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Abstract – We present analytic and numerical results for the steady-state, non-equilibrium
terrace-width distribution (TWD) of steps during growth on vicinal surfaces. Kinetic Monte Carlo
shows that the TWD narrows progressively with increasing flux until the model breaks down. The
narrowing corresponds to kinetic repulsion between moving steps, due to the intrinsic asymmetry
of the adatom diffusion current on a growing surface. With a 1-dimensional (1D) model, from a
Burton-Cabrera-Frank approach, we make contact with previous work, in which the attachment
asymmetry can also be due to electromigration or to asymmetry in attachment rates; we deduce
an expression for the narrowing via a Fokker-Planck analysis. We illustrate how Ehrlich-Schwoebel
barriers (although inducing an instability in 2D) also lead to such asymmetry and narrowing.

Copyright c© EPLA, 2009

With equilibrium properties of vicinal surfaces [1,2]
—especially the form of the terrace-width distribution
(TWD) [3]— relatively well understood, much attention
now focuses on non-equilibrium aspects, notably in long-
fascinating field of growth [4–6]. In this paper, we apply a
well-tested generic model to study how deposition modifies
the TWD. We identify a deposition rate below which the
flux does not measurably alter the TWD and show that
higher flux produces a narrowing of the TWD equivalent
to the creation of an effective repulsion between steps.
This heretofore undocumented narrowing heralds the
breakdown of the standard quasi-static approximation;
the narrowing increases with flux until the step model
loses meaning. We present a formal argument to account
qualitatively for the narrowing in terms of flux-induced
asymmetry in attachment probability p to upper and lower
step edges. A more familiar source of such asymmetry is
the Ehrlich-Schwoebel (ES) barrier [7] EES. In the limit of
very slow growth, EES also produces an attachment asym-
metry leading to such narrowing, but eventually leads to
a Bales-Zangwill (BZ) meandering instability [8]. In
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contrast, an inverse Ehrlich-Schwoebel effect (in this
context due to EES < 0) leads to a bunching instability [9]
with an attendant bimodal TWD. Hence, it is of interest
to investigate the stable case EES = 0, even if physical
systems are not likely to precisely satisfy this condi-
tion [10]. (This limit has been examined, e.g., for spiral
surface growth [11].) Other well-known sources of attach-
ment asymmetry are electromigration [12,13], [atomisti-
cally induced] differences in attachment rates [9,14], and
impurities [15–17].
In equilibrium the width of the TWD narrows with

increasing strength A of the energetic (i.e. non-entropic)
repulsion A/w2, where w is the separation between two
steps (in the downstairs direction, x̂ in “Maryland nota-
tion” [1,3,18–20]. Invariably the analysis of the TWD
is based on the transcription of the configuration of
steps in two spatial dimensions to the world lines of
spinless fermions in one spatial dimension (x̂) and a
time-like dimension (ŷ, along the steps). It follows that
the only dependence on A is through the dimensionless
combination Ã≡Aβ̃/kBT )2, where β̃ is the step stiff-
ness. In the, alas, customary [1] fit of the TWD by a
Gaussian, the standard deviation σ∼ Ã−1/4. Whether this
is a precise proportionality, and what the proportionality
constant then is, depends on the approximation used [18].
A more sophisticated analysis [3,18–20] uses a fit to the
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“generalized Wigner distribution” (GWD)

P̺(s)=a̺s
̺e−b̺s

2

, b̺=

[

Γ(̺+22 )

Γ(̺+12 )

]2

, a̺=
2b
(̺+1)/2
̺

Γ(̺+12 )
,

(1)
where the dimensionless s≡w/〈w〉, with 〈w〉 the mean
terrace width. The single adjustable parameter ̺ is related
to Ã by Ã= ̺2

(

̺
2 − 1

)

