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One-dimensional model of interacting-step fluctuations on vicinal surfaces:
Analytical formulas and kinetic Monte Carlo simulations
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We study analytically and numerically a one-dimensional model of interacting line defects (steps) fluctuating
on a vicinal crystal. Our goal is to formulate and validate analytical techniques for approximately solving
systems of coupled nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion.
In our analytical approach, the starting point is the Burton-Cabrera-Frank (BCF) model by which step motion
is driven by diffusion of adsorbed atoms on terraces and atom attachment-detachment at steps. The step energy
accounts for entropic and nearest-neighbor elastic-dipole interactions. By including Gaussian white noise to the
equations of motion for terrace widths, we formulate large systems of SDEs under different choices of diffu-
sion coefficients for the noise. We simplify this description via (i) perturbation theory and linearization of the
step interactions and, alternatively, (ii) a mean-field (MF) approximation whereby widths of adjacent terraces
are replaced by a self-consistent field but nonlinearities in step interactions are retained. We derive simplified
formulas for the time-dependent terrace-width distribution (TWD) and its steady-state limit. Our MF analytical
predictions for the TWD compare favorably with kinetic Monte Carlo simulations under the addition of a
suitably conservative white noise in the BCF equations.
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I. INTRODUCTION

Stochastic fluctuations are ubiquitous in material systems.
Physical systems of interest that exhibit fluctuations include
epitaxially grown crystals [1] as well as biosensors and bio-
logically inspired membranes [2]. The role of stochastic ef-
fects in the nonlinear dynamics of crystal surfaces, in par-
ticular, has been the subject of extensive studies, both
experimental and theoretical [3-7]. In this context, under-
standing the interplay of nonlinear evolution and noise leads
to challenging questions, many of which remain unexplored.

Vicinal crystals are characterized by nanoscale terraces
oriented in the high-symmetry direction and separated by
line defects (steps) of atomic height [3,8]. The total number
of steps is fixed by the miscut angle of the crystal. The mo-
tion of steps drives the dynamics of crystal surfaces at large
scales. The step fluctuation laws provide valuable informa-
tion for the dominant mass transport mechanisms on surfaces
of crystalline solids [3].

In this paper, we study by methods of stochastic calculus,
asymptotics, and kinetic Monte Carlo (kMC) simulations the
step fluctuations in a one-dimensional (1D) geometry. The
steps are assumed to be straight, monotonic, and interact
entropically or as elastic dipoles. This setting leads to a large
system of stochastic differential equations (SDEs) for the
terrace widths. Our main goal is to simplify this system and
extract explicit formulas for the terrace-width distribution
(TWD). We invoke two distinct analytical techniques and
compare our results to 1D kMC simulations. Our techniques
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are the following: (i) perturbation theory and exact compu-
tation of variances for linearized SDEs and (ii) a mean-field
(MF) approximation on the basis of the kinetic Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY)-type hierarchies [9]
for terrace-terrace correlation functions. In the course of our
study, we assume that steps interact strongly enough in order
to enable simplifications.

With this work, we intend to explore advantages and limi-
tations of analytical techniques, e.g., the MF approach, for
large stochastic systems in a relatively simple setting (which
allows tractable yet nontrivial computations). Our approach
aims to complement previous treatments of step fluctuations
in the presence of material deposition from above in one
dimension [7,10]. In [7,10], steps are noninteracting and the
related SDEs are perturbed around the terrace-width average.
In the present paper, we introduce the more realistic element
of dipolar step-step interactions and retain nonlinearities in
the SDEs. As a result, a noncrossing condition for steps is
drastically enforced. In the MF picture, the germane SDEs
lead to a nonlinear equation for the stochastic process of a
single terrace. The corresponding Fokker-Planck-type equa-
tion (FPE) unravels a rich behavior of the TWD. In principle,
linearized models fail to capture essential features of this
behavior. Our approach points to this conclusion via MF ap-
proximations consistent with BBGKY hierarchies and com-
parisons with kMC simulations.

Our analysis is mainly limited by (i) the 1D character of
the geometry and (ii) our assumption of statistical indepen-
dence in implementing the MF approximation. First, the
steps are straight and, thus, their meandering and curvature
are eliminated. This simplification yields, as an artifact, a
singularity of the TWD at zero terrace width, which math-
ematically enforces a step noncrossing condition. Second, to
allow for tractable computations in the MF picture, we as-
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sume that the terrace widths are decorrelated, so that their
joint probability distributions, p®, are approximated by
products of TWDs. We claim that, despite the above limita-
tions, some elements of our techniques, e.g., the self-
consistent generation of a mean field for terraces from ki-
netic hierarchies, can be extended to two-dimensional (2D)
settings.

The model of step flow originates from the pioneering
work by Burton, Cabrera, and Frank (BCF) [11]. In the BCF
model, the motion of steps is caused by mass conservation as
adsorbed atoms (adatoms) diffuse across terraces and detach
from or attach to step edges. A key assumption is that ada-
toms are represented by a concentration that satisfies a dif-
fusion equation on each terrace. The laws for atom
attachment-detachment are introduced as boundary condi-
tions [3,11]. In the original BCF model [11], steps are non-
interacting, but later works enrich this theory with entropic
and elastic-dipole step interactions [12-14]. A crucial ther-
modynamic quantity relating motion with energy is the step
chemical potential [3], which expresses the tendency of a
step to advance or retreat via exchanging atoms with the
environment.

By adding Gaussian white noise to the BCF-type step
equations, we formulate a system of SDEs for terrace widths.
These SDEs have the form

w(n)=a(w)+0Q - (1), (1)

where w=(w, ...,wy_;) is the vector of N terrace widths, a
is another N-dimensional vector encapsulating step-step in-
teractions and, in principle, depending on w nonlinearly, Q is
the N X N diffusion coefficient, and 5=(7,, ..., 7y_;) is the
vector-valued Gaussian white noise [15]. The dot on top of a
symbol denotes differentiation in time, ¢, throughout. We ap-
ply screw-periodic boundary conditions for w; and 7;, so that
the steps are mapped onto point particles on a ring.

In Eq. (1), Q- n is intended to model effects of random
thermal fluctuations and couplings with the environment.
This ad hoc approach, where the noise form is assumed
rather than derived by first principles, has been motivated in
[7,10]. Our model of noise does not intrinsically rely on
equilibrium concepts, in particular, the fluctuation-
dissipation theorem. However, our results for the TWD vari-
ance turn out to be consistent with the fluctuation-dissipation
theorem, although our assumptions are more general than
those underlying this theorem. For example, we do not en-
force the equipartition law for energy from the beginning,
unlike in [16]. For our purposes of comparing our analysis
with kMC simulations for the TWD, we are not concerned
with the precise value of the amplitude of the noise.

To allow for some flexibility in modeling, we consider
three forms of @ amounting to the following: (i) (@ n);
=7,(t), ie., the usual nonconservative white noise; (ii)
(Q-m);=n;1— m;, a first-order conservative scheme; and (iii)
(Q-m);=7;1-2m+m;.;, a second-order conservative
scheme. We show that only choice (iii) is compatible with
the requirements of a fixed-system size and finite TWD vari-
ance. Solving Eq. (1) poses a challenge. Our primary task
here is to reduce the large system of coupled SDEs [Eq. (1)]
to a tractable FPE and solve for the time-dependent TWD.
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We derive asymptotic formulas for the TWD, assuming
that step interactions are sufficiently large. The difficulty of
the large system dimension is addressed in two alternate
ways. First, we consider the exactly solvable case of linear-
izing a(w) around the average terrace width, (w). Our ensu-
ing solution for the stochastic process of terrace widths
manifests the interplay between interactions and noise and
sheds some light on effects of step correlations. The results
for the terrace-width variance under linearization motivate
our second alternate approach: a MF formalism, by which, in
the jth SDE, the terms w;+; and w;., are replaced by an
effective field depending on w; (and time 7). This approxima-
tion, partly analyzed via BBGKY hierarchies here and in
[10], retains nonlinearities but neglects correlations.

At the risk of redundancy, we emphasize that a limitation
of our theory stems from the 1D character of the underlying
model. Thus, step edge diffusion and step meandering are not
addressed here. This simplification impedes direct compari-
sons with experiments. However, our 1D model enables us to
(i) formulate analytically tractable SDEs for many terrace
widths and (ii) connect explicitly (via asymptotics) proper-
ties of coefficients in these SDEs, e.g., the dipolar form of
step interactions, to the global behavior of the TWD. Thus, in
this framework, valuable information for the TWD is singled
out with reasonable ease. In a 2D setting, on the other hand,
complications arise due to step curvature, as well as richer
kinetics and forms of noise [4,5,16]. This direction is left for
near-future work.

Another limitation is the MF approximation, which we do
not justify rigorously. This scheme has been used in previous
studies of step dynamics [6,7]. By invoking BBGKY hierar-
chies for joint probability density functions of terrace widths,
we define the MF exactly and then simplify the SDEs on the
basis of a statistical independence (“propagation of chaos”)
hypothesis in the spirit of Ref. [10]. This hypothesis is not
strictly satisfied in step systems but, via comparisons with
the linearized model, is expected to be a reasonable approxi-
mation for short or long enough times (for a class of initial
data) [10]. Interestingly, we find agreement of our MF solu-
tion with the 1D kMC simulations for moderate to strong
step interactions.

An ultimate justification for the analytic manipulations in
our work relies on the use of kMC simulations in one dimen-
sion. Broadly speaking, the kMC approach has been used
extensively in the study of surfaces in two dimensions (e.g.,
see [7]). In some instances, physical effects such as entropic
repulsion are inherent to the kMC algorithms.

Since we carry out kKMC simulations for 1D step trains,
the details of implementing our numerical approach are
strictly different from corresponding simulations in two di-
mensions. An element of our algorithm is to assign to each
step (“particle”) a probability of movement to another 1D
site; this probability depends on the energy barrier that the
step must overcome. Each particle is coupled to two nearest
neighbors on each side, with which the particle interaction is
an inverse-distance squared potential. The algorithm is based
on a scheme described in Ref. [17].

