration” over which excitation to use, the prescription fails, and asymmetries
occur. In the phase diagram, the broad dashed curve is the result of a mean-field
calculation, plotted at half its magnitude (i.e. 𝑇𝑐(𝜃=0.5) ≈ 1.2𝐸𝑙); not only is this
prediction of 𝑇𝑐 far too high and too broad, it also erroneously predicts substantial
asymmetry. From Ref. [16]
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1.2.2 Effect on Phase Boundaries: Asymmetries Not Inevitable

A trio interaction, which breaks particle-hole symmetry (or up-down symme-
try in the Ising viewpoint) is generally expected to lead inevitably to sub-
stantial asymmetries in phase diagrams about half-monolayer coverage. A
rather surprising finding of numerical [Monte Carlo] calculations is that a
single type of trio interaction need not necessarily do so. (See also the discus-
sion by Persson of the role of adsorption in sites not of high symmetry, the
equivalence to trio interactions, and the rich effects on temperature-coverage
phase diagrams [2, 35].) This result, illustrated in Fig. 1.2 for the case of a
c(2×2) overlayer with 𝐸1 >0 and 𝐸𝑅𝑇 , is in sharp contrast to the observa-
tion in 2D calculations which treat fluctuations approximately—mean field
and quasi-chemical approximations—that trios must produce such asymme-
tries [36]. Likewise we see that a linear trio 𝐸𝐿𝑇 alone does not produce an
asymmetry. However, when both 𝐸𝑅𝑇 and 𝐸𝐿𝑇 are present, the expected
notable asymmetry does appear. To comprehend this effect of trios on the
phase boundary, we need some way to assess the difference in the way the
trio interactions affect the lower-temperature ordered phase compared to the
higher-temperature disordered phase. Evidently the breaking by trios of the
particle-hole symmetry of the pair-interaction lattice-gas hamiltonian, and the
resulting asymmetry in the ground state energy, is not the crux.

We describe a crude approximation scheme for assessing the change in the
disordering temperature 𝑇𝑐 of an ordered phase from a known value 𝑇𝑐(0) for
some Hamiltonian to 𝑇𝑐(𝐸new) for a more complicated Hamiltonian with a
new interaction energy 𝐸new. While we have applied our procedure [37] to a
wide range of problems, we still have no formal derivation. In essence, the idea
is that 𝑇𝑐 scales with the lowest-energy excitation from the ground state. In
Ref. [37] we show, e.g., that for a c(2×2) overlayer with half-monolayer cover-
age, characterized by a nearest-neighbor repulsion 𝐸1 and a smaller second-
neighbor interaction 𝐸2,

𝑇𝑐(𝐸2) = 𝑇𝑐(𝐸2 = 0)

(
1 − 4𝐸2

3𝐸1

)
(1.6)

For this simple problem, Barber showed [38] that the exact coefficient is√
2 ≈ 1.41 rather than 4/3 ≈ 1.33; on the other hand, our value is much

better than the mean-field prediction of 1. For this same problem, the effect
of a right-triangle trio interaction 𝐸𝑅𝑇 (with 𝐸2 = 0) is given by

3𝐸1 + 2𝐸𝑅𝑇

𝑇𝑐(𝐸𝑅𝑇 )
=

3𝐸1

𝑇𝑐(0)
⇒ 𝑇𝑐(𝐸𝑅𝑇 ) = 𝑇𝑐(𝐸𝑅𝑇 = 0)

(
1 +

2𝐸𝑅𝑇

3𝐸1

)
. (1.7)

Similarly, for a linear trio 𝐸𝐿𝑇

3𝐸1 + 𝐸𝐿𝑇

𝑇𝑐(𝐸𝐿𝑇 )
=

3𝐸1

𝑇𝑐(0)
⇒ 𝑇𝑐(𝐸𝐿𝑇 ) = 𝑇𝑐(𝐸𝐿𝑇 = 0)