. This formalism also shows that a

good estimate of Ã can be obtained from the standard
deviation σ2 of a Gaussian fit, albeit from a 4-term
relation [3,19]1 rather than the conventional Ã∝ σ−4.
Our expectations of the behavior of the TWD during

growth are conditioned by intrinsically limited one-
dimensional (1D), simplistic models, studied by Gossman
et al. [21] and by Williams and Krishnamurthy [22]. In
particular, the latter performed Monte Carlo simulations
of a model in which atoms were deposited on terraces
at a deposition rate F , and then attached to either
ascending or descending steps with a probability p or
1− p, respectively. The initial TWD was random, with
a uniform probability between 0 and 2〈w〉. Gossman
et al.’s model is couched in terms of the motion of steps
in the presence of a diffusion bias, such as an electric
field, rather than asymmetric attachment due to growth
or asymmetry in attachment rates; the evolution equation
for all these cases is the same in 1D.
So long as p� 1/2, the terrace widths evolved towards

a stationary state characterized by a Gaussian or Wigner
distribution. For p close to 0 (corresponding to infinite ES
barrier), the standard deviation of this distribution was
found [21,22] to behave as (1− 2p)−1/2, a result which
is easily obtained from a simple mean-field argument,
given below. On the other hand, in the seemingly simpler
case of a symmetric attachment, p= 1/2, the standard
deviation was observed to attain a finite value, as it
should, instead of diverging as implied by (1− 2p)−1/2.
The model seems superficially to be flux-independent
until one recognizes that p depends on F . Williams and
Krishnamurthy [22] argue that the long-time (saturation)
standard deviation σ=

√

〈w〉 (assuming, for now, unit
lattice constant for clarity) and demonstrate it numerically
for p= 0; Krug and Schimschak [23] show rigorously
that σ=

√

〈w〉 for p= 0, in which case the TWD is a
Poisson distribution. In contrast, the equilibrium variance
associated with 2D picture leading to eq. (1) is σGWD =
[(̺+1)/(2b̺)− 1]1/2〈w〉→ 0.422 . . . 〈w〉 for steps with no
energetic repulsion (Ã= 0⇒ ̺= 2); the exact value for
this special case is σexact = 0.424 . . . 〈w〉 [20,24]. Thus, for
〈w〉� 6, the kinetic σ is less than σGWD; thus, in this
model, growth more strongly suppresses step fluctuations
for more widely separated steps.
Analytic work on steps motion is based on the Burton,

Cabrera and Frank (BCF) model [25], which assumes that
adatoms on terraces obey a deposition-diffusion equation,
with boundary conditions specified at the steps. In 2D,
steps are lines, whose shape and position are dictated

1Specifically Ã≈ (1/16)[σ−4− 7σ−2+(27/4)+ (35/6)σ2].

—through mass conservation— by the flux of adatoms
to and from the steps themselves. Thus, the full 2D
BCF model is highly non-linear, and solving it is a
formidable task, that can only be attacked with kinetic
Monte Carlo (kMC) simulations. Analytic calculations can
be performed when the time scales for an adatom and
for a step to cross a terrace, 〈w〉2/D, and 〈w〉/v= 1/F ,
respectively, are widely separated, namely when

1/F ≫〈w〉2/D⇒ F/D≪ 1/〈w〉2, (2)

where D is the surface diffusion constant. By this same
reasoning, we estimate the temperature-dependent thresh-
old value Fc for the flux, above which the effective inter-
action plays a significant role (and below which the
equilibrium TWD obtains); equating rates in eq. (2),
we take

Fc=D/〈w〉2. (3)