The remainder of the paper is organized as follows. Sec-
tion II introduces our model and the governing SDEs for
terraces. Section III describes the linearization of these SDEs
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and the extraction of the terrace-width variance in the limit
as N— for finite times. Notably, our main result contains
analytical features, e.g., scaling of the time scale with step
interaction strength, which persist in the nonlinear case. Sec-
tion IV focuses on the MF formalism via the notion of ki-
netic hierarchy. In Sec. V, we develop a MF approximation
scheme for computing the steady-state TWD for a suffi-
ciently large interaction parameter. This scheme is motivated
by the observation that, for nonlinear SDEs, the (self-
consistent) mean field, in principle, does not coincide with
the average terrace width. Section VI focuses on an exten-
sion of this approximation to the time-dependent TWD. In
Sec. VII, we discuss extensions and limitations of our treat-
ment. Finally, Sec. VIII summarizes our results.

Notation and terminology. Throughout the paper, we ad-
here to certain notation conventions. Vectors are lowercase
and matrices are uppercase; both objects are boldface unless
we indicate otherwise. For any circulant matrix A, the (non-
negative) quantity |A|? is the sum of the magnitudes squared
of elements of the first row of A. We adopt the Einstein
summation convention; i.e., we sum over repeated indices.
The symbol R’ denotes the region of the n-dimensional Eu-
clidean space (R,) with non-negative coordinates. The sym-
bol g, denotes partial differentiation with respect to z (i.e.,
d.=d/dz). By writing f=0(g) (f=0(g)) we imply that f/g is
bounded by a constant (f/g—0) as a parameter or variable
approaches an extreme value. Accordingly, the expression f
~ g loosely implies f—g=0(g). The probabilistic terms “av-
erage,” “mean,” and “expectation” are used interchangeably.
Further, we do not distinguish the terms “distribution” and
“probability density.” We reserve the symbol P(s,7) for the
TWD and p"(s,1) for the joint probability density of any n
consecutive terraces (if n=2).

II. BACKGROUND: BCF THEORY
A. BCF model

In this section, we review the physical principles underly-
ing our model, which are based on the kinetic perspective of
BCF [11]. This perspective has been enriched with kinetic
and energetic effects (see, e.g., Refs. [18-23]). The main
idea is to view steps as boundaries moving by mass conser-
vation. Adatoms diffuse on terraces between steps according
to a (continuum) differential equation. In addition, atoms at-
tach to and detach from step edges with given kinetic rates.
The interactions between steps are included in the boundary
(attachment-detachment) conditions for adatom diffusion.
These interactions influence the flux of adatoms toward step
edges via the step chemical potential, a thermodynamic
force.

We start by considering a 1D train of N steps which have
(constant) height a and are descending in the positive x di-
rection (see Fig. 1). For simplicity of notation, we take the
lattice to be simple cubic, with terraces in an {001} direction,
so that the in-plane square lattice also has lattice constant a.
Let the step positions be labeled by an (integer) index, j,
where j=0,1,...,N—1. Define the jth terrace width by w;
=x;—x;_;. We apply screw-periodic boundary conditions, so

JTA
that the steps are mapped onto particles on a ring [7,10].

PHYSICAL REVIEW E 82, 061601 (2010)

S0 ) Ji(x0)

FIG. 1. Side and top views of step system. Steps have height a
and positions x; and w;=x;-x;_;. (a) Side view: steps descend for
increasing x. (b) Top view: the directions and magnitudes of adatom
fluxes J;_;(x) and J;(x) at x=x;_; are represented by arrows; by Eq.

(7), the (j—1)th step edge moves to the right.

Let 7 be the physical (dimensional) time. The number den-
sity, ¢ j(x,?), of adatoms on the jth terrace solves the equation

[11]
Dd,ci(x,7) = dcj(x,1)  for x;) <x<x;, (2)
subject to the boundary conditions [3,20,24]
T =kejlx)) =i,

-.7_7_1 = k+[C.,'(xj—1) - C;‘El]' 3)

In the above, D is the terrace diffusivity and 7 is the mass
flux impinging on the jth step from right (+) or left (—) with
kinetic rates k. [25,26]. The quantity ¢} is the equilibrium
adatom concentration at the jth step edge and is given by the
near-equilibrium relation [3]

M M
l=c, ex (—L>zc<1+—L> 4
l=cgexp KT AT (4)
if | ;| <kpT. Note that w; is the jth-step chemical potential,
¢, 1s a material-dependent constant, and kg7 is the Boltz-
mann energy. For entropic and elastic-dipole step interac-
tions, u; is expressed as [3]

- 1 1 -
Mj=ga3(T——3), §>0, &)
Wirt  W;

where the coupling constant g has units of energy.

To solve Eq. (2), we adopt the quasistatic approximation
by which each c;(x,7) is assumed to reach its steady state
much faster than steps move. Hence, we set dx j(x,?) =( for
every j. Accordingly, the adatom flux on the jth terrace,
Ji(x,f)==Dd,c;(x,1), is a constant,

=
Ji(x) = D# for x;_; <x<ux;. (6)
—+—+w;
ke ko
In Eq. (3), in the quasistatic approach we use J},
=-J;(x;_y) and J i=J (x;) since any convective contributions
to J due to the step velocity are negligible.
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By mass conservation, the jth step velocity is [3,11]
) dx; Q
xj(;)=;;L=;(Jj_Jj+l)=a(Jj_Jj+l)’ (7)

where ()=a? is the surface atomic area. Equation (7), com-
bined with Egs. (4)—(6), leads to the following (determinis-
tic) equations of motion for terrace widths:

= 2gH(Wj;Wj—l’Wj+l) - gH(WjH ;Wj’wj+2)

—gH(Wj_ﬂWj_z,Wj), (8)
where
1|2 1 1
H(x;y,z)=v—[—3—<—3+—3)}- 9)
CH+xlx Yoz

For a vicinal surface, we take the initial condition w;(0)
=(w) (although, in principle, we could start more generally
with N constants with average value (w)). Here, the param-
eter §=Dc,ga*/ kT is a measure of the interaction strength
and ¢=D(k;'+k”") is a kinetic length expressing the inter-
play of diffusion and attachment-detachment processes. We
render Eq. (8) dimensionless by setting s;=w;/{w) and ¢
=7/t*, where t* is some time scale, e.g., r*=(w)?/D. We also
define g=gr*/{w)®> and c=¢/(w). We have (s;)=1, which
fixes the vicinal crystal size.

To model fluctuations, we add a term containing a Gauss-
ian white noise to Eq. (8). Since our approach is ad hoc (i.e.,
the noise form is assumed and not derived from first prin-
ciples), we allow for some flexibility in the choice of the
noise term. We write

o ds;
Sj=EL=gA(Sj—2,Sj—1,Sj Sis1sSjp2) + Qs (10)
where 7; (1=0,...,N—1) is the Gaussian white noise at the

Ith step and Q=[Q;,] is some N XN matrix (to be specified
below). Note that before nondimensionalizing, the coeffi-
cient multiplying 7, is (D/{w))Q;;, which has units of length
over time. We also define

A(S)-2,81-1,858 41,8 j42) = 2H(s138)-1,8111) — H(sj_158;-2,5))
—H(Sj+1;sj,5j+2), (11)

i.e., the right-hand side of Eq. (8) divided by g, where ¢ is
now replaced by ¢ in H [see Eq. (9)]. Note that in Eq. (10)
we single out the constant g. This g influences the time and
length scales for the dynamical system. In Secs. V and VI,
we show analytically how the singular character of A prohib-
its step crossing.

Equation (10) is the main result of this section and forms
the basis of our subsequent calculations. In Secs. III-VI, we
develop techniques for extracting statistical properties of the
terrace widths by further analyzing Eq. (10) via stochastic
calculus and kinetic hierarchies.

The above model has limitations. First, steps are straight;
hence, the effects of curvature and step meandering [4,5] are
omitted from our formulation. Despite this restriction due to
dimensionality, the deterministic system (8) has been used in
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the study of relaxation of step bunches in certain material
systems (see, e.g., [20]). Second, material deposition, which
is included in other stochastic treatments [7,10], is not
present in our model. The combined effect of deposition,
step-step interactions, and noise is left for near-future work.

B. Interpretation of the key parameter g

In this section, we propose a physical interpretation of the
parameter g by discussing how our 1D model may be used to
describe “quasi-1D” systems, i.e., 2D systems in which steps
remain relatively straight (see Ref. [3]). If two neighboring
2D steps remain straight along some length L, then in order
for one step to advance by an amount dw with respect to the
other, every element of the moving step must move by the
same amount dw. In this sense, we choose to represent
quasi-1D systems with Eq. (8) (see also Fig. 1). In our inter-
pretation, the chemical potential [cf. Eq. (5)] is the energy
required to simultaneously add an adatom to every site along
the length L of a moving step. Hence, the parameter g is the
step interaction energy for an entire step to interact with
another entire step.

In Refs. [3,27], values of the interaction energy per length
are given for several metals and semiconductors in units of
eV A~!. The values in these references account for the inter-
actions between individual elements of neighboring steps, as
opposed to interactions between entire steps. Typical values
for silicon range from a few hundreds of meV/A to
1000 eV/A, depending on the orientation of the miscut
angle. For (w)=100 A, ¢,~102 A~ a~5 A, and kzT
~0.1 eV, our model predicts an interaction energy per
length g/L~(g/L)X 10° eV. Hence, the values g=1 and L
=10°> A corresponds to a vicinal surface whose steps remain
straight for approximately 105 A and have an interaction
energy of 1 eV/A well within the range of values found for
different orientations of silicon.