(
1 +

𝐸𝐿𝑇

3𝐸1

)
. (1.8)
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We caution that this procedure is applicable only if the new interaction
does not alter the symmetry of the ordered state and works well only if the
nearby elementary excitation from the fully ordered state is uniquely defined.
Thus, it works well for a (

√
3 × √

3) overlayer on a hexagonal net but not
for a 𝑝(2 × 2). It is also curious that this procedure requires a lattice gas
picture in which the number of atoms is conserved (i.e. a canonical ensemble
or Kawasaki dynamics); if the atom instead hopped to a “bath” (i.e. a grand
canonical ensemble, or fixed chemical potential, or a single spin flip in a spin
analogue (Glauber dynamics), the predictions are quite poor.

To assess the effect of trios on the symmetry of the temperature-coverage
phase boundary of a c(2×2) overlayer, we look at the elementary excitation
near a defect, either an extra adatom or a missing one. (See Fig. 1.2.) For just
a right-triangle trio, there are no such trios (no 2𝐸𝑅𝑇 ) in the excited state
when there is a vacancy; when there is an extra, there are two RT trios in
the ordered state which are lost in hopping to the nearest neighbor (where
another two RT trios occur). So in both cases, there is no change in the
number of RT trios, i.e. no change proportional to 𝐸𝑅𝑇 is involved. A similar
effect occurs with a linear trio, but with a different elementary excitation.
(See Fig. 1.2.) In either case, we saw that the phase boundary computed
using Monte Carlo appears symmetric. Only when both trios are present does
a marked asymmetry occur. However, a noteworthy inadequacy of this simple
picture is its inability to give any idea of the coverage-dependence of 𝑇𝑐 [39].

1.3 Applications to Gases on Metals

As an example of the state of the art in quantitatively determining adsorbate-
adsorbate interactions from combined theory and experiment, we discuss the
study of c(2×2) N on Fe(001) by Österlund et al. [8]. Since there is just one
ordered phase, one might expect to be able to extract information about only
a handful of interactions, say 𝐸1 > 0, 𝐸2, and a trio, from STM observa-
tions. The authors use a new concept called configuration distribution anal-
ysis (CDA) to extract much more information from high-resolution images.
Around each nitrogen adatom they obtain a site map of possible adsorption
sites. By comparing the resulting experimental conditional probabilities with
those obtained from Monte Carlo simulations with a lattice-gas model, they
can refine estimates of the various interactions.

The authors first consider a long-established analysis [40, 41] of the pair
correlation function 𝑔(𝑗), from which they deduce 𝐸𝑗 = −𝑘𝐵𝑇 ln 𝑔(𝑗), for 𝑗th
neighbors, between fractional coverages 𝛩 = 0.037 and 0.15. They find very
little NN site occupation and enhanced NNN occupation. For 𝑗 > 4 there
is no significant deviation from a random distribution (𝑔=1). From the data
they find 𝐸1 = 0.13 eV and 𝐸2 = -0.013 eV. Concerned about poor statistics
at 𝛩 = 0.037, the authors also carried out Monte Carlo simulations and used
a least-squares fit of data at all the coverages, finding similar energies: 𝐸1 =
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0.14 eV, 𝐸2 = -0.023 eV, and 𝐸3 = 0.003 eV. They then did a CDA anal-
ysis in conjunction with Monte Carlo simulations (seemingly at 𝛩 = 0.108),
supplemented by a comparison of measured and simulated island-size distri-
butions. They thus determined 𝐸1 = 0.13 eV, 𝐸2 = -0.018 eV, 𝐸3 = 0.019 eV,
and trio interaction energies 𝐸223 = -0.012 eV, and 𝐸225 = 0.006 eV. (These
trios correspond to RT and LT triangles on a larger scale, with insignificant
direct interactions.) If 3NN (third NN) sites are considered in the CDA, then
𝐸3 decreases to 0.015 eV. If trios are omitted from the CDA analysis, 𝐸1 is
unchanged but 𝐸2 increases in magnitude to -0.038 eV, while 𝐸3 diminishes
to 0.003 eV. In other words, fitted pair interactions are actually effective in-
teractions that include omitted interactions in some average, unspecified way.
The effect seems to be largest for the most prominent legs of the omitted
interactions, in this case NNN.

