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Sensitivity of Short-Range Trio Interactions to Lateral Relaxation of Adatoms:
Challenges for Detailed Lattice-Gas Modeling
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Using ab-initio density functional theory, we have calculated the difference between A- and B-step
formation energies on Pt(111) from orientation dependent trio interactions. Our results show that
the ratio of step formation energies is dependent on the local geometry and the lateral relaxation
of the adatoms. The ratio approaches the experimentally observed values in the case of large su-
percells and wide adatom stripes, showing that use of a minimal lattice gas model is inadequate for
calculating step formation energies. Similar relaxation effects are seen in the step stiffness calcula-
tions from NN (nearest neighbor) and NNN (next-nearest neighbor) interactions on Cu(100). To
properly account for these effects within a lattice-gas framework and realign experiment with the-
ory, we introduce a four-adatom non-pairwise (quarto) interaction. For lattice-gas models involving
multiadatom direct interactions, the effects of lateral relaxations make delicate the parametrization
of the characteristic energies.

PACS numbers: 68.35-p, 05.50.+q, 71.15.Nc, 81.05.Bx

I. INTRODUCTION

Lattice-gas models are useful tools for categoriz-
ing structural properties, energetics and evolution of
adatoms and steps on surfaces, allowing efficient statis-
tical mechanical calculations, as discussed in a variety
of reviews [1–4]. The fundamental assumption is that all
surface atoms sit in equivalent sites (or perhaps a handful
of different types of sites), regardless of local geometry,
and that lateral interactions then produce the local struc-
ture. Thus, the binding energy of a single species to this
[high-symmetry] site is the strongest energy in the over-
layer system. The second largest energy is the difference
between binding to this favored site and to alternative
sites. Then comes a hierarchy of interaction energies for
pairs of adsorbates in two favored sites, separated by var-
ious in-plane displacement vectors [3].

The simplest case, in which only nearest neighbors
are significant, corresponds to the popular bond-counting
models of growth, particularly convenient because they
naturally satisfy the detailed-balance criterion essential
to Monte Carlo calculations of equilibrium and near-
equilibrium properties [5]. Such models are a mainstay
of much of our understanding of surface morphology and
dynamics. They provide a valuable tool for including in-
terparticle interactions in conceptual and numerical anal-
yses.

In some cases, distant pairwise interactions also play
an important role, and even multisite interactions may be
significant, especially when detailed accounting of phase
boundaries or cluster shapes is sought [6–11]. The sub-
strates in these studies are all mid or late transition or
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noble metals, where the electronic indirect interaction
leads to rich behavior [3]. Since the Fermi level lies in
the gap in semiconductors, there are no long-range os-
cillatory (Friedel) electronic interactions; any electronic
interactions decay rapidly. There can be and often are
long-range elastic/strain interactions on semiconductor
surfaces, which do not fit neatly into a lattice-gas frame-
work; in spite of the strong directionality of the covalent
bonds underpinning semiconductors, reconstructions at
surfaces often confound the use of lattice gas models.
Thus, there are relatively-few lattice-gas treatments of
semiconductor surfaces, and they involve just short-range
pair interactions [12–15].

When the adsorbate-adsorbate interactions involve
strong short-range lateral bonds (in particular, when di-
rect bonding between such atoms is significant), it is pos-
sible (even likely) that the atoms can shift non-negligibly
from their high-symmetry favored positions and cause
subtle relaxation effects that can complicate the applica-
tion of the lattice-gas framework. These effects seem to
be especially significant for multisite interactions, where
the distortions are not along the bond direction.

The advent of powerful computer resources and of ef-
ficient, reliable, first-principles computational software
has opened the door to calculating the total energy of
periodic slabs containing enough atoms to allow one to
extract the various lateral interactions of a lattice-gas
model. Then these interactions are used in Monte Carlo
to test whether they account adequately for experimen-
tal properties such as phase diagrams, equilibrium island
shape, or step fluctuations. This field has become quite
active [8–11]. Accordingly, it is timely to investigate what
features might complicate that onerous task.

