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Terrace-width distributions of touching steps: Modification of the fermion analogy
with implications for measuring step-step interactions
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Using Monte Carlo simulations, we compute the terrace-width distributions (TWDs) of surfaces in which
steps can touch each other, forming multiple-atomic height steps, but cannot cross (no overhangs), and so
inconsistent with the standard mapping to spinless fermions. Our results show that the generalized Wigner
distribution with minor modifications at small step separations, gives a very good fit for TWDs of touching
steps. The interaction strength derived from the fit parameter (@) indicates an effective attraction between
steps. The strength of this effective attraction decreases for larger mean-step separations and decreasing step-
touching energies; describable via finite-size scaling. Hence, accurate extraction of the true repulsion strength

requires multiple vicinalities.
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Steps on vicinal (misoriented from facet planes) surfaces
can be used as templates for fabrication of metallic nano-
wires. They also can enhance the catalytic activity of a sur-
face, especially when they have many kinks. This makes the
study of step fluctuations technologically important.!? Step
configurations have fruitfully been related to the worldlines
of spinless fermions in one dimension (1D). The fermion
analogy originates in the veridical condition that the steps
cannot cross. However, the analogy would also preclude
steps from coinciding, to form multilayer steps, which could
occur physically. This issue has largely been ignored or
glossed over.

In this Brief Report, we show how this loosening of the
nontouching condition alters the form of the terrace-width
distribution (TWD) and, thence, the apparent strength of the
step-step repulsion deduced from it. By understanding the
form of the resulting finite-size corrections, we show how to
analyze vicinal surfaces to take this issue into account. Such
touching steps are more likely to be found on surfaces with
one or more of the following properties: (i) low step stiff-
ness, (ii) closely spaced steps (small separation €), and (iii)
steps with little or no energetic interaction between them.

We first recall the main ideas for steps forbidden to touch.
At low-temperature the predominant thermal excitations are
kinks along the step, with kink formation energy €. Labeling
the mean direction of the step edges y and the perpendicular
direction X (so-called “Maryland notation”), the position of
the ith step edge in this terrace-step-kink (TSK) model is
X,(y,), where sans serif denotes discreteness; Y, is defined
only at the centers of step-edge atoms, with the index n
changing by 1 for unit displacement along y. The energy
contribution from kinks is €2, ,|X;(y,+1)—X;(y,)|. There can
also be an elastic (or possibly dipolar) repulsion between
steps, which decays asymptotically as 1/€2, the same behav-
ior as the entropic repulsion due to noncrossing. The elastic
repulsion is approximated by the “instantaneous” form
AZ - o|X;, /(Y,) = X,(y,)|[ 7% This expression is well defined for
nontouching steps [X,,(¥,) >X,(y,)]. Touching at corners is
allowed [e.g., X;y1(¥,) =Xi(Y,1)].

For analytic modeling it is more convenient to use the
step-continuum approximation,' which allows x;(y) to vary
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continuously with y. Since x;(y) is single valued, the configu-
ration of steps in two spatial dimensions can be viewed as
the worldlines of particles evolving in 1D: y becomes time-
like. The nontouching condition underlies their characteriza-
tion as spinless fermions (or hard bosons) in 1D, and the

stiffness E, which can be related to €, is their “mass.” In this
framework, the instantaneous step-step repulsion strength A

enters only as a dimensionless combination A=A 3%, where

B is 1/(kgT). Since A determines the morphology of and
communication between steps, gauging it is crucial to under-
standing step behavior. To this end, we scrutinize the TWD,
which is normally expressed as the probability distribution,

P(0), of finding neighboring steps at separation €. With only
1/€? repulsions, there is just one characteristic length, the
mean-step separation {(€) in the £ direction, and so the TWD
essentially depends only on the dimensionless length s

=€/{(€)
P(s = €/(0)) = (€)P(L). (1)

To obtain P(s) we pursue the analogy to the Calogero-
Sutherland models® of spinless fermions along a chain [or on
a 1D ring]. The key parameter @ in these models is*

o=1+\V1+4A; A g(g—1>. ()