The authors also include an elastic repulsion, taken to have the asymptotic
isotropic form 𝐶/𝑅3 with strength 𝐶/𝑎3 = 0.15 eV, where 𝑎 is the Fe lattice
constant (2.87 Å). Hence, the electronic components of the 3 pair interactions
(for the CDA analysis including trios and configurations to 𝑗 =3) are -0.2 eV,
-0.71 eV, and -0.04 eV , respectively. (There is no comment about adjusting
the trios.) Note, remarkably, that ∣𝐸𝑒𝑙

1 ∣ < ∣𝐸𝑒𝑙
2 ∣. The authors conclude that

the electronic interaction is short range. The embedded atom method (EAM),
for metals on metals, predicts that the indirect interaction is repulsive and
proportional to the number of shared substrate atoms [3]. On very general
grounds one expects 𝑅−5 decay of the envelope in Eq. (1.2). We caution that
the distinction between electronic and elastic has long been recognized as
subtle [42] and that the asymptotic limit of the elastic interaction is likely to
be significantly modified at separations 𝒪(𝑎) by more rapidly decaying terms
in the multipole series series. [43]

1.4 Refined Schemes for Extracting Interaction Energies

To extract estimates of interaction energies when there are many such param-
eters is a delicate task. Typically one obtains a large number of simultaneous
equations by computing the total interaction of a large variety of different
overlayer structures. One should have more overlayer structures than interac-
tions so as to be able to check for robustness of the deduced values. While
informal schemes had formerly seemed sufficient [44], it is safer and sounder
to use formal cross-validation schemes used by several groups [13,45] to study
overlayer systems.

In recent work [46] we used the leave-𝑛𝑣-out cross-validation method [47]
to fit the computed energies for Cu(110) to the interaction parameters (cf. Sec-
tion 1.6). This method is expected to perform better than the more-commonly-
used leave-1-out cross-validation scheme [47]. We calculated the interaction
strengths in the following way: for a particular supercell, we computed total
energies for, say, 𝑛 different configurations of adatoms. In addition, we posit
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the number of significant interactions 𝑛𝑖. We then use 𝑛𝑖 (out of 𝑛) equa-
tions to solve for the interaction energies. These interactions are then used to
predict the energies of the remaining 𝑛𝑣 = 𝑛 − 𝑛𝑖 equations. We then com-
pute the root mean squared (rms) of the prediction error per adatom for all
configurations 𝑗 (1 ≤ 𝑗 ≤ 𝑛𝑣), each with 𝑎𝑗 adatoms in it:

𝛥𝐸rms =

√√√⎷ 1

𝑛𝑣

𝑛𝑣∑
𝑗=1

(𝛥𝐸𝑗)2 𝛥𝐸𝑗 =
𝐸pred − 𝐸VASP

𝑎𝑗
(1.9)

We repeat this procedure for different partitions of (𝑛,𝑛𝑖), and sets of interac-
tions from only those partitions whose 𝛥𝐸rms values are lower than a specified
threshold value (10 meV/adatom in our case) are considered for the final av-
eraging of interaction values. Finally, we find the value of 𝑛𝑖 that leads to
the best convergence. As a check, we perform this procedure on two different
computational supercells.

1.5 Effect of Relaxations in Homoepitaxy with Direct
Lateral Interactions

When direct interactions play a significant role, such as for (1×1) homoepi-
taxial partial monolayers, one must be wary of relaxation-induced modifica-
tion of energies near steps or island edges. From bond-energy, bond-order,
bond-length reasoning [48], one can expect such atoms—which lack their full
complement of near-neighbor bonds, to move closer to the remaining neigh-
bors to partially compensate for the loss. Persson showed that relaxation in
the form adsorption away from high-symmetry sites can lead to effective trio
interactions, and attendant effects, in systems with ostensibly only pair in-
teractions [2, 35]. Our goal here is to show that these relaxation effects are
especially significant for multi-site interactions, where the relaxations are not
along the bond directions. Furthermore, multi-site interactions, in general,
have a large elastic component; hence, a careful consideration of relaxation
effects is needed while computing them. We discuss in particular how strain
related effects are important when calculating the step stiffness on Cu(100).
Because of adatom relaxation near steps, the inclusion of non-pairwise, quarto
interaction between four adatoms is required on this square-lattice surface in
order to preserve a lattice-gas description.