III. LINEARIZED MODEL

In this section, we aim to gain some insight into the sto-
chastic fluctuations and correlations of terrace widths via the
linearization and exact solution of Eq. (10). In our manipu-
lations, we consider the limit as N-—o for fixed
(N-independent) time, ¢, in the spirit of [10]. The quantity of
interest is the terrace-width variance as a function of time.
We discuss the effect on the variance of different choices for
the diffusion coefficient, Q. In particular, we choose the sim-
plest possible (yet nontrivial) @ for which the variance is
consistent with a fixed-system size and settles to a finite limit
at the steady state.

A. Linearized terrace equations of motion

The linearization of this section results in an unphysical
property: the probability that terrace widths are negative
(and, thus, steps cross) is nonzero [7,10]. We adopt the view
that this probability can be controlled: it becomes small if the
step-step interaction strength (g) is sufficiently large [28].
We focus on the TWD P(s), bearing in mind that our result
should be accurate for s close enough to the TWD peak. This
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knowledge partly motivates and guides our analysis in the
nonlinear case if g= 1 when step fluctuations are reasonably
small.

Hence, proceeding under the assumption that g>1, we
treat the stochastic fluctuation process w;=s;—1 as small in
the sense that 1-Prob{|w,|<e}<1 for sufficiently small e
>0 (where the Prob denotes the probability). It is then rea-
sonable to expand the governing equations [Eq. (10)] around
w,;=0 (j=0,...,N-1). Defining g.=3g/(c+1), we derive
the linear SDE system,

w(x) =~ gc[6mj 4w+ )+ T+ ﬁ’j+2] + QM
(12)

where (abusing notation) we keep the same symbol, @, for
the approximate solution. In contrast to Refs. [7,10], where
the discrete scheme is of second order, SDEs [Eq. (12)] in-
troduce fourth-order couplings. Note in passing that in the
continuum limit, Eq. (12) reduces to a fourth-order differen-
tial equation.

Now let w and 7 be vectors whose components are the
fluctuations and noise, respectively, of each terrace, e.g., @
=(wy,...,wy_;). Define A to be the circulant matrix whose
first row is [6,-4,1,0,...,0,1,-4]. Equation (12) is then
written more compactly as

w=—gA -w+0Q- 7. (13)

By enforcing the initial condition w(0)=0, we trivially solve
Eq. (13) by means of an integrating factor,

w(r) = f et AQ ()t (14)
0

without any ambiguity in interpreting the stochastic integral.
The stochastic process w(r), as well as each of its compo-
nents, is Gaussian with zero mean [15]. The variance for any
terrace width, w;, at time ¢ 1S

Tinl1) =821ch e 4Qldr . (15)

0

To compute o7, (¢) by Eq. (15), we use a spectral property of
circulant matrices. Specifically, for any real circulant N X N

matrices X and Y, we have (see Appendix A)
N-1

1
e X|* = IXeY|2=];E e, (16)
k=0

where \, are the eigenvalues of the matrix Y+ Y7 and 9, are
the eigenvalues of XX T Furthermore, note that the kth eigen-
value of any circulant N X N matrix A is furnished by the
product A F;;, where F is the N X N discrete Fourier trans-
form matrix, F,=[F],;=e>™ "N n the following, we use
Eq. (16) for the evaluation of o> by Eq. (15).

lin

B. Second-order conservative noise

Explicit computation of Eq. (15) requires a specific choice
for Q, which is constrained by the physical requirement that
the total size of the vicinal crystal be fixed. This requirement
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implies that summing Eq. (12) over all j should yield a de-
terministic evolution equation. Moreover, it imposes the re-
striction that the variance of any terrace width be finite for all
times, and hence that Eq. (15) be bounded as t— . In par-
ticular, summing Eq. (12) over all j rules out the possibility
that @=1 (identity matrix). In Appendix B 1, we show that
the next simplest choice, a first-order conservative noise
where the circulant matrix @ has the first row
[1,-1,0,0,...], violates the finite variance condition.

The second most simple (yet nontrivial) choice for Q
amounts to a second-order scheme for a conservative noise.
Accordingly, we set the first row of the circulant matrix Q
equal to [2,-1,0,...,0,—1]. We note here that the fixed-
system size requirement does not determine @ uniquely.
Moreover, we do not invoke the fluctuation-dissipation theo-
rem to determine the noise in our system [29]. Hence, while
our second-order conservative noise scheme is consistent
with the stated constraints, higher-order conservative noise
will also yield a finite variance in the long-time limit [30].
By speculation, we make the simplest choice that works.
This approach does not weaken the argument for linearizing
the model and yields insight into the interplay of noise and
step kinetics. In Secs. IV-VI, where we consider an effective
MF Langevin-type equation for a single terrace, we show
that the Q contributes a constant prefactor to the white-noise
term of the decoupled SDE. Furthermore, the long-time limit
of the variance in the MF approximation coincides with the
corresponding limit of the linearized model (under our
second-order scheme for conservative noise).

With this choice of Q in Eq. (15), we find by Eq. (16) that
the variance is

;o N-1
A= [ iz{[l‘c‘“(z_ﬂ)]z

o Nio N
< 6—47’[3—4 cos(27k/N)+cos(4k/N)] dr } ) ( 1 7)

In the limit N—o with fixed ¢, the discrete variable k/N
approaches a continuous variable, say y (0<<y<1). Thus,
Eq. (17) becomes

ol
(1) = 4g. f g f [1 - cos2my)]?
0 0

x ¢ 87l - cotmF gy (18)
This formula is simplified by interchanging the order of in-
tegration,

1
oin(r)=zil1— f e'ggc’“'°°s<2’*y>]zdy], (19)
8c

0

which is the variance referred to by the term “linearized
model” (LM) in figures. In Appendix B 2, we compute inte-
gral (19) exactly in terms of a series involving the modified
Bessel functions, but the resulting formula is useful only for
small g.r. In Appendix B 2 we also show that a'ﬁn(t)
=(2g.)7{1-0l(g.) "]} as gt — <.

Salient features of the variance can be deduced by inspec-
tion of Eq. (19), without further evaluation. We observe that
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P e ey
L X X X kMC =
I g = 8400 (CE) |
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FIG. 2. (Color online) Steady-state TWD, P(s), by kMC simu-
lations and MF zeroth-order (ZO) approximation (35), MF compos-
ite expression (CE) (38), and linearized model (LM) according to
Eq. (20) for g=1650,4800,8400 and ¢=100. Note that the linear-
ized model fails to capture the asymmetry of the kMC TWD, par-
ticularly for g=4800 and g=1650. The ZO approximation repro-
duces the asymmetry of the kMC TWD but not the correct location
of the TWD maximum. The CE agrees best with the kMC TWD.

the parameter g. scales both the variance and its time decay
to steady state. We expect that the nonlinear model exhibits
similar behavior when g, is large since stochastic fluctuations
are then suppressed and the major contribution to moments
of P(s) comes from s near the location of its peak, away
from s=0. Clearly, the linearized model fails to describe P(s)
for small s, because this model violates the step noncrossing
condition.

For completeness, we conclude this section with the for-
mula for the time-dependent TWD under linearization [15],

~ [ 1 (s=1)2
Pii(s,1) = ZWO'ﬁn(t)eXp{_ 20'121n(t):|. (20)

The symmetry of this TWD around s=1 reflects the failure
of the linearized model to enforce step noncrossing. How-
ever, the probability of having negative terrace widths is neg-
ligible provided g.> 1. In the remainder of this paper, we use
the O discussed in this section.

IV. MEAN-FIELD FORMALISM

In this section, we introduce a systematic procedure to
decouple SDEs [Eq. (10)], i.e., reduce them to a single non-
linear SDE, taking into account the full nonlinearity of the
step interactions. This approach aims to complement and im-
prove the linearization procedure of Sec. III Our scheme re-
lies on the use of an effective mean field, f, which, in prin-
ciple, depends on the dimensionless terrace-width variable, s,
and time. In principle, f is not the average terrace width. The

PHYSICAL REVIEW E 82, 061601 (2010)

G |-
1x102L L eemmemmmmmmmooooe 1
8- ---- g=1650 (CE) ;
- g = 1650 (LM)
67 —

, —— kMC
-~~~ g=4800 (CE) ]
..... ~ g = 4800 (LM) §

-___ g=8400

oL v vy vy v ‘-‘—---—‘g‘=‘8f10‘0‘

0 2 4 6 8 10

FIG. 3. (Color online) Variance of TWD as a function of dimen-
sionless time by kMC simulations, integration of mean-field CE
(40) with Eq. (41) and f=fo+f,/g, and Eq. (19) of LM for g
=1650,4800,8400 and ¢=100. For stronger step interactions (lower
part of figure), the TWD becomes narrower. The variance of the
time-dependent CE agrees with the asymptotic long-time limit of
the kMC variance, while the variance of the linearized model does
not.

starting point is to consider each of Eq. (10), for fixed j, and
replace s;+; and s+, by f(s;,¢) [6,7,10]. The field f is not
known a priori but must be determined consistently with the
assumption that the resulting SDE generates a TWD suffi-
ciently close to the particular TWD that would arise from
solving Eq. (10) exactly, were this possible [10,31]. Our aim
in adopting this procedure is to simplify the computations
without altering the essential physics of the interactions.
While the existence of a field f(s,#) consistent with the origi-
nal SDEs [Eq. (10)] is not guaranteed, our procedure gener-
ates results that compare well with the following sections (cf.
Figs. 2 and 3).

Thus, in brief our goals for this section are the following:
(i) to find heuristically the FPE for the MF TWD (Sec.
IV A); (ii) to derive an exact evolution equation for the TWD
in terms of joint probability densities (Sec. IV B); and (iii) to
determine by self-consistency an equation for the mean field
f(s,1) (Sec. IV C). In Secs. V and VI, this MF formalism is
used to describe analytically the TWD in the steady-state and
time-dependent cases under the hypothesis of statistical in-
dependence for terrace widths.