In this paper we discuss two important cases in
which multisite lattice-gas interactions are needed to
describe overlayer properties but in which lateral re-
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FIG. 1: (color online) Adatom trios on (111) surface (lighter
(mustard) circles represent adatoms, darker (blue) circles rep-
resent substrate atoms) (a) A-trios have a substrate atom at
their center (b) B-trios do not have a substrate atom at their
center. All figures look down, normal to the surface plane,
called ẑ.

laxations hamper their evaluation [17]. One involves
a new concept—orientation-dependent trio (3-adatom
non-pairwise) interactions—for determining the differ-
ence in energy per length between the two kinds of close-
packed steps on a (111) fcc surface. Here we consider
Pt(111), where this difference in energy is particularly
large [18, 19]. The second concerns how trio interactions
affect models accounting for the stiffness anisotropy on
{001} surfaces, focusing on Cu, for which extensive ex-
perimental data is available that sets limits on the ratios
of the “effective” lattice-gas parameters. The role of lat-
eral relaxations was noted long ago in an EAM (embed-
ded atom method) calculation of the relative energies of
linear and compact islands of Pt, Pd, and Ni on Pt(001)
[20], with more emphasis on substrate lateral relaxations.

Our calculations use VASP (Vienna Ab-initio Simu-
lation Package) [21, 22], a widely-used state-of-the-art
computational package based on density functional the-
ory [23, 24], that allow one to reliably compute the total
energies of various configurations and extract therefrom
these interactions. They can in turn be used to calcu-
late physical quantities such as step stiffness and step
free energy, and the results can be compared with the
experimental values.

II. PT(111) - ENERGY DIFFERENCES OF
CLOSE-PACKED STEPS

We recently used VASP to calculate, from a lattice-gas
perspective, the difference in the free energies of A- and
B-steps [(100) and (111) microfacets, respectively] on a
Cu(111) surface. Normally in lattice-gas models, pair-
wise interactions alone are sufficient for computing key
surface energies. However, pairwise interactions, no mat-
ter how long range, do not distinguish between A- and B-
steps. One must introduce other non-pairwise multi-site
interactions involving at least three adatoms. As we also
showed recently [25, 26], an orientation-dependent trio
(non-pairwise part of three-adatom) interaction [3, 27] of
atoms forming an equilateral triangle with NN (nearest-
neighbor) legs provides the most elementary way to ac-

count for the difference in step formation energies per NN
spacing, EA and EB , of A- and B-steps, respectively. The
ratio of the step formation energies (EA/EB) was found to
be 1.04. This is in good agreement with the experimen-
tally measured values [28]. However, this case did not
provide compelling evidence of the role of orientation-
dependent trio interactions since EA/EB is so close to
unity.

Here we consider a sterner test by examining
orientation-dependent trio interactions on Pt(111),
where the difference (both absolute and fractional) in A-
and B-step formation energies is larger [18] than it is on
Cu(111): specifically, the ratio of free-energies at 625 K
(i.e., the finite-temperature generalization of EA/EB) is
1.15±0.03. We find that the trio interactions, unlike their
pairwise counterparts, are very sensitive to the lateral re-
laxation of adatoms.

Our VASP calculations of step formation energies used
its ultrasoft pseudopotentials for Pt (with a plane wave
cut-off of 14.1 Ryd.) and the Ceperley-Alder local den-
sity approximation (LDA) [29]. (We used LDA because
Boisvert et al. [30] showed that LDA produces a better
estimate of the Pt surface energies than the generalized
gradient approximation (GGA) [29].) The lattice param-
eter for Pt was determined to be 3.91Å from a bulk LDA
calculation using a 1×1×1 supercell with a 13×13×13
k-point grid. (If we use GGA this distance is 3.99Å .)

Our straightforward calculation of the trio interaction
energies for the isolated trimer on Pt(111) used a 3×3×1
k-point grid, a (4×4×14) supercell, and a slab of 5
atomic layers [31], with the remainder as vacuum. We
placed 3 adatoms on both the top and the bottom of
the slab so that any charge-transfer effects in computed
energies cancel [32]. The adatoms were sited so that
they formed either an A-trio (Ea) or a B-trio (Eb). (Cf.
Fig. 1.) The middle layer was frozen to bulk positions,
and all the other layers were allowed to relax in all
directions until the net force on the atoms was less than
0.01 eV/Å[33]. The difference between step formation
energies are calculated from the trio interaction energies
[26]:

∆EAB ≡ EA − EB = 1/3(Ea − Eb) (1)

The results of these calculations, +6 meV/atom, show
that the formation energy EB is smaller than EA, consis-
tent with the cited experimental results of Michely and
Comsa [18], but with a magnitude only 1/8 that reported
in the density functional calculations of Feibelman [19],
who used an (8×8×4) substrate with 28 adatoms on one
side.