1.5.1 Multisite Interactions in Step-Stiffness Asymmetry

Step stiffness (which earlier served as the mass in the 1D fermion model of
steps) underlies how steps respond . It is one of the three parameters of the
step-continuum model, [49] which has proved a powerful way to describe step
behavior on a coarse-grained level, without recourse to a myriad of microscopic
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energies and rates. In the analogy between 2D configurations of steps and
worldlines of spinless fermions in (1+1)D, step stiffness 𝛽 plays the role of
the mass of the fermion. As the inertial term, stiffness determines how a
step responds to fluctuations, to driving forces, and to interactions with other
steps.

We summarize our lattice-gas-based computations of the orientation de-
pendence of step stiffness for the (001) and (111) faces of Cu [50, 51]. This
work illustrates both successes and some shortcomings of using a lattice-gas
model with just NN interactions: whereas the step stiffness on Cu(111) is well
described by NN interactions alone, the step stiffness on Cu(001) requires
the inclusion of NNN and perhaps even trio interactions. We discuss only the
latter.

The step stiffness 𝛽(𝜃) ≡ 𝛽(𝜃)+𝛽′′(𝜃) weights deviations from straightness
in the step Hamiltonian, where 𝜃 is conventional designation of the azimuthal
misorientation angle; it measured from the close-packed direction. Here 𝛽 is
the step free energy per length (or, equivalently, the line tension, since the
surface is maintained at constant [zero] charge [52]). The stiffness is inversely
proportional to the step diffusivity, which measures the degree of wandering
of a step perpendicular to its mean direction. This diffusivity can be readily
written down in terms of the energies 𝜀𝑘 of kinks along steps with a mean
orientation 𝜃 = 0: in this case, all kinks are thermally excited. Conversely,
experimental measurements of the low-temperature diffusivity (via the scale
factor of the spatial correlation function) can be used to deduce the kink
energy. A more subtle question is how this stiffness depends on 𝜃. Even for
temperatures much below 𝜀𝑘, there are always a non-vanishing number of
kinks when 𝜃 ∕= 0, the density of which are fixed by geometry (and so are
proportional to tan 𝜃). In a bond-counting model, the energetic portion of
the 𝛽(𝜃) is canceled by its second derivative with respect to 𝜃, so that the
stiffness is due to the entropy contribution alone. Away from close-packed
directions, this entropy can be determined by simple combinatoric factors at
low temperature 𝑇 . [53–55]

Interest in this whole issue has been piqued by Dieluweit et al.’s finding [56]
that the stiffness as predicted in the above fashion, assuming that only NN
interactions 𝐸1 are important, underestimates the values for Cu(001) derived
from two independent types of experiments: direct measurement of the diffu-
sivity on vicinal Cu surfaces with various tilts and examination of the shape of
(single-layer) islands. The agreement of the two types of measurements assures
that the underestimate is not an anomaly due to step-step interactions. In that
work, the effect of NNN interactions 𝐸2 was crudely estimated by examining
a general formula obtained by Akutsu and Akutsu, [57] showing a correction
of order exp(−𝐸2/𝑘𝐵𝑇 ), which was glibly deemed to be insignificant. In sub-
sequent work the Twente group [58] considered steps in just the two principal
directions and showed that by including an attractive NNN interaction, one
could evaluate the step free energies and obtain a ratio consistent with the
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experimental results in Ref. [56]. They later extended their calculations [59]
to examine the stiffness.