A. Effective mean-field equations

Now consider Eq. (10) for fixed j. By the above prescrip-
tion [6,7,10], i.e., replacement of 5, and s;., by f(s;,?) for
each j, we obtain the effective SDE,

A

ds; R .
E;':gA(S‘,f)‘qu (21)

where the hat indicates the MF approximation and A(s,f) is
used in place of A(f,f,s,f.f),
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A(s.f) = Alf(5,0),f(s.0),5,f(s.1).f(s,0)]

[see definition (11)]. Note the coefficient ¢ in Eq. (21): this §
is a number, within the MF approximation, that comes from
the matrix @ via treatment of the noise components 7; as
statistically independent of each other. For Q with first row
equal to [2,-1,0,...,0,—1] (second-order conservative
scheme), we will determine that §>=6 (see Sec. IV C). For

the time being, we distinguish the MF TWD, f’(s,t), from
the (exact) P(s,?).
Equation (21) yields a corresponding FPE for the MF

TWD, P(s,1) [32],
~2
3P0 + g [AG NP1 =0, P, (22)

with the initial and boundary conditions,

P(s,0)= 8(s — 1), (23a)

A

3(%13 —gA(s,f)P—0 as s— 0",

S

(23b)

Initial condition (23a) describes a vicinal crystal: the surface
slope is constant and all terraces have the same width (scaled
to unity). Boundary condition (23b) states that the probabil-
ity flux must vanish as s—0 from above and s— oe. Thus,
steps are prohibited from crossing or moving infinitely far
apart. We emphasize that nonlinear SDE (21) does allow for
imposing the vanishing of the probability flux at s=0, in
contrast to the linearized model of Sec. III

In Refs. [6,7,10], MF descriptions for 1D step models are
derived under the assumption that f(s,7) is equal to the av-
erage terrace width for all times 7>0. In Ref. [10], this as-
sumption is shown to be self-consistent only for the case of
linear SDEs. In the present case, we do not expect the mean
field f to coincide with the average terrace width. The deter-
mination of f constitutes a complicated problem. The argu-
ment that views f as an average of the stochastic process
(terrace-width) foreshadows the true role of f, namely, to
reconcile the asymmetries introduced by the nonlinear step-
step interactions with the requirement of fixed-system size.
In Sec. V, we show how corrections for f in the steady state
shift the peak of the TWD to the left of s=1 (average), in
agreement with kMC simulations.

B. Evolution law for TWD via kinetic hierarchy

In this section, we derive an evolution equation for the
exact TWD, P(s,t), on the basis of a kinetic hierarchy for
joint probability densities of consecutive terraces. This equa-
tion serves our purpose of defining a self-consistent f(s,7)
(Sec. IV C).

Following the formalism in Ref. [10], we define the
N-terrace distribution p™(s,#), where S=(80:87 -+ »SN_1);
hence, p™(s,f)ds is the probability that N terraces have
widths with values in the intervals (sj,s;+ds;), where k
=0,...,N—1 and ds=dsy---dsy_;. The probability density
for any n consecutive terraces [n=0(1)=2] is defined by
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N-1
1

P(")(S(n))=;/2 f ds(y-mp™ (S-S (vn)is  (24)
k=0 JRY_,

where s(,)=(50,....8,-1)s Snv-m)=(S,,...,8y_1), and z; de-
notes the vector formed after k cyclic permutations of coor-
dinates of z=(s,),5(v_n). In the above, we do not write the
time dependence explicitly. The desired TWD is

N-1

1
P(S,l‘) = ]T] E dS(N_I)p(N)[(S,S(N_l))z,t] . (25)
k=0

+
RN—]

Using Eq. (10) we write down the (N-dimensional) FPE for
the N-terrace probability density [15,32],

89, [A(512,5121,5151155122)p ™ (5,1)]

== 9p™(s,0) +30,0,[071pM(s,0),  (26)

where A(s;_,5,_1,5/,5.:1,542) is defined by Eq. (11) and Q
=Q7 is the circulant matrix whose first row is
[2,-1,0,...,0,—1]. Recall that we pick this Q since the
TWD must approach a steady state [see Eq. (19)].

To find an evolution equation for P(s,?), apply J, to Eq.
(25) and use Eq. (26). Thus, P satisfies [10]

,P(s,1) = — g0, f A(s,9)p(s,7,0dy + 39, P(s,1), (27)
R}

where for notational economy we use A(s,y) in place of
A(yn-2,¥n-1,5,Y1,Y2) and we employ p©)(s,y) to mean
P(S)(yN-z,yN—l’&yl,yz); V=n-2s¥n-15Y15y2)  and  dy
=dyy_odyy_dy,dy,. Equation (27) suffices for defining the
mean field, f. Evolution equations for p® (n=2) can be
written in a similar fashion but lie beyond our scope.

C. Definition of mean field f

In this section, we combine Eqgs. (22) and (27) in order to
extract a formula for the mean field, f(s,z). Thus, we assume
that there exists an f such that [10]

P(s,t) = P(s,1). (28)

This equation expresses the hypothesis that the exact TWD,
P(s,1), coincides with the MF TWD. We choose §= 6 since
then subtracting Eq. (27) from Eq. (22) yields the formula

Als,f(s,0]P(s,1) = J A(s,)p(s,3,0d5.  (29)
R}

This is the desired formula for f(s,7). It simply states that in
order to compute f one must, in principle, know the five-
terrace joint probability density. Equation (29) may be sim-
plified via the three-terrace probability density, p®, by tak-
ing into account the particular form of A [Eq. (11)],
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Als.f(s,0)]P(s,1) =2 f H(s3y2, )P (v, 8,91,0)dy dy,

ot
Ry

—f+H(yz;yl,S)p(”(yl,yz,s,t)dyldyz
R

2

—f H(y135,5)p (5, y1,y2,0dy dy, .
Ry
(30)

In the remainder of this paper, we apply a hypothesis of
statistical independence for terraces (if N> 1), which simpli-
fies Eq. (30) by reducing its right-hand side to integrals in-
volving the product P(y,)P(y,).

V. STEADY-STATE MEAN FIELD

In this section, we develop an approximation scheme in
order to find the TWD in the steady state, i.e., when
d,P(s,t)=0. The primary task is to propose a closure for and
then solve Egs. (22) and (30) for the TWD P and mean field
f- These equations must, in principle, be complemented with
the entire BBGKY hierarchy. We avoid the complication of
the kinetic hierarchy by applying approximations, which
come from (i) a decorrelation hypothesis for terraces, so that
the p® in Eq. (30) is written as p®(y,,s,y,)
=~ P(y,)P(s)P(y,), which automatically implies invariance of
p® under permutations of its arguments (s, y;, and y,), and
(ii) subsequent expansions of f(s) and P(s) in power series in
the interaction strength g for g> 1. We compare our analyti-
cal results for the steady-state TWD with kMC simulations.
Details of our 1D kMC algorithm (also invoked in Sec. VI)
are provided in Appendix C.

A. Formulation

We start with a remark on Eq. (30). If we naively set
ps.y1.y)=8(s=1)8(y;-1)8(y,~1) and P(s)=8(s—1),
Eq. (30) is satisfied trivially by f=1. This property is remi-
niscent of the approach adopted within the linearized model
in Ref. [7], where the mean field is the average terrace width
(and thus coincides with the initial width for a vicinal crys-
tal). By contrast, in our nonlinear setting the approximation
f=1 can only be justified in the limit of strong enough step
interactions (g>1). In this case, deviations of the terrace
widths from their average (and initial, deterministic) values
become energetically unfavorable, and step fluctuations tend
to be suppressed.

Based on these observations, we fix g=1 and enforce a
closure for Egs. (29) and (30) via the ansatz p®(s,y,,y,)
= P(s)P(y,)P(y,). For independent terraces moving in an
“external potential” (i.e., loosely speaking, a force field not
related to neighboring terraces), this expression becomes ex-
act. In the presence of step interactions, this approximation is
reasonable as will be shown by comparison to kKMC simula-
tions. Step correlations are ipso facto not included in our MF
scheme. Accordingly, in our asymptotic calculations we as-
sume that corrections to P and f resulting from terrace-
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terrace correlations are of order less than O(g™"). In Sec. VII
we further discuss this assumption.
Accordingly, Eq. (30) becomes (with ¢,=0)

A(S’f)*f+;1(5,)’17)’2)P(Y1)P(Y2)d)’1d)’2, (31)

Ry

where .,Zl(s,y],yz):A(y2,y,,s,y1,y2) [Cf Eq (11)] and
oo\t 5
s:J) = s+c+f(s)+c s3_f(s)3 ’

~ 4 11 1 2 2 1 1
ALl = C+s{ ’ yi} c+ {y? v 33}
Recall that c=¢/{w) expresses the interplay of adatom diffu-
sion and attachment-detachment (see Sec. II). Here, by abus-
ing notation, we set f(s)=f(s,r— ) assuming f(s,7) settles

to a steady state.
To enable analytical treatment, we apply the ansatz

f(s)=fo+ & f1(s) +0(g™),

where « is determined in Appendix D 1 to be unity and f,
=0O(1) is a constant independent of g in anticipation of a
uniform mean field in the limit of strong interactions. Equa-
tion (32) is viewed as a formal expansion for f(s) when g is
large within our decorrelation ansatz. In the same vein, we
expand the TWD as

P(s)=Py(s;8) + g *P(s;8) +0(g™"). (33)

In this expansion, we indicate that the coefficients P; (where
k denotes the expansion order) may depend on g. This dis-
tinction is made for later convenience since the P, bear a g
dependence of exponential type. We also invoke Eq. (22)
[with d,P(s,1)=0],

a>0, (32)

d “ d? .
gZ[A(s,f)P(s)] = 5PG). (34)

which will be used to determine P(s).
Equations (31)-(34) now form a closed system of equa-
tions, which, in principle, may be solved for f and P.

B. Zeroth-order approximation and composite expression

In this section, we describe the underlying methodology
used to solve the system of Egs. (31)—(34) up to some ap-
propriate order in the interaction g. We also give expressions
for the mean field and TWD up to O(g™!). Details of the
calculations are carried out in Appendix D.