2\2

For 0=1,2,4, the ground-state probability density, which
corresponds to P(s), reduces to the distribution of eigenval-
ues for random matrices with orthogonal, unitary and sym-
plectic symmetry, respectively.’ Accordingly, they are excel-

lently approximated by the Wigner surmise®
+2) |?
F<Q_> (o+1)/2
2 2 20'9*
Pg(s) = aesge_bes s bo=| 7/ ap= —
o+1 o+1
I'f—— I'\——
2 2
(3)

For stepped surfaces there is no reason for A to have the
special values 0 or 2 (0=2 or 4), and —1/4(0=1) is unphysi-
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FIG. 1. (Color online) TWDs of touching steps computed (a) for different (€) values with Be,=—0.1. The solid curve is P,(s), the GWD
for nontouching steps with no energetic interactions. (b) TWDs for different Be, values with (€)=12.

cal. Thus, we have taken Eq. (3) to apply for arbitrary @

=2 or A=0 and call it the generalized Wigner distribution
(GWD). The GWD gives a better description of TWDs mea-
sured from both experiments and numerical simulations than
any of the pre-existing models’ and has many other virtues,
discussed elsewhere.®” Richards et al.'® emphasized that dif-
ferences between Eq. (3) and its discrete analog become non-
negligible for (€)<4.

If steps can touch (two or more step edges can be at the
same position), the analogy with 1D fermions is not strictly
valid. The issue is much more significant for discrete models
[x,(y,)=x;(y,)]. Since touching is a contact interaction, its
effect on TWDs should be insignificant only for (€)>6 or
s>1; TWDs of touching steps should then converge to the
GWD. With Monte Carlo simulations we investigate how
touching does alter the TWD and how one then should mea-

sure A.

Since we are interested in equilibrium TWDs, we used the
Metropolis method in our simulations. We modeled the vici-
nal surface using the TSK model with steps along the (100)
direction (straight steps). The underlying lattice was taken to
be simple cubic,'! with (screw-)periodic boundary conditions
along (£)y; L,=5-600 and L,=N({), for N=28-40 steps.
Steps were allowed to fluctuate via the attachment-
detachment process. Step-edge diffusion was suppressed in
our simulations. To focus clearly on the problem of con-
cern, we considered only the case of “free fermions:”

A=A =0=p=2. This eliminated divergences of the elastic
repulsion term when the steps touched and also avoided the
issue of whether all steps or just neighboring experienced
this repulsion. There are two energy parameters in this
model: the kink formation energy (e;) and the energy (¢,) of
two adjacent steps touching to form a double-height unit
segment. For simplicity, we assumed the energy to form a
p-layer high step is (p—1)¢, We set the temperature of the
simulations such that Be,=2, as in our group’s previous
simulation studies.”"'> We simulated the TWDs for values of
€, ranging from Be,=% (nontouching case) down to B¢, <0.
In the rest of this Brief Report, we refer to steps with an
energy cost for doubling (Be,=0) as repulsively touching
(RT) steps and steps for which doubling is energetically fa-

vored (Be,<0) as attractively touching (AT) steps.

Allowing touching alters the resulting TWD P(s) from
that of nontouching steps P,(s) in two major ways: (i)
P(0)>0 and (ii) P(s) is broader than P,(s). For terraces with
the same step touching energy (¢,), the deviation is greater
for surfaces with smaller (€) values [cf. Fig. 1(a)] and for
surfaces with the same (€), the deviation is greater for sur-
faces with smaller ¢, values [cf. Fig. 1(b)]. The deviation can
also be quantified as follows: P,(s) divides the TWDs of
touching steps into three regions as marked in Fig. 1(a). In
regions I (0=s5=<0.5) and IIT (s=1.5), TWDs of touching
steps have higher values compared to P,(s), while in region
IL, they have lower values. The TWDs of both kinds of steps
rise as power laws for small s and decay as Gaussians for
large s. For the former, we make the ansatz

P,o=Pl(s)+ ay,gsge‘bw“z; Pi(s) = P(0)e™™, (4)

where P'(s) describes the distribution for small values of s,
capturing the effect of touching. The second term is the
GWD modified to accommodate the first term; 7y and Q are
the fit parameters and P(0) is the value of the distribution at
s=0 measured experimentally or through simulations. Via
Eq. (1) (€)7'P(0) gives the ratio of double- or multiple-
atomic height step segments to the total length of steps.
Equation (4) can be rewritten more conveniently in terms of
P, [cf. Eq. (3)]