To make contact with experiment, one typically first gauges the diffusivity
along a close-packed direction and from it extracts the ratio of the elementary
kink energy 𝜀𝑘 to 𝑇 . Arguably the least ambiguous way to relate 𝜀𝑘 to bonds in
a lattice gas model is to extract an atom from the edge and place it alongside
the step well away from the new unit indentation, thereby creating four kinks.
[60] Removing the step atom costs energy 3𝐸1 +2𝐸2 while its replacement
next to the step recovers 𝐸1 + 2𝐸2. Thus, whether or not there are NNN
interactions, we identify 𝜀𝑘 =− 1

2𝐸1 =1
2 ∣𝐸1∣ (since the formation of Cu islands

implies 𝐸1<0); thus, as necessary, 𝜀𝑘>0.
In the low-temperature limit, appropriate to the experiments [56], we have

shown that

𝑘𝐵𝑇

𝛽𝑎
=

𝑚
√

(1 −𝑚)2 + 4𝑚𝑒𝐸2/𝑘𝐵𝑇

(1 + 𝑚2)3/2
−→

𝑚→0+

𝑚 + 𝑚2

(1 + 𝑚2)
3/2

(1.10)

where 𝑚 is the step-edge in-plane slope.
Fig. 1.3 compares Eq. (1.10) to corresponding exact solutions at several

temperatures when 𝐸2 = 𝐸1/10. We see that Eq. (1.10) overlaps the exact
solution at temperatures as high as 𝑇𝑐/6. As the temperature increases, the
stiffness becomes more isotropic, and Eq. (1.10) begins to overestimate the
stiffness near 𝜃 = 0∘. In Fig. 1.4 (using the experimental value [61] 𝜀𝑘 = 128
meV ⇒ 𝐸1 = −256 meV), we compare Eq. (1.10) to the NN-Ising model at
𝑇 = 320K, as well as to the experimental results of Ref. [56]. For strongly
attractive (negative) 𝐸2, 𝑘𝐵𝑇/𝛽𝑎 decreases significantly. In fact, when 𝐸2/𝐸1

is 1/6, so that −𝐸2/2𝑘𝐵𝑇 = (𝐸2/𝐸1)(𝜀𝑘/𝑘𝐵𝑇 ) ≈ (1/6)4.64, the model-
predicted value of 𝑘𝐵𝑇/𝛽𝑎 has decreased to less than half its 𝐸2 =0 value, so
about 3/2 the experimental ratio. For the NNN interaction alone to account
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m � tan Θ
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0.5

kB T
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low	T � TC �6
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T � TC �6

T � TC �3

Fig. 1.3. The range of validity of Eq. (1.10) is examined by comparing it to exact
numerical solutions of the SOS model at several temperatures. In the legend 𝑇𝑐

refers to the NN lattice-gas (Ising) model; for ∣𝐸1∣ = 256meV, 𝑇𝑐 = 1685K. From
Ref. [50].
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for the factor-of-4 discrepancy between model/theory and experiment [56],
Fig. 1.4 shows that 𝐸2/𝐸1 ≈ 0.3 would be required.

1.5.2 Effect of Trio Interactions

If we include a RT trio (𝐸112) the effective NN lattice-gas energy 𝐸eff
1 is

𝐸1 + 2𝐸𝑅𝑇 and, more significantly the effective NNN interaction energy is
𝐸2 +𝐸𝑅𝑇 . Thus, 𝐸𝑅𝑇 must be attractive (negative) if it is to help account
for the discrepancy in Fig. 2 of Ref. [56] between the model and experiment.
Furthermore, by revisiting the configurations discussed in the penultimate
paragraph of the Introduction, we find that the kink energy 𝜀𝑘 becomes
− 1

2𝐸1 −𝐸𝑅𝑇 . Thus, for a repulsive 𝐸𝑅𝑇 , ∣𝐸1∣ will be larger than predicted by
an analysis of, e.g., step-edge diffusivity that neglects 𝐸𝑅𝑇 . Lastly, the close-
packed edge energy, i.e. the 𝑇 = 0 line tension 𝛽(0) = − 1