To predict confidently the magnitude of multisite in-
teractions, it is important to understand the origin of this
large difference between these two calculations. If we al-
low no relaxation (fixing atoms at the positions predicted
by the continuation of bulk lattice structure), we find,
remarkably, that for both the “Isolated trimer” and the
“Feibelman” configurations EA−EB becomes negative,
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a) Isolated trimer b) Feibelman config.
4×4×14 5⊕ 3 + 3 8×8×11 4⊕ 28 + 0
-40 → -38 → +6 -23 → -39 → +47

FIG. 2: (color online) Illustration of a basic isolated trio and
the large structure used by Feibelman [19]. Beneath each
descriptor is the size of the supercell (nx × ny × nz) and
the layer structure (# full atomic layers ⊕ # adatoms on
top of slab + # atoms beneath. In the third row are tab-
ulated the difference EA−EB in meV per adatom with no
relaxation → the comparable energy when only vertical re-
laxation is allowed → the comparable energy when lateral
relaxation is allowed also. In the figure panels the arrows
show the magnitude—amplified tenfold for clarity—and di-
rection of the lateral relaxation. For compactness, each panel
combines a pair of configurations onto a single lattice. The
upper configuration (lime atoms) depicts an A step while the
lower (mustard atoms) shows a B step. For specificity in dis-
cussions, the vertical direction in the figure is called ŷ and the
horizontal x̂, with ẑ the normal to the slab as in Fig. 1. See
text for discussion.

with values −40 meV/adatom and −23 meV/adatom, re-
spectively. (See Fig. 2.) Thus, relaxation [34] plays a
crucial role in obtaining the [correct] sign of EA−EB , but
also the large difference in strength. The triad in our
elementary cell is isolated, while in Feibelman’s there are
many neighbors.

Relaxations can be purely vertical (normal to the slab,
i.e. along ẑ) or more generally can also involve lateral
displacements perpendicular to the normal. Our evi-
dence shows that such lateral relaxations are crucial in
determining the multisite interactions accurately. If we
allow only vertical relaxations, there is little difference
(about 0.01 Å) in the vertical positions of the two trios
(although the vertical [inward] relaxation of each is an or-
der of magnitude larger). More significantly, purely verti-
cal relaxation only exacerbates the problem with ∆EAB ,
as we explicate in our study a sequence of intermediate
configurations—illustrated in Fig. 3—interpolating be-
tween the isolated trio case and Feibelman’s large-cell
case, in which there are several “edge-atoms” (atoms
bound to the edge), depicted in Fig. 2.

The illustrations show with arrows the lateral displace-
ments, magnified by a factor of ten in size for clarity, of
the adatoms. As mentioned, these in-plane displacements
are crucial in accounting for the difference of the energies
of A and B steps. When only vertical relaxation is al-
lowed, we get the intermediate energies in the third row of
tabulated information in the figures. In all cases, ∆EAB

remains—unphysically—negative, as for the completely
unrelaxed calculation. Except for the isolated triad, the
magnitude actually increases, typically by at least 50%,
making the discrepancy from experiment worse.

For a simple triad of adatoms in a minimum-size su-
percell (cf. Fig. 3a), the formation energy EB remains
larger than EA, with a larger difference than in the un-
relaxed case. In this case, we also see that the lateral
relaxations of the two orientations are about the same.
In contrast, Fig. 2b shows that the lateral relaxations at
the B step are notably greater than those at the A step.
This behavior supports the idea that the energy lowering
due to lateral relaxation is greater at the B step than at
the A step, underpinning the positive value of ∆EAB in
the experiment.