We begin by noting that substitution of expansions (32)
and (33) into Egs. (31) and (34) yields a cascade of equations
for f and P. Furthermore, if the TWD is sharply peaked at,
say, s=¢ and decays rapidly to zero away from ¢, then Eq.
(31) can be simplified via asymptotics [33]. The idea is to

expand A(s, ¥1,Y2) about y,=y,={. This reduces the consis-
tency equation for f to an expression relating the mean field
to the moments of the TWD. The asymptotic approximation
of the right-hand side of Eq. (31) is motivated by the analysis
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of Sec. III, which indicates that the standard deviation of the
(Gaussian within the linear model) TWD is O(g~"?) when
g>1. This scaling with g of the standard deviation should
also hold for the present case since the linear analysis is
reasonably valid near the TWD peak.

To leading order in g, we find that f,=1. The zeroth-order
TWD, Py(s), is given by

S4g/3c3
Polsig) =No = Gemeen
2gs 4g g(Bc+2)
X exp| — S L, a2l
3(c+1) 3c¢°s 3c(c+1)s

(35)

where N(g,c) is a normalization constant (see Appendixes
D 1 and D 2). A noteworthy feature of this P, referred to by
the term zeroth-order (ZO) in Fig. 2, is an essential singular-
ity at s=0, which forces P, and all its derivatives to vanish
as s — 0", This singularity is viewed as an artifact connected
to the 1D character of the present model.

For large g, the leading-order variance 0'20, associated with
Py(s;g), is given by (cf. Appendix D 2)

c+1
6g

a=——+ol(g™). (36)
This formula is consistent with the long-time limit of the
variance for the linearized model [cf. Eq. (19) with g,
=3g/(c+1)]. We find that the leading-order variance sets the
value a=1 (cf. Appendix D 1).

The first-order correction, f(s), to the mean field is found
to be (see Appendix D 1)

£1(5) c+1>< 12 6 6 1
= — + + —_
e 3 |s+c c+1 (c+1)? (c+1)%°
L] | { 26 2
(c+1) s+c c+1 (c+1)%°
-
+——|. 37
(c+ 1)) (37)

We choose not to compute P,(s) explicitly. The form of
the requisite f,(s) is already complicated, rendering further
computations for P unwieldy. Instead, we resort to Eq. (34)
with f(s) = 1+f,(s)/g. By direct integration we derive a for-
mula for P(s), called composite expression (CE) in Figs.
2-5, which is valid to O(g™"),

P(s) %N(g,c)exp{gfsA<z,l +%)dz] ,  (38)
1

where f|(s) is given by Eq. (37) and N(g,c) is a normaliza-
tion constant subject to [ P(s)ds=1.

We conclude this section with a few remarks on Egs. (35)
and (38). These forms are different from the generalized
Wigner surmise, P(s) OcsQe"’Q“z, invoked for surface systems
(e.g., in Ref. [6]). For small positive s, Py(s) here exhibits an
(integrable) essential singularity at s=0, which mathemati-
cally prohibits having nonzero values for negative terrace
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widths, s <0. The singularity is intimately related to the 1D
character of our model and is not expected to persist in 2D
step configurations. Note that, for large values of s, Py(s)
~ Nys~4813¢~12853(e+ Dk For further discussion, see Sec. VII.

In Fig. 2 we plot our MF zeroth-order approximation and
composite expression versus the analytical prediction of the
linearized model (Sec. III) and 1D kMC simulations for the
TWD at sufficiently long times (practically, as t— ). For
large g, which causes fluctuations to be small, the deviations
of a given terrace width from the mean are small, and hence
we expect the asymmetry of the TWD to be suppressed. This
behavior is consistent with Eq. (20) of the linearized model.
The property that the TWD tends to become Gaussian can be
seen for the case g=8400. For this large value of g, the
prediction of the linearized model is in good agreement with
both the kMC and MF results [cf. Eq. (20)].

As fluctuations increase (i.e., g becomes smaller), terraces
significantly wider than the mean become favored over those
significantly smaller than the mean due to the singular step
repulsion that prohibits neighboring steps from touching
each other. Hence, as g becomes smaller, the TWD should
become both wider and more asymmetric. The linearized
model inherently fails to capture the asymmetry, which be-
comes important for decreasing step interaction strength, g.
The zeroth-order MF approximation captures the asymmetry
of the TWD. Without the first-order term f, the mean of the
Z0O TWD is greater than unity. Of the three analytic expres-
sions (LM, ZO, and CE), the CE provides the best approxi-
mation to the kMC TWD, even for moderate fluctuations,
where the asymmetry of the step interaction becomes impor-
tant.

The correction f|(s)/g to the mean field f has a singular-
ity in the interval (0,1/2) for s, as can be shown from Egq.
(37) via algebraic inequalities. This singularity does not
cause any pathology to the moments associated with P and is
viewed as a consequence of asymptotic approximations lead-
ing to Eq. (D2) of Appendix D 1. For g> 1, this singularity
lies far away from the location of the TWD peak, and the MF
correction f(s) improves the accuracy for P(s) by Eq. (38)
(see Fig. 2).

VI. TIME-DEPENDENT TWD

In this section, we derive an approximation for the TWD
for times >0 by invoking a time-dependent mean field,
f(s,1). We introduce asymptotic expansions and an appropri-
ate scaling of time in order to simplify Egs. (22) and (30).

A. Formulation and asymptotics

Our formulation relies on extending the main hypotheses
of Sec. V (for the steady state) to the present time-dependent
setting under g>1. So, we assume that for finite times the
strong step interactions suppress terrace fluctuations, cause
narrowing of the TWD, and favor terrace decorrelation.

Once again, the starting point is a formal expansion of the
mean field, f, in powers of g,

fls.0) = fo+87f1(s.0) + 0(g7), (39)

where the exponent « (a>0) is again to be determined. We
write the time-dependent TWD in the factorized form
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P(s,t) = P(s,0)(s.1), (40)

1

P(s,1) =N(g,c)exp{%fSA[z,f(z,t)]dz}, (41)

where i(s,1) is to be determined [cf. Eq. (38) for the steady-
state TWD].
Equation (40) is a generalization of Eq. (38) for the steady

state. The time variation in P(s,t) enters through the mean

field (Sec. VIB). The function P(s,f) is invoked for two
reasons: (i) it ensures that the time-dependent TWD can sat-

isfy boundary condition (23b) and (ii) P manifestly decays to
the steady-state TWD (38) as t—occ. This latter property im-
plies the additional requirement that ¢(s,7) — 1 as t— .

Ansatz (40) along with Eq. (41) transforms Eq. (22) into a
partial differential equation for i(s,7),

30,,(s,1) + gALs, f(s,0) 10,05, 1) = d,(s,1) + P~ h(s,0),P.
(42)

Our next task is to determine i(s,f) approximately via Eq.
(42) when g is large.

In light of our findings for the linearized model (Sec. III),
we need to reconsider the use of variables (s,7) in the equa-
tions of motion. Suppose that we invoke the formal expan-
sion

(s,1) = ho(s,1) + gV (s,1) + 0(g7?), (43)

where (s, ) are O(1) coefficients and 7 is determined to be
1/2 (see Appendix D 3). Then, we obtain an equation cascade
for i that fails to capture essential features of the time-
dependent TWD in correspondence to the linearized case
(Sec. IID): the natural scaling of time ¢ with g in the variance
is missed.

For a procedure of determining (s,z) consistent with the
analysis of the linear model, we need to scale the space and
time variables [see Eq. (19) for instance]. Accordingly, by
dividing Eq. (42) by g and defining

£=\g(s—1), r=3gt,

we obtain an equation for (&, 7) = (s(£),1(7),

J—
[

IeeW(&,7) + ‘;—gA<1 + ﬁ,ﬂg, r))aglf(f, 7)
C OHED + 0P, (44)
P

where f(g,r) = f(s(&),1(7)). For ease of notation, we hence-
forth drop the tildes for ¢ and f, writing, e.g., (&, 7). The
variables & and 7 simplify the analysis. For instance, in the
computation of moments of the TWD the major contribution
to integration comes a region where £é=O(1). In s, this re-
gion is within a vicinity of width O(g™"?) around the loca-
tion of the TWD peak.

Taking into account the scaled space-time variables, we
now write
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W& = Po(&7) + g7 (£7) +0(g7). (45)

To complete the formulation of the MF system, we need to
state the corresponding equation for f(&, 7). An inspection of
calculations leading to Eq. (31) reveals that this formula also
holds in the time-dependent case [by replacement of f(s)
with f(&,7)]. As noted above, an assumption underlying our
approximations is that corrections to the MF and TWD com-
ing from correlations are less than O(g‘l) for all +>0. Fur-
ther discussion of this point is deferred to Sec. VII.

B. Approximate time-dependent TWD

The methodology for the time-dependent TWD does not
differ significantly from the time independent case. Hence,
we only state the results of solving Egs. (44) and (31) to
leading order in the TWD and first order in the mean field f.
Detailed derivations are carried out in Appendix D 3.

As in the time independent case, we find that fy=1. The
function (&, 7) is given by the expression

6g 1/2 .
¢0(§’ T) — (H_l) P(I,O)_I[ZW(l _ 8—127'/(c+1)):|—1/2
3§2e—l2Tl(c'+l)
X - . 46
eXp|: (C+ 1)(1 _6—127/(c+l)) ( )

A corresponding formula for the TWD follows from Eq. (40)
with f=f,=1.
The first-order correction f; to the time-dependent mean
field is given by
12 6 6 1
+ + -
s+c e+l (c+1)? (c+1)°

1 12 6 2 2
+ + - + ,
(c+1)? s+c c+1 (c+ 13 (c+1)?