2𝐸1 −𝐸2, becomes
− 1

2𝐸1 −𝐸2 −2𝐸𝑅𝑇

We also investigated the strain related effects on calculated trio interaction
energies on Cu(100), where Dieluweit et al. [56] showed that the NN Ising
model cannot explain the experimentally observed step-stiffness anisotropy.
In a response, we showed that the addition of an effective NNN attractive
interaction could resolve the discrepancy. The effective NNN interaction (𝐸2)
can be written as the sum of two components as illustrated in Fig. 1.1a:

∙ a pairwise second neighbor interaction energy (𝐸2)
∙ an orientation-dependent right-isosceles trio interaction energy (𝐸𝑅𝑇 )

0.2 0.4 0.6 0.8 1
m � tan Θ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

kB T
�����������������������
Β
�
��Θ��a T � 320 K

Exp’t

Ε2 � Ε1�4

Ε2 � Ε1�6

Ε2 � Ε1�10

Ε2 � Ε1�25

Ising NN

Fig. 1.4. Eq. (1.10) is plotted for a range of values of 𝐸2 (𝑒𝑝𝑠𝑖𝑙𝑜𝑛 on the plot,
where 𝐸1 and 𝐸2 are NN- and NNN-interaction energies, respectively, in a lattice-gas
picture. The solid curve denoted “Ising NN” corresponds to 𝐸2=0. The dots labeled
“Exp’t” are taken from Fig. 2 of Ref. [56] and were derived from the equilibrium
shape of islands on Cu(001) at 302K, with line segments to guide the eye. To clarity,
we omit similar data derived from correlation functions of vicinal surfaces at various
temperatures. Note that for 𝐸2=𝐸1/4 there is a maximum near tan 𝜃=1/2 that is
not observed in experimental data. From Ref. [50].
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Fig. 1.5. (a)Effective NNN interactions on a (100) surface [of an fcc crystal], (b)
Multisite interactions 𝐸𝑑(solid triangle),𝐸′

𝑑(broken triangle) and 𝐸𝑄(square), where
the subscript d is RT in our notation. The trio 𝐸𝑑 has adatoms on the step edge
whereas 𝐸′

𝑑 has no adatoms on the step edge. From Ref. [24]

However, when we used VASP to calculate these interactions, we found a
large repulsive value of around 50meV for the right-isosceles trio interaction
energy (𝐸𝑅𝑇 ). Such a value cancels the calculated attractive second-neighbor
interactions (𝐸2) thereby reducing the model to a NN Ising model. Thus, in
the end the discrepancy between theory and experiment could not be resolved.

To see the effect of relaxation, we repeated the calculations with a bigger
supercell (4x4x14). If an adatom stripe has kinks, there can be two types
of right-isoceles trios, ones with one/two adatoms on the step-edge and ones
with no adatoms on the step-edge (Fig. 1.1b). Since the local geometry of
these two adatoms is different, we could expect the trio interaction energies
to be different because the RT trio adatoms (𝐸′

𝑅𝑇 ) inside a stripe cannot relax
as much laterally as the trios with its vertices on the step (𝐸𝑅𝑇 ). The trio
energy that we calculated earlier corresponds to a linear combination of 𝐸𝑅𝑇

and 𝐸′
𝑅𝑇 , weighted more dominantly by 𝐸′

𝑅𝑇 . However, the calculation of the
step stiffness depends on broken step-edge trios, which necessarily correspond
to 𝐸𝑅𝑇 . To distinguish these two trios here, we calculated the energies of four
different adatom configurations and we solved the resultant linear system of
equations. With this correction, at the step-edge 𝐸𝑅𝑇 ≈ 12.5 meV/atom, and
the effective NNN interaction is thus 𝐸eff

2 = 𝐸2 + 𝐸𝑅𝑇 ≈ -35 meV/atom
Though 𝐸𝑅𝑇 is still repulsive, its magnitude lower than that of the at-

tractive 𝐸2. The ratio of the effective NN interaction to the effective NNN
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interaction is
𝐸eff