We chose the intermediate configurations to examine
how the lateral relaxation depends on the lateral depth
of the overlayer (the number of horizontal stripes used
to represent the island or upper terrace) and on the in-
teraction between adjacent edge-atoms. From another
perspective, the latter can be viewed as interactions be-
tween the kink and antikink that define the beginning
and end of the edge-atom grouping along an edge. Ex-
cept for the minimal triad of panel a), each intermediate
configuration was studied with (4×4×14), 5-layer-thick
supercells; edge atoms were placed on the A-step edge or
B-step edge (i.e., edge-atoms were added to these stripes
to create either A-kink-antikink pairs on an A-step, each
consisting of a B-link, or B-kinks).

In decomposing the energies for all six upper configura-
tions, we note that the additional edge atoms increase the
total energy (per repeat length along x̂) by EA plus the
number of edge atoms times the energy of an atom in the
close-packed interior of the overlayer [35]. The straight
and edge-atom-decorated configurations are viewed as
having the same edge energies. Similarly, for the lower
configurations the difference per repeat length is raised
by EB plus the number of edge atoms time the same 2D-
“bulk” contribution. Thus, ∆EAB is just the difference
in energy per repeat length of the total energy of the up-
per configuration and the lower one for each pair. The
results are listed in the bottom row of the tabulation in
Fig. 3.

For edge atoms on a one-adatom-wide stripe (Fig. 3b),
the formation energy of B-steps was found to be greater
than that of A-steps, similar to results with the (2×3×14)
cell (Fig. 3a), but slightly reduced. This similarity is
reflected in the adatom relaxations, as Figs. 3a and 3b
show. There is a repulsion between an edge atom and its
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a) Trimer, min. cell b) Single row c) Double row d) Double row + 2 edge-
atoms

2×3×14 5⊕ 3 + 3 4×4×14 4⊕ 5 + 5 4×4×14 4⊕ 9 + 9 4×4×14 4⊕ 10 + 10
-29 → -49 → -38 -35 → -52 → -15 -26 → -39 → +26 -22 → -38 → +34

FIG. 3: (color online) Illustration of intermediate configurations considered in this study, progressing from an atom on a chain
to larger structures leading toward Feibelman’s configuration. Same notation as in Fig. 2. The shaded rhomboid in the upper
part of panel a) illustrates the 2D unit cell for this case. The corresponding shaded rectangle in panel b) shows the larger size
unit cell used in it and panels c) and d).

periodicity-replicated “images” due to the evident frus-
tration of relaxation, esp. along x̂, in the stripe in Fig. 3a
compared to 3b; furthermore, the relaxation along ŷ of
the edge-atom is larger in 3b [36]. As we move across
the series, the relaxations are stabilized as the overlayer
structure becomes larger, and we see more clearly the
asymmetry in the relaxations around edge-atoms on the
two types of close-packed steps.

For kinks on 2-adatom-wide stripes (Fig. 3c, 3d), the
step formation energy of A-steps is greater than that of
B-steps, in agreement with previous theory and experi-
ment and similar to results using the (8×8×11) supercell.
Evidently, this is due to the lateral relaxations since this
inequality does not hold for frozen structures or purely
vertical relaxation. The addition of a row of adatoms
changed ∆EAB by 40 meV/atom.

When there are two edge-atoms per cell (Fig. 3d), sym-
metry no longer constrains the lateral relaxation to lie
along ŷ. Indeed, we see that the edge-atoms evidently
attract each other modestly. This behavior can be un-
derstood from bond-energy-bond-order (BEBO) [37] ar-
guments, since the edge-atoms have the fewest lateral
neighbors. It can also be described in terms of electro-
static attractions of the positively-charged edge-atoms at
each end of a grouping [38, 39]. Comparing Figs. 3d
and 2b, we see that this horizontal relaxation of end of
edge-atoms becomes greater for longer chains. This at-
traction between edge-atoms, which favors the formation
of a nascent chain along the step-edge, can be recast as

a repulsion between the kink and the antikink bound-
ing the minichain [40]. Inspection of the upper and lower
parts of Fig. 3d shows that the x̂ component of relaxation
is rather similar; correspondingly, the change in ∆EAB

from Fig. 3c is relatively modest; the major source of the
change in ∆EAB comes from the greater inward (along ŷ)
relaxation at the B vs. the A step, as seen most clearly
in Fig. 3c. Fig. 2b shows somewhat greater disparity in
the magnitude of relaxation along ŷ, leading to a larger
value of ∆EAB .