(47)

fi1==2g00(7)* X {

which follows the steady-state case. Here, s=1+g712¢, ¢
=(3g)"!7, and 0'(2)(7') is the variance for the TWD P(s,?) of
Eq. (40) under =i, and Eq. (41) with f=f,=1. By the
same method used to derive Eq. (36), we obtain

c

0_0(7)22 + 1(1 _ 6_127/(C+1)). (48)
6g

In the limit 7 — oo, this result agrees with both the MF steady-
state variance [Eq. (36)] and the variance from the linearized
model [Eq. (19)].

In Fig. 3, we plot the variance as a function of time using
different approximation schemes, i.e., the linearized model
(LM) and the MF scheme, and include results of kKMC simu-
lations. We observe that the MF approximation for the vari-
ance approaches a finite limit (in steady state) at nearly the
same time as the kMC simulation, with improved accuracy
for larger g. In contrast, the linearized model fails to capture
the correct asymptotic long-time behavior of the variance for
any value of g. In Fig. 4, we show plots of the time-
dependent TWD for some fixed intermediate time 7. We see
that by increasing g, the validity of the CE is extended in
time.
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FIG. 4. (Color online) Time-dependent TWD as a function of
terrace-width variable, s, for fixed intermediate time ¢ by kMC
simulations and MF time-dependent CE by Eq. (40) with Eq. (41)
and f=fy+f,/g for g=1650,4800,8400 with ¢=100. In kKMC simu-
lations, the TWD is computed after 2500 iterations of the algorithm
and values of b are fit to the steady-state TWD (see Appendix C).
As g increases, the time-dependent CE reproduces the behavior of
the kKMC TWD more accurately for intermediate times.

Qualitatively, the TWD evolves as follows: for suffi-
ciently small times, the TWD is approximately Gaussian due
to the delta-function initial condition, affected slightly by an
asymmetric contribution from the steady state. As time in-
creases, the asymmetry becomes more pronounced, and the
Gaussian behavior gives way to the steady state [Eq. (35)].
Simultaneously, the correction f; to the average value fy=1
grows larger, causing a consistent shift of the peak of the
TWD to the left [see Egs. (38) and (47)].

VII. DISCUSSION

Our main goal in this paper is the development of analyti-
cal techniques for the approximate solution of stochastic
equations for fluctuations of interacting steps on vicinal sur-
faces. To enable some analytical treatment of the governing
equations, we restrict our attention to 1D geometries. A cru-
cial quantity used to describe such systems is the TWD,
which we calculate for the case of force dipole and entropic
step repulsion. In this context, we examine the relative merits
of a linearized (LM) and mean-field (MF) model.

A major aspect of our analysis is the addition of second-
order conservative white noise to the equations of terrace
motion [Eq. (8)]. For the linearized model in particular, this
choice of noise is determined partly by the symmetry condi-
tions of the system. This noise is the least conservative noise
for which the TWD variance approaches a finite limit in
agreement with the MF model. We point out that the substi-
tution of a higher-order conservative noise in the derivations
leading to Eq. (19) can yield a variance that converges to the
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same limit as Eq. (19) but at a faster (albeit, algebraic) rate.
Hence, the form of the noise itself is not unique [29,30], and
we choose the simplest possibility for comparison of the lin-
earized and MF models.

In the MF case, the mean field f is invoked to decouple
the system of equations. To find the mean field, we make use
of formal expansions in (negative) powers of the interaction
strength, g, and apply a decorrelation ansatz for terraces.
While we do not provide rigorous justification for this an-
satz, its validity is justified in part by comparison of the MF
TWD with the kMC and LM TWDs (Figs. 2-4).

Specifically, correlations are present in the linearized
model since couplings are retained, while nonlinear effects
(but no correlations) are accounted for in the MF model.
Therefore, comparison between the two analytic models and
KMC (which contains both effects) indicates the relative im-
portance of nonlinearities over correlations for the system at
hand. The agreement between the kMC and MF models sug-
gests that nonlinear effects are more important than correla-
tions when fluctuations increase (i.e., as g decreases).

The modification of the FPE for the TWD by terrace cor-
relation effects is not considered here. To include correla-
tions, one needs to update the five-terrace joint probability
density via the corresponding evolution equation of the
BBGKY hierarchy and possible application of a partial deco-
rrelation ansatz. This task is left for near-future work.

Our analysis shows in a minimal (ID) setting how the
mean field f is influenced by nonlinearities stemming from
the step interaction energy. Because of the interaction, the
self-consistent mean field does not, in principle, coincide
with the average terrace width. In fact, corrections for this f
beyond the terrace-width average are shown here to be im-
portant. In this vein, the use of a linearized model has short-
comings, which we detect via comparisons with kMC simu-
lations. In particular, we find that as fluctuations increase
(i.e., the interaction strength, g, decreases), the linearized
model fails to account for both the asymmetry of the TWD
(induced by the step noncrossing condition) and the correct
long-time asymptotic evolution of the system. Moreover, we
find that our composite MF expression does account for
asymmetries of the TWD over all times but only for suffi-
ciently large interaction strengths, g. This inadequacy of the
MF approximation can be attributed to the influence of
terrace-terrace correlations at finite times.

Our analysis also brings forth a close relationship between
step-flow SDEs and kMC methods in one dimension. In Ref.
[7] Hamouda ef al. compared qualitatively the prediction of a
linearized 1D stochastic model with 2D kMC simulations
when there is material deposition from above. Our work in-
dicates a more direct quantitative relation between the two
approaches (analytical and kMC) since the corresponding
models used here are both one dimensional.

Our model and analysis have limitations. A fundamental
question is to what extent our 1D model can be connected to
the 2D dynamics of actual surfaces, and hence what observ-
able phenomena it can account for. One indication of the
inadequacy of the 1D model to fully describe 2D step fluc-
tuations is the appearance of a singularity of the TWD,
P(s,1), at zero terrace width (s=0). Since this singularity is
integrable, it does not cause any problems in computing the
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moments of P. Furthermore, this behavior forces the TWD
and all its space derivatives to vanish as the terrace width
approaches zero. However, step meandering in two dimen-
sions is expected to “regularize” the behavior of the TWD
near s=0.

Despite the above limitations, our analysis may be useful
in understanding quantitative features of certain “quasi-1D”
step systems similar to those in Refs. [3,34]. The time-
dependent composite TWD (40) expresses the interplay be-
tween mass transport and step interactions via the parameters
c=D{w)™!/ (k:1+k;1) and g, respectively. Hence, for systems
in which step-step interactions drive evolution [3], fitting ex-
perimental data with Eq. (38) should indicate the mass trans-
port mechanism via the parameter ¢ and the interaction
strength parameter, g. We find that our simulation corre-
sponds to the case ¢=100, and hence the kMC algorithm
amounts to an attachment-detachment limited system [3].

We expect that our analysis is also useful in understanding
more general qualitative features of 2D step systems. The
underlying hypothesis of statistical independence would rea-
sonably hold for smooth steps in two dimensions. Thus, it is
conceivable that our technique and MF predictions are rea-
sonably applicable to 2D geometries. For example, the asym-
metry of the TWD resulting from step interactions, as well as
the narrowing of the TWD with the increase of the step in-
teraction strength, g, should persist in two dimensions. Since
narrowing and asymmetry appear in opposite limits of inter-
action strength, g, the relative asymmetry of TWD is an in-
dication of the relative step repulsion; i.e., as step repulsion
is increased, the TWD should approach a Gaussian distribu-
tion (see Fig. 2). Conversely, as g is decreased, the nonlin-
earity of the interaction should manifest as an asymmetry in
the TWD. Since the noncrossing condition for steps implies
asymmetry of the TWD, our analysis provides a quantitative
description of how the noncrossing manifests probabilisti-
cally within the BCF framework. Our prediction that the
terrace-width variance scales as 1/g should hold in a 2D
setting.

It should be stressed, however, that modeling noise in two
dimensions introduces subtle issues and more elaborate gov-
erning equations [4,5]. Reconciling the BCF picture with
noise in two dimensions is a largely unexplored area. In the
same vein, an issue not addressed here is the possible depen-
dence of the diffusion coefficient on the terrace width in one
dimension. This would require choosing between, e.g., the
Stratonovich and Itd stochastic calculus [15]. Our relatively
simple model of noise circumvents this complication.

It is tempting to compare our analytical results for the
steady-state TWD to previous proposals involving the gener-
alized Wigner surmise, P(s) o s oS (see, e.g., [6]). Within
the 1D model studied here, our computed TWD resembles
qualitatively the Wigner surmise for large enough values of
the step-step interaction strength, when the TWD tends to
become symmetric (see Fig. 5). Further comparisons moti-
vate the use of a 2D geometry and lie beyond our present
scope.

The starting step-flow model and approximation schemes
are amenable to direct extensions in one dimension. For ex-
ample, the effect of material deposition can be included in
the step motion laws. In this case, the increase of deposition
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FIG. 5. (Color online) Predictions for TWD: mean-field CE
given in Eq. (38) and generalized Wigner surmise (WS), P(s)
=/\/gs9e‘b952 (NVp: normalization constant); the coefficient b, pro-
vides unit mean [6]. As g decreases, the CE fits the kMC TWD
better than the Wigner surmise.

flux causes narrowing of the TWD [7] and, hence, contrib-
utes qualitatively in a fashion similar to an increase in the
step interaction strength, g. Further, a contribution to the
noise terms stems from fluctuations in the number of depos-
ited atoms [35]. The joint effect of deposition and dipolar
step interactions is expected to result in an asymmetry of the
TWD (in s), in contrast to the Gaussian TWD found via a
linearized model in Refs. [7,10]. Richer kinetics such as
evaporation and step permeability [36] can be included in the
formulation.