2 /𝐸eff
1 ∼ 1/9 while 𝐸2/𝐸1 ∼ 1/7 (1.11)

which is much closer to experimental expectations.
Distinguishing between the step-edge trios 𝐸𝑅𝑇 and the bulk trios 𝐸′

𝑅𝑇

is not compatible with a proper lattice-gas picture, where interactions should
not depend on local position and geometry. We can remedy this problem by in-
troducing a quarto interaction. This quarto interaction distinguishes between
the two trios because is present only in bulk trios 𝐸′

𝑅𝑇 :

𝐸′
𝑅𝑇 = (3/4)𝐸𝑄 + 𝐸𝑅𝑇 (1.12)

This yields the value of the quarto interaction to be 𝐸𝑄 = 53 meV. This
is a significant amount of energy (compared with collinear trio 𝐸𝐿𝑇 = -15
meV/atom and third-nearest neighbor interaction 𝐸3 = -8 meV/atom [62])
and hence is likely to have consequences in calculations of other properties.

In summary, when calculating trio interactions from first principles, how-
ever, care must be taken; they can be exquisitely sensitive to the geometry
and structure of the supercell used to calculate them. Such sensitivity to local
relaxation can complicate a simple lattice-gas description. To account for the
relaxation of trios near step edges, for example, we introduce a non-pairwise
quarto interaction 𝐸𝑄 among four neighboring adatoms. We find that such
an interaction is necessary to bridge the theoretical step stiffness with exper-
imental measurements on Cu(100). In that case, we find what amounts to a
relatively large, repulsive quarto interaction 𝐸𝑄 = 54 meV that has significant
physical consequences in our problem and presumably more generally. (In the
same paper [24] we find that the inclusion of trio interactions can account for
the difference in A- and B-step formation energies on Pt(111).)

1.6 Connector Models

The expansion in 𝑚-adatom interactions can become cumbersome and un-
wieldy if the multiparticle energies do not become smaller after, say, quarto
interactions. Seeking an alternative approach to circumvent this issue, Ti-
wary and Fichthorn (TF) [25] proposed the connector model (named after
the construction-kit toy [63]), which focuses on the vertices rather than the
links of a cluster of adatoms. For example, consider 4 adatoms forming a
NN square. In the lattice-gas model, the total energy would be 4𝐸1 + 2𝐸2

+ 4𝐸𝑅𝑇 + 𝐸𝑄. In the connector model with just NN spokes (spokes of half
the NN bond length and oriented in the appropriate directions), this total
energy is just 4 times the energy of a connector hub with two perpendicular
spokes. For this lattice, there are just 5 types of connectors, having 1, 2, 3,
or 4 spokes, the 2-spoke case having a straight and a right-angle conforma-
tion. More often, one must use connectors with NN and NNN spokes. For the
square of 4 adatoms, there would still be just one connector, with a NNN

16 T.L. Einstein and Rajesh Sathiyanarayanan

spoke between the two perpendicular NN spokes (called D6 in Ref. [25]). For
the straight-conformation 2-NN-spoke case, one can add 1 NNN spoke in 1
distinct conformation, 2 NNN spokes in 3 conformations, 3 or 4 (or 0) each in
1 distinct conformation, summing to 7 possibilities. In other cases there will
be even more. With 3NN spokes, the number of possibilities is even larger.
One of the main features of this model is that the type of connector contains
information about the local geometry of the adatom; hence relaxation effects
are expected to be built into the model. However, to keep the number of fitted
energies reasonable, TF use just 8 connectors: D1 for an isolated atom; D2
and D3 for just 1 NN or NNN spoke, respectively; D4 and D5 for 2 NN or
NNN spokes in the same direction (linear), respectively; D7 with 3 NN spokes
and 2 NNN spokes between them; and D8 for all 8 spokes. Thus, as for lattice
gas interactions, success requires that the investigator have enough insight to
select the connectors that capture the essence of the problem.