In summary, we find that the multi-site trio interac-
tions are particularly sensitive to the lateral relaxation
of the adatoms, which are in turn dependent on the size
and local geometry of supercells used to calculate them.
This raises questions as to the applicability of a simple
lattice-gas description of these interactions, which nec-
essarily assumes the adatoms sit in well-defined, high-
symmetry positions.

III. CU(100) - STEP STIFFNESS ANISOTROPY

We next consider the strain/relaxation-related ef-
fects on calculated trio interaction energies on Cu(100).
Dieluweit et al. [41] showed that the NN Ising model
cannot explain the experimentally observed step-stiffness
anisotropy. Based on a crude calculation, Zandvliet et
al. [42, 43] proposed that an attractive NNN interac-
tion E2 < 0 could account for the discrepancy. With a



5

fuller calculation using the solid-on-solid (SOS) approx-
imation, some of us [45] showed that the effect of NNN
attractions was even somewhat larger than they had pre-
dicted. However, the picture could be clouded by the
existence of significant repulsive trio interactions. The
strongest interaction is likely to originate from a config-
uration with the smallest perimeter [27], for this case a
right-isoceles configuration with a pair of NN legs and an
NNN hypotenuse. The SOS calculation shows that one
then has an effective NNN interaction (ε2), written as the
sum of two components, illustrated in Fig. 4(a):

ε2 = E2 + Ed. (2)

To investigate whether the parameters deduced from
such statistical-mechanical fits to anisotropies correspond
to actual atomistic energies, we used VASP to calculate
these interactions [26]. We computed the energies of 8
different ordered overlayer superlattices (depicted in Fig.
2 of Ref. [26]) and fit with an adsorption energy, 3 pair
interactions (E1, E2 and a third NN E3), and 2 trios
(an isosceles right triangle, with E1 and E2 legs, and
collinear, with two E1 and one E3 legs). Consistent with
the above scenario, E3 was negligible, and the collinear
trio configuration had much smaller magnitude than Ed.
We found E1 = −332± 16 meV and E2 = −47± 9 meV,
yielding E2/E1 ≈ 1/7, consistent with the modelling of
the data. However, Ed = 52±12 meV, roughly cancelling
E2 and so leading to essentially a NN Ising model, known
to be inadequate.

To check whether relaxation effects played a role in this
conundrum, we revisited the problem, using the same ap-
proach and parameters as in Ref. [26] but with a bigger
supercell (4×4×14). As shown in Fig. 4(b), we distin-
guished two types of NN right-isoceles trios, one in the
dense interior of a (1×1) overlayer, where symmetry pre-
cludes significant lateral relaxation, and another at the
edge, with one or two of the threesome of atoms being
edge atoms with just one or two (lateral) NN bonds.

Since the local geometry of these adatoms differ, we
could anticipate that the associated trio interaction ener-
gies would also differ. This is based on the idea that the
isosceles-right trio adatoms (E′

d) inside a stripe cannot
relax laterally as much as the trios with vertices on the
step (Ed). This reasoning leads to the prediction—which
proves accurate—that Ed should be less repulsive than
E′

d. The trio energy calculated by us earlier corresponds
to a linear combination of Ed and E′

d, weighted more
dominantly by E′

d. However, the calculation of the step
stiffness depends on broken step-edge trios, which neces-
sarily correspond to Ed. To distinguish these two trios
here, we calculated the energies of four different adatom
configurations [44], and we solved the resultant linear
system of equations. With this correction, the step-edge
isosceles-right trio interaction becomes

Ed ≈ 12.5± 0.5 meV (3)

because the increased lateral relaxation decreases the re-
pulsion between the three nearby atoms with little (∼9

FIG. 4: (color online) (a)Effective NNN interactions
on a (100) surface, (b) Multisite interactions Ed(solid
triangle),E′

d(broken triangle) and EQ(square). The trio Ed

has adatoms on the step edge whereas E′
d has no adatoms on

the step edge

meV) change to the pair interactions. Now the effective
NNN interaction is

ε2 = E2 + Ed ≈ −34 meV. (4)

The ratio of this effective NNN interaction to the effective
NN interaction ε1 = E1 + 2Ed is

ε2/ε1 ∼ 1/9 (5)

which is much closer to experimental expectations.
Distinguishing between the step-edge trio interactions