P, o(s) =P(0)e™” + OP,(s/\), (5)
P(0) P(0)
1-—~ 1-—
byo_ 1 \ = Yy _ -7
by N (PO ap N A
Y
(6)

using the normalization and unit mean of P, ,(s). The argu-
ment s/\ of P, can be reduced to s if we work in terms of an
effective mean-step spacing (€).;;=\(€). For the special case
€,=0, the TWD for the discrete case is simply that of a
vicinal surface with mean spacing (€)+1 with the form
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FIG. 2. (Color online) (a) MGWD fits (solid curves) to the TWDs (symbols) of both straight and fully kinked touching steps. The Be,
value for (£)=6 is —0.1, for (£)=10 (fully kinked steps) is 0, and for (€)=16 is 0.5. (b) Collapse of our simulation data (line slope
m=3.3) onto the finite-size relation given in and after Eq. (7): @..—@({€), Be,)=C(£)"e™"P< (or, since Be,=2, C(£) e~ 2/ %),

Pt r+1), where €4 for this case of (free) touching starts at
0 rather than 1. While it is straightforward to formalize this
procedure, the rather complicated result does not allow in-
clusion of nonzero ¢, nor lead to an effective value of o.'314

The distribution, P, ,(s), gives an excellent fit to the
TWDs of touching steps [see Fig. 2(a)]. We refer to P, ,(s)
as the modified GWD (MGWD). Broadly speaking, the val-
ues of P(0) and y determine P, ,(s) in region I, ® deter-
mines its peak height in region II, and \ determines the de-
cay rate of P, ,(s) in region III. For fixed values of ¢ and v,
higher (lower) values of P(0) and A combined with a lower
(higher) value of © implies a broader (narrower) distribution.

The values of P(0) obtained from our simulations are
listed in Table I along with the values of vy and @ determined
from fits using the nonlinear fitting function (with all data
points weighed equally) in MATHEMATICA®. The proportion
of double- or multiple-atomic height step segments, P(0), is
higher for surfaces with smaller (€) and lower ¢, [cf. Table I,
Figs. 1(a) and 1(b)], as expected: with smaller (€), step seg-
ments are more likely to meet during fluctuations, and the
lower €, the more likely such steps stay touched. In all of
our cases, the parameter vy is invariably 2, regardless of (€)
and €, until negative ¢, heralds the instability of the steps to
collapse. Especially for RT steps, the very small values of
P(0) values lead to insensitivity to 7y in the quality of the fit.
Due to its weak dependence on () and €, no physically

relevant information can be extracted from the value of 1.
From Table I we see that @ <2," implying an effective

attraction between steps [A.<0, cf. Eq. (2)], even though

actually A=0. This attraction is greater for surfaces with
smaller (€) and smaller ¢, As for entropic effects, this point
interaction manifests as a €2 interaction between steps, al-
beit as a finite-size effect. The fact that touching leads to an
attraction between steps has also been observed in the recent
analytic study.!" These two studies show that touching could
impact step-step interaction strength measurements signifi-
cantly. There are other problems that occur for relatively
small (£)=<4. The distinction between discrete and con-
tinuum models becomes non-negligible.'® Higher-order cor-
rections [O(€73),0(£™)] to the repulsive interaction are
known play a role at small step separations.'® Thus, experi-
ments to measure (A) should involve several misorientations,
at least some of which should be shallow ({(£)>1).

As substantiated by Table I, y>1 and P(0)<1, from
which A>1 and ® <1. Since N> 1,{€)5=N{)>({): steps
see an effective mean spacing greater than the actual value
because the multiheight steps reduce the step density on the
remaining vicinal surface. Since ® <1, the peak of the TWD
of touching steps is lower than that of P,(s). For fixed v,
Eq. (6) shows that \ increases and ® decreases with P(0),
implying a broader TWD.