After solving the adatom deposition-diffusion equa-
tion assuming immobile steps, one computes the step
velocity from the adatom flux. This quasi-static approx-
imation resembles the Born-Oppenheimer approximation.
Since steps are fixed when the adatom diffusion field is
computed, step motion clearly cannot affect adatom diffu-
sion in the quasi-static regime. Decoupling step motion
—and therefore, terrace-width fluctuations— from the
diffusion field makes the TWD totally insensitive to step
motion. It also implies that the adatom density on a
terrace is symmetric with respect to the middle of that
terrace. Hence, this situation is referred to as the symmet-
ric model [26]. To make the adatom density asymmetric
on a terrace within the quasi-static approximation, one
must modify the boundary condition at one or both of the
steps bordering that terrace (e.g., via EES) or introduce
external drift.
Eventually the motion of the steps must affect the

adatom density, since a fast-moving step will collect more
adatoms from the terrace in front of it, as it sweeps
through, than from the terrace behind it. To investigate
this problem analytically, we restrict ourselves to the
special case of straight steps.
Previously [27] we studied a vicinal surface relaxing

to equilibrium by computing the behavior of the TWD
as a function of time. Here we extend the numerical
analysis in ref. [27] by performing kMC simulations of the
stationary TWD during deposition and growth on a vicinal
surface, based on the standard, well-established [28] two-
dimensional (2D) solid-on-solid (SOS) model with barrier
energies Eb determined by lateral bond-counting: Eb is
a diffusion barrier Ed plus a bond energy Ea times the
number of lateral nearest neighbors in the initial state.
This number is 1 for an edge atom leaving a straight
segment of step edge for the terrace, 3 for a detaching
atom that originally was part of this edge (leaving a notch
or kink-antikink pair in the step), or 2 for a kink atom
detaching, either to the step edge or the terrace. We
adopt our oft-used [27,29] generic values Ed = 1.0 eV and
Ea = 0.3 eV, with T = 723K. (For larger Ea/Ed step-flow
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Fig. 1: (Color online) Images (200× 1000 sites) of the vicinal
surface after deposition of 150ML for 3 growth rates (left
to right): near equilibrium (F=0.1ML/s), moderate growth
(F=1ML/s), and rapid growth (F=10ML/s) near the upper
limit of step-flow growth.

collapses at smaller F [30].) Sublimation is forbidden, and
there is no interaction between steps besides the entropic
repulsion. There are 1000 lattice sites in the ŷ-direction
along the steps, with periodic boundary conditions. In the
x̂-direction, there are 200 lattice spacings a and N = 20
steps, created by screw-periodic boundary conditions, so
that 〈w〉= 10a. To gauge Fc from eq. (3), we estimate the
hop as the generic value 1013 s−1 [31]. Then

Fc =
4a2×1013 e−Ed/kBT

〈w〉2 s → 4× 104 atoms
s
= 0.2

ML

s
.

(4)
We focus on the effect of deposition with symmetric

attachment (EES = 0), considering non-zero EES near the
end. After trial runs at various deposition rates F , we
carried out extensive studies for F = 0.1, 1.0, and 10ML/s.
These rates span the range from a barely perceptible effect
to the verge of the meandering instabilities that herald
the crossover from step-flow growth to nucleation-limited
growth. Figure 1 shows “snapshots” of the step configura-
tions at these three deposition rates after 150monolayers
(ML), steady-state being reached by 100ML [29]. In fig. 2
there are corresponding plots of the TWD [29]. Unlike in
our equilibrium studies, we do not average over several
runs. Noteworthy results include:

1) For F = 0.1ML/s the TWD is nearly unchanged from
the equilibrium TWD. The curve is well described
by the Wigner distribution for ̺= 2 (best fit value
= 2.07), corresponding to only entropic interactions
(“free fermions”). This behavior is consistent with our
estimate in eq. (4): F = 0.1ML/s� Fc is a “small”
deposition rate, at which the quasi-static approxi-
mation is expected to apply. The higher deposition
rates, above Fc, lead to best fits with ̺≈ 4.39 and
5.24 (which values, at equilibrium, would translate
into effective interaction strengths Ã≈ 2.6 and 4.2)
for F = 1 and 10ML/s, respectively. In other words,
the deposition leads to a TWD progressively narrower
than in equilibrium; this can be expressed as an

Fig. 2: (Color online) Simulated terrace-width distribution
(TWD) for the 3 cases of fig. 1. The F = 1.0 set is displaced
upward by 0.4, the F = 10 case by 0.8, for clarity. The solid
curves show fits to a Gaussian, while the dotted curves are
GWDs, eq. (1), for the indicated values of ̺.

effective repulsion between the steps, and points to
a breakdown of the quasi-static approximation.