VIII. CONCLUSION

In this paper, we formulated and analyzed a 1D stochastic
model of interacting steps on a vicinal crystal. The starting
point was the BCF theory, enriched with elastic-dipole step
interactions and ad hoc conservative white noise. First, we
linearized the governing equations of terrace motion and de-
rived the TWD for the resulting coupled system of SDEs [see
Eq. (20)]. Second, by perturbation theory for strong step in-
teractions, we considered the effect of nonlinearities by em-
ploying, within a terrace decorrelation hypothesis, a MF for-
malism that decouples the SDEs. In the case of the steady
state, Eq. (35) describes the ZO approximation for the TWD,
while Eq. (38) provides a more accurate CE. Within the MF
approximation, the time-dependent TWD is described by
Egs. (40) and (41).

Through comparison with kMC simulations, our analysis
indicates that, as fluctuations increase, linearized systems fail
to capture asymmetries of the TWD induced by (nonlinear)
step repulsion. In contrast, our MF analysis predicts a TWD
that agrees with kMC simulation results over a wider range
of step interaction strengths. We indicated how our model
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may be used to determine physical parameters of “quasi-1D
systems” [3].
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APPENDIX A: ON CIRCULANT MATRICES

In this appendix, we derive Eq. (16) in detail on the basis
of standard theory for circulant matrices. For any square cir-
culant matrix M, we apply the formula [37]

M _l eMTM__ MMy _ L By
|eM|? Ntr[( )eM] Ntr[ ] N% . (A1)

where tr denotes the trace and A, are the eigenvalues of the

matrix M7+M, taking into account that circulant matrices

commute.

Specifically, now consider the quantity in question,

Xe"]? =N u XX7e¥ Y], (A2)

where X and Y are square circulant matrices. Because X

=XX" is symmetric and circulant, its eigenvalues ¥, are

(A3)

9=FX.0. j=1,....N,

where F =[F j,k] is the discrete Fourier transform matrix,
whose elements are F;;=exp[-2mi(jk)/N]. Since Xox
=Xo n—i> the eigenvalues ¥; are real.

Next, we compute the logarithm of X by the formula [38]
In(X)=F In(F"'XF)F',

where F~'XF=diag(9,), a diagonal matrix. Since this last
matrix is diagonal, taking its logarithm amounts to taking the
logarithm of its diagonal elements. For complex eigenvalues,
we consider the principal branch of the logarithm for defi-

niteness [39]. Furthermore, we assert (trivially) that In(X) is
circulant.
Thus, we have

Xe¥'+Y = eln(£)+YT+Y' (A4)
In view of Eq. (A1) we infer that
s s
X eY| =N eln(X)+YT+Y] _ _2 RUICAI v _E M.
N o Ni=o

APPENDIX B: VARIANCE OF LINEARIZED MODEL

In this appendix, we show that a first-order scheme for a
conservative noise in the linearized model leads to an un-
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bounded variance. We also compute the variances of the lin-
earized model by Eq. (19).

1. First-order conservative noise and divergence

We now show that when the diffusion coefficient Q enter-
ing SDEs [Eq. (13)] is the circulant matrix with first row
[1,-1,0,0,...], the corresponding variance for any terrace
diverges as O(¢'"*) in the limit t— 0. To derive this result,
we make use of Eq. (16) and let N— . We then evaluate the
variance asymptotically for large g.z.

The matrix Q=0QQ7 is circulant and has first row [2,
-1,0,...0,—1]; the eigenvalues are computed by
=Fk’,él’0, where F) ;=exp[-2mi(kl)/N] (see Appendix A).
Recall that the A entering Eq. (13) is circulant, and its first
row is [6,-4,1,0,...,0,1,-4]. Thus, the eigenvalues of A
are equal to [1—cos(27k/N)]>. Hence, application of Eq.
(16) yields

27k
() = — 2 {1 —COS< )]
8Jo Nizo N
X e—ST'[l —cos(211'k/N)]2dTl ) (Bl)

Taking the limit of the last formula as N—e, we find

op (1) = _f f [1-cos(2mz)]e 7!~ cosQm) P g, g7

(B2)

Evidently, for finite #, the variance is bounded; more pre-
cisely, a7, (1) =4t

To evaluate o7, (1) for g.t>1, we fix some intermediate

time #,=O(1) and rewrite Eq. (B2) as
O-lm(t) O-Im(tO) + _J f [1 — COS 27TZ)]
C g(‘

X 6_87 [1 - cos(2mz)]? dzdt i (B3)

where 7;,(f5) =O(1). The second term on the right-hand side
of Eq. (B3) can be approximated asymptotically with ease
since 7' =g.t,> 1. By the identity 1—cos(27z)=2 sin’*(mz),
symmetry of the integrand about z=1/2 and the change of
variable x=sin(7z), Eq. (B3) is recast to

0'12“1([) O-lm(tO) + _J J /—
8eto Y 0 V1 -

327 dxdt

O'lm(to) + _f J 2 _327— X dxdT (B4)
8clo

where we used (1-x?)""2=1+0(1) in the integrand since for
fixed 7/ >1 the major contribution to integration in x arises
from x=0. In Eq. (B4), the inner integral may be computed
exactly to yield [40]

I'(3/4)

8.t
o‘zm(t) o(t)) + g f ———d7. (B5)
1 0 c o 4,”_(2 7_1)3/4

Further integration furnishes the behavior o7 (1)

=0[(g.1)""*] as g.t—o0.
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2. Second-order conservative noise

Consider Eq. (19), which stems from the circulant diffu-
sion coefficient @=[Q; ] with first row [2,-1,0,...,0,-1].
We now derive an asymptotic formula for g.#> 1. The major
contribution to integration arises from the end points y
=0, 1. Thus, we have

1 o
Ofult) ~ —{1 - f e-””“gc’y“dy]
28, oo

1 {
=—1
28.

where I'(z) is the usual Gamma function [40].

Alternatively, we can evaluate o7, (1) exactly in terms of
series involving modified Bessel functions, I,(z). Specifically,
by making use of the relation [41]

Ir(1/4)

29/477

(g™ 4] , (B6)

©

g7 cos 0 — Io(Z) + 22 ]l(z)COS(la),
=1

where 0= 6<2, and the orthogonality of trigonometric
functions, we obtain

(l‘) — L _ e—12g(.t

i
2g.

in

X | Io(16gD1o(= 4g.1) + 2, I(16g.H)I/(- 4gcr)] :
=1

(B7)

This expression is particularly useful for 0<g.r<<1 since
I(z)=0(z') as z—0 and the above series provides a
MacLaurin-type expansion. Note that formula (B7) may not
be used for g.>1; direct recourse to asymptotic formula
(B6), and possibly higher-order terms, is advisable in this
case.

APPENDIX C: KINETIC MONTE CARLO SIMULATION

In this appendix, we provide some details on our 1D kMC
method. This algorithm follows the general methods set forth
in Refs. [17,42,43]. We consider a system of descending
steps (Fig. 1), which are viewed as particles at positions x; on
a lattice with spacing Ax in one dimension. We apply screw-
periodic boundary conditions, so that when a step moves off
from one end, another step reenters from the other end. The
particles are only allowed to move to lattice sites and over-
laps and crossings are prohibited.

We proceed to prescribe the particle kinetics. The jth step
is assigned two energy barriers, E;(*Ax): one for the step to
move right (+) and another barrier for the step to move left
(=). Each of these barriers forms a linear combination of four
repulsive energies, each proportional to the inverse distance
squared between a given step and one of its four nearest
neighbors, i.e.,
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Jj+2

b b
E{(*Ax) = > 5=
e P E Ax =il =X

5. (C1)

k#0

where b is an adjustable parameter with units of area times
energy. By Eq. (C1), if a step is one lattice site (distance Ax)
away from one of its nearest neighbors, the energy barrier for
closer approach becomes infinite, prohibiting movement.
Thus, for each of the two directions that a step is allowed to
move to, we define the transition rate

— E(+Ax) )

R/(=Ax)= exp<—;

e (C2)

This definition comes from standard transition state theory
[17,43]. The underlying concept is that a particle in a statis-
tical ensemble at temperature 7 will be excited to the energy
of the barrier with probability given by the usual Arrhenius
formula. It is assumed that, having reached the peak of the
barrier, the step makes a transition to the neighboring state
with probability one.

We subsequently define two “movement classes” for
right- and left-moving particles (steps). The corresponding
total rate is taken to be

Rg= 2 Ri(+Ax). (C3)
J

Transitions requiring infinite energy do not contribute to this
sum. After division by R +R,. Eq. (C3) yields the prob-
ability that some step moves either left or right.

Three random numbers between 0 and 1 are generated
and used in the following way. The first number determines
from which movement class to select a particle to move ac-
cording to the relative ratios of the two total class rates. The
second random number picks the particle within the move-
ment class that will move. Lastly, the third number, say rs,
determines for how long (in simulation time) the transition
occurs according to the relation Ar=—wy;, In(rs), where wy;,
characterizes how often the step attempts to leave its lattice
site. The constant w.;, is kept at a fixed value (equal to 10 in
our simulations) since the time scaling of the simulation can
be chosen at will.

After performing these tasks, we update the position of
each step and iterate the procedure for a specified number of
times. For the b entering Eq. (C1) we use values ranging
from 1X10° to 2X 10°. These high numbers might seem
puzzling. However, our 1D model does not follow adatoms
but steps. For the sake of comparisons with our analytical
results, we fix the number of steps at 50, with a uniform
initial spacing of 100 lattice units (Iength 100Ax). The large
initial step spacing is due to the need to have fine scale
resolution of the kMC TWD peak in order to compare it with
the analytically derived TWD.

To reach the steady state, we run simulations of 5 X 10*
and 10° iterations; we average over (1—-2) X 10* runs. A char-
acteristic feature of these runs with 0<b=0(10%) is a fen-
dency exhibited by the TWD to approach a Poisson distribu-
tion for long times, with the TWD peak moving nearly to
zero terrace width. The singular interaction, however, always
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prevents the steps from touching or crossing, and hence the
TWD goes sharply to zero for zero terrace width. With in-
creasing interactions, the peak tends not to move as far left
(close to the origin), and the system equilibrates much more
quickly.