To investigate the effect of step stiffness B on TWDs of

TABLE I. Values of P(0)/ /@ obtained from our simulations and fits using MATHEMATICA® for different
values of € and Be,. The values inside the parentheses are from the case of fully kinked (11) (zigzag) steps

rather than nearly straight (10) steps.

) Be=» 0.5 0

(0—zigzag)

6 0.000/n.a./1.80 0.012/2/1.62 0.076/2/1.3
8 0.000/n.a./1.87 0.008/2/1.70 0.049/2/1.41

(0.058/2/1.41)
(0.036/1.5/1.50)

—-0.05 0.1 -0.2
0.102/2/1.2  0.142/2/1.1  0.321/4/0.8
0.068/2/1.4  0.098/2/1.3  0.253/3/0.9

10 0.000/n.a./1.90 0.005/2/1.75 0.035/2/1.48 (0.029/1.19/1.56) 0.041/2/1.42 0.070/2/1.34 0.213/3/1.0
12 0.000/n.a./1.96 0.003/2/1.82 0.026/2/1.55 (0.017/1.7/1.641) 0.040/2/1.39 0.055/2/1.44 0.173/2/1.1
16 0.000/n.a./2.00 0.002/2/1.89 0.015/2/1.67 (0.011/1.2/1.645) 0.023/2/1.57 0.038/2/1.46 0.129/2/1.13
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touching steps, we also simulated the TWDs of surfaces with
steps along the (110) direction (fully kinked, or zigzag,
steps). The applicability of the generalized Wigner formalism
for this case has not been reported. Since fully kinked steps

have smaller 3 than straight steps,!” we consider the simplest
case in which (110) steps fluctuate freely (without energy
cost). However, attachment and detachment processes were
allowed only at kink sites to maintain an equal number of
kinks and antikinks. We restricted ourselves to the freely
touching (€,=0) case. To measure step separations, we fol-
lowed the mapping method proposed by Abraham et al.'® We
observed these TWDs to be very similar to those for straight
steps with €,=0. Hence, the MGWD gives a very good fit
even in the case of fully kinked steps. The fitted values of
P(0), vy, and @ are listed in Table I. The @ values for (110)
steps are only slightly higher than those for (100) steps,
while the values of P(0) and 1y are slightly lower. Hence, step
stiffness has at most a weak effect on the TWDs of touching
steps.

Returning to the idea that the effective attraction is a
finite-size effect, we expect that the value @, when step

touching is absent [and so linked to A by Eq. (2)] is related to
the values @ measured from fits by
Q = QOC _f(<€>7ﬂet)’ f(<€>aﬁ6t) - 0+' (7)
(€)— or Be—o
We find that the finite-size scaling function f({€),Be,)

=C{£)"e™™P< accounts well for the simulation data,'®
leading to the nice data collapse in Fig. 2(b). Fits give
C=09%0.1, m=3.3%0.2, and n=0.29 £0.07.

Since formation of multiple-height steps is energetically
favorable for AT steps, collapse (bunching®) occurs once
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B¢, is below a particular value, weakly dependent on (€) and
reminiscent of the extensively studied problems of step
pinning/(de)wetting?! and doubling,?? typically as a function
of T for given €, We find no multistep bunching for €, mod-
estly negative (0> Be,=—0.25). Concerned that our time and
length were too small to see such bunching, we also simu-
lated the evolution of AT steps with longer step edges
(up to Ly=104). Rather than starting with equally spaced
steps (our usual procedure), we chose an initial configuration
of four step bunches, each with ten steps, and allowed the
steps to evolve. We saw no evidence of further coalescence;
rather, the initial bunches disperse. This behavior is qualita-
tively different from the unstable sensitive behavior when
Be,=—0.3 reflects the presence of a finite density of steps,
the entropy of which apparently stabilizes the system.

In conclusion, using Monte Carlo simulations, we have
shown that step touching broadens the TWD. The MGWD
was found to give an excellent fit to the TWDs of both
straight and fully kinked touching steps. Step touching leads
to an effective attraction between steps, amounting to a

finite-size correction of the step-step interaction strength (A).
In light of such results, experimental studies seeking to ex-

tract A should consider several different misorientations,
checking for occurrence of step touching.
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