2) The breakdown of the quasi-static approximation
takes place well into the step flow regime, before
any islands nucleate on the terraces. As such, it
is experimentally relevant, and may complicate the
estimates of the ES barrier, which is known to also
produce narrowing of the TWD. (See quantitative
analysis below.)

3) For the highest two deposition rates the TWD can
be adequately described by a Gaussian, although it is
then less straightforward [18] to extract the effective
interaction strength (see footnote 1). This TWD
behavior is reminiscent of that found by Videcoq
et al. [32].

4) The meandering of the individual steps increases
with F . In equilibrium this would correspond to a
decrease in the step stiffness β̃. Correspondingly, at
fixed A we would expect Ã≡Aβ̃/(kBT )2, and so ̺,
to decrease as well. The observed increase in ̺ clearly
highlights the kinetic origin of the repulsions (all the
more so because A= 0 in our simulations).

5) For the largest value of F , we see that a key assump-
tion, that the step position is a single-valued function
of the position y along the step, is about to break
down.

This analysis was done for 〈w〉= 10 on a 200× 1000
lattice. The large size in the ŷ direction minimizes
finite-size effects. In some early runs [29], we considered
several values of 〈w〉—2, 4, 8, 10, 20— but on a 400× 400
lattice. Saturation of σ was achieved after of order
100ML. These saturation values were semiquantitatively
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Fig. 3: Schematic of 1D model of a vicinal surface. The position
is step m is xm. Terrace m has width wm = xm−xm−1 and
adatom concentration cm(x).

consistent with the
√

〈w〉 behavior found in ref. [22],
but better fit by a logarithmic rise with 〈w〉. Further
investigation is warranted.
We can gain some understanding of the origin of

the effective repulsion, in the previously mentioned 1D
perspective [21,22] by considering the equations of motion
of a train of [descending] steps (cf. fig. 3) in the comoving
frame [4], from the BCF perspective [25]. The deposition-
diffusion equation satisfied by the adatom density cm+1(x)
on the terrace between down-steps at xm and xm+1, and
thus of width wm+1 = xm+1−xm is

Dc′′+ vc′+F = 0, (5)

where v= F 〈w〉 is the velocity of the comoving frame.
Equation (5) is the limit of zero desorption (infinite
desorption time τ) of a long-known [33,34] and often
applied [9,11,26,35] result. In this limit one loses the
concept of equilibrium flux and finds an infinite surface
diffusion length xs =

√
Dτs and so an infinite Péclet

number vxs/D [34], rendering the step motion “slow”.
Assuming the boundary condition c(xm) = c(xm+1) = 0,

we find the adatom density to be

cm+1(x)=
F

v
(xm−x)+

F

v
wm+1

1−exp[−v(x−xm)/D]
1−exp[−vwm+1/D]

.

(6)
From eq. (6) it is straightforward to find the velocity
D[(∂cm+1/∂x)|x=x+m − (∂cm/∂x)|x=x−m ] of the m-th step:

ẋm =
F

2

[

wm+1e
vwm+1/2D

sinh(vwm+1/2D)
− wme

−vwm/2D

sinh(vwm/2D)

]

. (7)

By subtracting from eq. (7) the corresponding equation
for ẋm−1, we obtain the equation for ẇm. For comparison
with previous work, [21,22] we linearize this equation of
motion, expanding to lowest order in each wm−〈w〉. After
straightforward algebra, we find