Other applications to date have been to (110) fcc surfaces, where the rect-
angular symmetry leads to a large variety of lattice-gas energies as well as
a much greater number of connectors, since the perpendicular “NN” spokes
have different lengths (though NNN are still the same). However, the mul-
tiplicity can be reduced by sometimes neglecting some differences. We used
ten connectors (shown in Fig. 1.6) to characterize adatom interactions on
Cu(110) [46], while TF used the first 9 for Al(110).

For Cu(110) the CV scores are as good as those obtained using a dozen
lateral interactions in the lattice-gas approach [46]. This agreement is plausible
since it is often possible to establish linear relations between the connector
and lattice-gas energies, e.g.

𝐶6 = 𝐸0 +
𝐸1

2
+

𝐸2

2
+

𝐸3

2
+

𝐸𝑇1

3
+

𝐸𝑄1

4
(1.13)

The sensitivity of multi-site interactions to relaxation is not apparent from
the connector energy values because (i) each connector has contributions from
adsorption energy (𝐸0 or 𝐶1) and other pairwise interactions that dominate
over contributions from multi-site interactions; also, the contribution from
a particular multi-site interaction is divided by the number of participating
adatoms (cf. Eq. (1.13), further decreasing the sensitivity of connector ener-
gies to adatom relaxations. However, the connector model incorporates such
relaxation effects, as can be seen from the uniformly low CV scores for all re-
laxation schemes [46]. Evidently the connector model works well in the cases
of Cu(110), Al(110), and Al(100). It remains to be seen whether the connec-
tor model provides an adequate solution, without the need for any ad hoc
patches, to the overlayer problem. Relaxation effects become prominent dur-
ing energy calculations of adatoms near step edges; in such calculations the
simple lattice-gas model encounters problems [24, 62]. At the same time, ac-
commodating the relaxation effects encountered in such calculations within
the connector model might require the usage of connectors that account for
the orientations of neighbor bonds, resulting in an undesirably large num-
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Fig. 1.6. Left: Connectors [25] used to characterize Cu adatom interactions on
Cu(110). Lighter (mustard) circles represent adatoms and darker (orange) circles
represent atoms in the substrate layer. Right: Lattice-gas interactions used to char-
acterize Cu adatom interactions on Cu(110). Multi-site interactions 𝐸𝑇2, 𝐸𝑄2 and
𝐸𝑄3 were found to be insignificant. From Ref. [46], which also provides tables of the
values of these energies.

ber of connectors in the model. A DFT-based study that compares these two
models on a surface like Pt(111), where such lateral relaxation is known to
complicate surface energy calculations [24], might elucidate this issue.

1.7 Interactions between Organic Molecules

Understanding the interactions between and consequent self-assembly of or-
ganic molecules on metal surfaces has drawn much recent interest. The adsorp-
tion bond is of order an order of magnitude weaker than for the chemisorbed
systems considered above. Direct interactions between the organic molecules
are often by way of hydrogen bonds, and there is always a van der Waals
attraction which, for these systems, may play the dominant role. While the
coupling to the substrate is relatively weak, the indirect electronic interactions
between adsorbates may be important at long-range when the substrate has
metallic surface states
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Very recently we have considered the adsorption of benzene on Cu(111)
[64], using a DFT approach with a van der Waals functional included. We
can account for the two ordered submonolayer phases observed by Dougherty
et al. [65]. The denser phase is due to direct van der Waals bonding between
the benzenes while the less dense phase appears to be due to the surface-
state-mediated interaction. We have not yet investigated the role of trio in-
teractions in this system. Our ultimate goal is to explain the dramatic giant
regular honeycomb structure formed by anthraquinone (AQ) molecules on
this substrate [66]. In models that treat the admolecules as single “atoms”,
a repulsive trio interaction is crucial to prevent the formation of dense, un-
physical overlayer regions [67]. Our belief is that the large, regular structure is
related to interactions between AQ mediated by the metallic surface state. A
variety of theoretical and experimental techniques are in progress to confirm
this picture [68].
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