Fitting the analytic TWD’s (20), (35), or (38) to the kMC
TWD requires the determination of both the parameters ¢
and g. Recall that g is a measure of the interaction strength,
while c is a length expressing the interplay between diffusion
and attachment-detachment processes of adatoms. We cannot
estimate a priori what value of ¢ corresponds to our kMC
simulation because the algorithm follows steps and not ada-
toms.

Since the peak of the kMC TWD moves left of the initial
width for all values of b studied, neither of the analytic ex-
pressions (20) or (35) provides a good fit to the kMC TWD
except when h=((10°) (when all of the analytic TWD’s ap-
proach a Gaussian distribution). Hence, the composite TWD
(38) is used in all cases to determine ¢ and g. We find that for
any fixed c=(O(10), g may be used as the sole fitting param-
eter, and that for fixed b, changing the value of c[c
=(0(10)] does not noticeably change the fit, provided the
ratio g/c is constant. This last observation is justified by
examination of Egs. (37) and (38); when ¢ = O(10), the cor-
rection to the mean field f;/g scales approximately as c/3g
and gA(s,f)=(6g/c)[s3=f73(s)]. In the end, for our kMC
simulation we have 1650= g =8400.

For values of ¢ <((10), the peak of the analytic solution
is to the left of the kMC TWD peak, and no value of g
provides a good fit. Hence, our kMC simulation corresponds
to a system in which attachment-detachment limited kinetics
are the dominant mass transport mechanisms.

APPENDIX D: ASYMPTOTIC CALCULATIONS FOR THE
MEAN FIELD AND TWD

1. Time independent TWD and mean field

Our task in this section is to solve the system of Egs. (31)
and (34) in light of expansions (32) and (33). If the TWD is
sharply peaked at, say, s={, and decays rapidly to zero away
from £, then Eq. (31) can be simplified via asymptotics [33].

Thus, we expand A(s, y,,y,) about y;=y,={. Recall that the
analysis of Sec. III indicates that, for g>1, the standard
deviation of the (Gaussian within the linear model) TWD is
O(g™""?). This scaling with g of the standard deviation should
also hold for the present MF case since the linear analysis is
reasonably valid near the TWD peak.

Next, we comment on {. By setting d,P(s,7)=0 in Eq.
(22), we obtain

a8 (4, 2 (L 1 ’
P(S)_3 ><[(c+s+c+ (s))(s3 f(s)3>P(s)] ’

(D1)

where the prime here denotes differentiation with respect to
s, e.g., P'(s)=dP(s)/ds. With P(s)=0, we have P"({)<0
and P'({)=0 when {=f({) (which defines the maximum of
P).
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The substitution of formulas (32) and (33) into Eq. (31)
along with the Taylor expansion of A(s,y,y,) around y,
=y,={ yield the expression

[4 L2 (1_ fi(s) +)]
c+s c+f g%c+£p)

-5
Jo 8%%o

= dy]dyzp(y1)P(y2)

©

Ri
{ 1 L 0u-f) 1200 =A@ }
+ p— .o
£ g°f
o fo +2f1(§)(y1—{o)+_“]
c+fo c+f0> (c + /o)

y {l 1 . 3[2(y1 = fo) = (2= £0)]
Pk fo
12400
g%fo

[2(y, fo)‘(h‘fo)]"‘"}}, (D2)

which, by dominant balance [44] in g, leads to a cascade of
equations for f. In deriving Eq. (D2), we made extensive use
of the binomial expansion, (1+z)S=1+sz+ - (|z/<1,s
€ R), as well as of the expansion for f({) by Eq. (32). Note
that expanding A gives rise to terms (y;,—fo)", n=1,2,...,
which yield an implicit dependence on g through the associ-
ated moments of P. A crucial goal with the perturbation
scheme is to determine the expansion order in g of these
moments. This in turn determines «a.
By virtue of Egs. (32) and (33), Eq. (34) entails

[Po(s)+ Pis) +]
8

gd{<4 2 2f1(s)

= —— =+ - +

3ds|\c+s c+fy g‘“(c+f0)2
3f1(S)

N )

Equations (D2) and (D3) form the basis of our approxima-
tion scheme for f(s) and P(s).

By dominant balance, from Eq. (D2) we obtain an O(g°)
equation for f,

dZ
ds?

(D3)

12
fols+¢)

_L(l_i%L”d
(c+foP\s " )T fierfo ]

(D4)

A(s,fo) = fP()H){A(Sfo)"‘ fo[

Recall that P(y) is normalized, and its mean is unity. Thus,
Eq. (D4) reduces to
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f P(y)(yy = fo)dy, =0, (D5)

0

which readily implies f,=1.
By Eq. (D3) with fy=1, the zeroth-order TWD, Py(s),
satisfies the differential equation

4 2 \[1 '
PS(S)=§{<C+S+C+1)<S—3—1>Po(s)], (D6)

subject to boundary condition (23b). Equation (D6) is inte-
grated directly to give Eq. (35).

Next, we determine the « entering expansions (32) and
(33). By Eq. (D2), the value of a comes from balancing the
O(g™) term on the left-hand side with the O(g™!) term from
the variance of Py, o [cf. Eq. (36)], on the right-hand side.
Thus, we find a=1.

Next we focus on f;(s), the coefficient of the O(g™") term
in the expansion for f. By use of Egs. (D2) and (36), we
obtain Eq. (37). We add in passing that the location {=f({)
of the TWD maximum cancels to O(g™') in Eq. (D2) and
thus does not appear in expression (37).

2. On approximation of the MF variance

In this section, we derive Eq. (36), the leading-order vari-
ance for the steady-state TWD, Py(s). By Eq. (D6), we write
the MF variance from Eq. (35) as

_ ) 2 g4 2
oﬁ—NofO (y=1) XeXp{SJI{§+c+c+l}
X[é—l]d&}dy

=N0f (y—l)zeXp<§f A(él)df)dy- (D7)
1

0

Next, we compute integral (D7) by a change of variable. So,
define the mapping y—uv where

v(y) = § f CA(E1)dE, (DS)
1

v(y)—0 as y—1, and
v(y) > - as y—0 or y— oo,

Note that y(v) is a double-valued function of v. To render
y(v) single valued, one must restrict y in (0,1) or (1,) (i.e.,
on the left or right of the maximum of P(s), as suggested by
Fig. 2). Hence, we write Eq. (D7) as

1 o
U<2>=Nof (y—l)ze"-‘y)dy+Nof (v = 1)%e+dy
0 1
v

3 ’ 2 €7
=g 0{ J b e

0 v
_ et
B (v, -1] AD00, 1]dv+}, (D9)
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where v, _) represents values of v if y>1 (0<y<1).
Regarding the normalization constant A, we note that

1 e}
No[ f ev_(,v)dy + f ev+(y)dy‘|
0 1

3N0 0 eU—(y) 0 eU+(y)
= f dv_- f dv, | =1.
8 -0 A(U_,l) vy A(U+,1)

(D10)

The task is to compute N, and thereby 020 Since dy
=3dv./gAly(v),1], the transformed integrand as a func-
tion of v. exhibits a singularity as v+ —0.

We first derive an explicit expression for y as a function
of v.. By the definition of v(y) [Eq. (D8)] for large g we
expect that the major contribution to integration in Eq. (D10)
stems from a neighborhood of v.=0 or y=1. Hence, by
Taylor expanding the right-hand side of Eq. (D8) around y
=1 we have

y—l= + A /ﬂ+0(g_l)
38

as v+ —0. So, we obtain the simplified expression,

Ab®v-).1]
3

(D11)

4 2

+
\/—(c+1)v+ c+1
c+1=* EEEe—
3g
[—(c+ ). |
3g
-3gv+
~ *2 as v+ — 0. (D12)
c+1

Thus, to leading order in g, we assert that

w 0
+1
lzj Po(y)dy~/\/0f 1/ < edv, (D13)
0 -0 —3gv

which in turn implies

-
3

38
mc+ 1)’

NOZNO(g’C) -~

(D14)

The substitution of Egs. (D11), (D12), and (D14) into Egq.
(D9) yields formula (36).

3. Time-dependent TWD and mean field

The rationale for determining the TWD P as a function of
(&, 7) does not essentially differ from the rationale of Appen-
dix D 1. In particular, our previous conclusion that fy=1 for
the steady state relies only on the fixed-system-size require-
ment and normalization of the TWD. These conditions are
enforced in the time-dependent case as well. Hence, we con-
clude that fy=1 in the present case.

We proceed to compute ¢(&, 7). By substituting Eq. (45)
into Eq. (44) and properly expanding the term
A[1+€/g"2 f(&,7)], we find

061601-16
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T 6
5&[%(& )+ %S ) } [cfl +0(g ‘”2)]

Xﬁg{lﬁo( ,7) + wlfr +}
[%(& A+ ‘”1(5 D, ] +%(afﬁ){¢o(§ﬁ)
+M+] (D15)
g'y

Note the O(g™"?) correction stemming from the definition of
£ By dominant balance, Eq. (D15) yields y=1/2. Given that

fo=1 we infer that the time derivative of P does not contrib-
ute to leading order in g. Thus, we obtain the zeroth-order
equation
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K67~ (D= (&), (DI6)

which is subject to the initial condition P(£,0) P(€,0)=8(¢)
[cf. Egs. (23a) and (40)]. After multiplying both sides of Eq.
(D16) by exp[-3&/(c+1)], we derive Eq. (46) [41]. A cor-
responding formula for the TWD follows from Eq. (40) with
fo=1.

Next, we focus on corrections to the mean field fy=1. The
methodology to derive f| in the steady state applies here as
well, independently of the scaling of s and ¢ with powers of
g. In fact, the spatial dependence of f; remains intact, but it
is multiplied by a 7-dependent variance [see Eq. (47)]. Ac-
cordingly, technically speaking, the use of variables (&, 7) for
f introduces an explicit dependence of f; on g. By recourse
to Egs. (D2) and (37), we derive Eq. (47).
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