ẇm=F [(1− p) {wm+1−wm}+ p {wm−wm−1}] , (8)

p≡ 1
2

[

Φ

sinh2 Φ
− e−Φ

sinhΦ

]

, Φ≡ v〈w〉
2D

=
F 〈w〉2
2D

. (9)

From eq. (3) we have Φ= F/2Fc. Expanding in F , p∼
1/2−Φ/3+ (2/45)Φ2+O(Φ5); also 1−2p≈ tanh(2Φ/3)=
tanh(F/3Fc) (where the approximation is accurate to

better than 0.5%). Thus, for non-vanishing F there is
an apparent asymmetric attachment of diffusing atoms
to steps, with preferential attachment to ascending steps
(p < 1/2), even with no ES barrier.
To proceed, we make the mean-field assumption that
wm+1 =wm−1 = 〈w〉. Since these neighboring terrace
widths are anticorrelated with wm, the quadratic poten-
tial about 〈w〉 in this approximation underestimates the
restoring force. Introducing white2 delta-correlated noise
η, we find the Langevin equation

ṡ=−F (1− 2p)(s− 1)+ η. (10)

The corresponding Fokker-Planck equation is

∂P (s, t)

∂t
=
∂

∂s
[F (1− 2p)(s− 1)P (s, t)] + ∂

2

∂s2
[P (s, t)],

(11)

which, assuming initially uniform spacing and setting
t̃≡ F (1− 2p)t, has the solution [36]

P (s, t̃)=

[

F (1− 2p)
2π(1− e−2t̃)

]1/2

exp

[

−F (1− 2p)(s− 1)
2

2(1− e−2t̃)

]

.

(12)

The variance σ2 of this Gaussian distribution is

σ2 =
1− exp(−2t̃)
F (1− 2p) −→t̃→∞

1

F (1− 2p) ≈
1

F tanh
(

F
3Fc

) (13)

the characteristic 1D dependence found by Gossman
et al. [21]; the distribution starts as the delta function
δ(s− 1) and broadens monotonically to the long-time limit
in eq. (13), with width σ∝ F−1 for small F and σ∝ F−1/2
for large F . Since the Gaussian is centered about s= 1 and
since P (s < 0)> 0 is unphysical, the analysis must fail once
σ≈ 1, setting a lower limit on F for the description to be
viable.
Since this analysis neglects both entropic or energetic

repulsions, the behavior for small flux, F → 0+, p→ 1
2

−

,
should have the form of a Poisson distribution, P (s) =
exp(−s), associated with creation of a vicinal surface by
the random deposition of straight stiff steps. (Note also
ref. [23].) Furthermore, the dependence on F is expected
to be exaggerated in the model since only F is the only
source of TWD narrowing. Indeed, it would predict that,
in our kMC simulations, the TWD for F = 10ML/s should
be narrower than that for F = 1ML/s by a factor �

√
10≈

3.2, much greater than observed, highlighting the risk of
using such simple 1D models (also unfaithful at early
times) for more than qualitative purposes.
Another concern is the effect of the mean-field nature

of our calculation. In equilibrium, the venerable Gruber-
Mullins approximation [37] is known to underestimate
the variance as a function of step-step repulsion [38].
Margetis [39] has recently obtained the exact variance

2Note that the amplitude of the noise in ref. [22] is proportional
to the terrace width w.
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Fig. 4: Images of the simulated 200× 1000 vicinal surface
after deposition of 20ML for Ehrlich-Schwoebel barriers EES,
from left to right: 0.1 eV, 0.3 eV, infinite. Other parame-
ters are L= 10, T = 723K, F = 0.01ML/s, Ed = 1.0 eV, and
Ea = 0.3 eV.

of the 1D linear model, eq. (8), going beyond the mean-
field limit given in eq. (13). While the power series of his
result agrees with that of the first result in eq. (13) until
the third-order term, ∝ t̃ 3/(1− 2p)2, the exact variance
actually diverges for long time like

√

t̃/(1− 2p) rather
than saturating, in contrast to the numerical results in
2D; however, this long-time behavior is sensitive to the
assumptions about the noise term added to eq. (8) [40].
An Ehrlich-Schwoebel barrier [7] offers a different, well-

known way to break the upstairs-downstairs symmetry
[4–6,41,42]. The resulting anisotropy is controlled through
EES, which ranges from 0 to ∞; we consider the interme-
diate values 0.1, 0.2, 0.3, and 0.4 eV. At T = 723K, the
TWD has nearly converged to the infinite-barrier limit by
EES = 0.4, and the runs become prohibitively slow. To
distinguish ES-induced narrowing from flux-induced
narrowing, we simulate at low enough flux that there
is no observable narrowing when EES = 0; we use
F = 0.01ML/s. (Even at F = 0.1ML/s, by 100ML there
is a Bales-Zangwill (BZ) [8] instability —absent when
EES = 0.)
Figure 4 shows snapshots of the step configurations for

a range of values of EES. Initially sharp, the TWD reaches
its saturation width after a short transient regime of a few
ML growth. The configurations are recorded after 20ML,
before the onset of periodic unstable BZ meandering. The
resulting TWDs, for all values of EES that we studied,
are displayed in fig. 5, along with Gaussian fits. The stan-
dard deviation of the TWD decreases from σ∼ 0.43 (NB:
σ= 0.42 for Ã = 0 at equilibrium [20,27]) to σ∼ 0.22
for an infinite ES barrier. Correspondingly, in fig. 4 we
see behavior reminiscent of Bullet 4 above, with increas-
ing EES rather than F ; the number of close-approaches
decreases3, and the number of kinks increases, though now
as a prelude to the BZ instability. When F is too small
to produce significant attachment asymmetry, the asym-
metry due to EES satisfies p/(1− p) = exp(−EES/kBT).
With eq. (9) we obtain an effective barrier —when

3Figure 4 shows a non-zero probability for vanishing w, indicating
that steps can touch each other to form double-height steps in our
algorithm. This variant from strictly fermion behavior leads to a
finite-size–dependent decrease in the effective repulsion between the
steps. In collaboration with K. Kim and R. Sathiyanarayanan, we
discuss this subtle issue in detail elsewhere (unpublished drafts).

Fig. 5: (Color online) TWDs from simulated configurations
(cf. fig. 4) with T = 723K and very small F = 0.01ML/s. The
smooth curves are Gaussian fits, with the indicated standard
deviations σ. With increasing EES the TWD evidently narrows
(σ decreases).

actually EES = 0— due to the flux:

EeffES
kBT

= ln

(

2 sinh2 Φ

Φ− e−Φ sinhΦ − 1
)

∼ 4
3
Φ+
4

3
Φ3+O(Φ5).

(14)
Similarly, we could deduce an effective electromigration
force [35] due to the flux.
In summary, we have shown gauged the flux (F 〈w〉2/

D < 2× 10−7exp(Ed/kBT) in our model, 0.1ML/s for our
choice of parameters) below which there is negligible
change from the equilibrium TWD.With stronger flux, the
quasi-static approximation fails, and the TWD narrows
progressively, consistent with an effective step-step
repulsion. Most experimental techniques used to probe
equilibrium TWDs could observe the TWD narrowing
during growth, though efforts have focused instead on
step bunching and other instabilities [43]. In simulations
of etching, the TWD can have the same GWD-like shape
when the etchant is stirred (i.e. surface diffusion is
unimportant) [44]; however, σ should be rate-independent
since etched atoms do not diffuse before detaching [45].
Flux effects might well contribute to the TWD narrowing
(by ∼ 1/4) observed with reflection electron microscopy
on vicinal Si(111) at 1100 ◦C (compared to 900 ◦C), where
an incident flux compensated for desorption [46].
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