Ed and those in the interior (2D “bulk”) E′
d is inconsis-

tent with a proper lattice-gas picture, where interactions
should not depend on local position and geometry. We
can remedy this problem by introducing a four adatom,
non-pairwise and non-trio “quarto” interaction. (The
possibility of such interactions has been known for over
three decades [3, 46], but to the best of our knowledge,
it has been invoked only once in an actual calculation of
adsorbate energetics [47]). This quarto interaction distin-
guishes between the two trios because it is present only
for 2D-bulk trios E′

d:

E′
d = Ed + 3/4EQ (6)

Since this quarto interaction acts to reconfine the
adatoms to their laterally unrelaxed positions, we expect
it to be repulsive and rather substantial in magnitude.
Indeed, we find for Cu(001) that the quarto interaction
has value EQ = 53 ± 16 meV. This is a significant energy,
e.g. in comparison to the collinear trio Ec = -15 meV and
3rd NN interaction E3 = -8 meV [45]. Hence, EQ is likely
to have consequences in calculations of other properties.
This formulation, while somewhat awkward in replacing
E′

d by the weaker Ed as the relevant trio energy, does
provide a viable and consistent way to bridge the theo-
retical step stiffness with experimental measurements on
Cu(100).
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IV. CONCLUSION

Within a lattice-gas framework, we have shown that
the inclusion of an orientation-dependent trio interaction
can account for the difference in A- and B-step formation
energies on Pt(111). When calculating trio interactions
from first principles, however, care must be taken. As
reported here, these interactions can be exquisitely sen-
sitive to the geometry and structure of the supercell used
to calculate them. Such sensitivity to local relaxation
can complicate a simple lattice-gas description. It is the
trio interaction for sites involving edge atoms that ac-
counts for the difference in energy of the A and B steps.
These trio repulsions are significantly weaker, due to lat-
eral relaxations, than the apparent energy of trios in the
interior (“bulk”) of the surface. However, the idea of
a position-dependent interaction is inconsistent with the
lattice-gas formalism. On a square lattice we can account
for the relaxation of trios near step edges by introducing
a non-pairwise quarto interaction EQ among four neigh-
boring adatoms. Such an interaction can bridge the theo-
retical step stiffness with experimental measurements on
Cu(100). In that case, we find what amounts to a rela-
tively large, repulsive quarto interaction EQ ≈ 0.05 eV
that has significant physical consequences in our problem
and presumably more generally. (Note, however, that
quarto interactions are unlikely to play a role in the en-
ergy difference between A and B steps for (111) surfaces,
since the obvious compact configurations contain one a
and one b triad.)

These subtleties in homoepitaxial systems involve con-
figurations in which atoms adsorb at [lateral] nearest-
neighbor sites. In such cases the direct interaction be-
tween the atoms in the uppermost layer play a significant,
usually predominant role; they are strong enough to move
atoms significantly from high-symmetry positions. In
particular, BEBO [37] arguments predict that the bond
lengths will decrease near edges in a way that compen-
sates for the loss of nearest neighbors. For configurations
that involve atoms sufficiently distant (usually second-
neighbor or beyond) that the indirect, through-substrate
interaction accounts overwhelmingly for the lateral in-
teraction, such relaxation effects should be insignificant.
Likewise, for heteroepitaxy in which the adatoms are
much smaller than the substrate atoms, the direct in-

teraction is likely to be unimportant even for nearest
neighbors. Remarkably, the effects are more significant
for multi-adatom interactions than for pair interactions,
presumably because in the latter case symmetry typi-
cally dictates that lateral relaxations must occur along
the bond direction; for homoepitaxy, such “longitudinal”
relaxations are likely to be relatively costly energetically.
(It would be interesting to examine this problem for het-
eroepitaxy in the case of small mismatch.)

The effects of lateral relaxations on short-range inter-
actions of overlayer atoms can be expected to be even
more important on open surfaces, so long as the adatoms
are still close enough to experience direct interactions.
Indeed, such issues have been noticed in calculations for
{110} surfaces of two fcc metals: Al [10] and Cu [48].

This research provides a stark warning about blithely
applying multi-interaction lattice-gas models to overlayer
systems involving adatoms having size comparable to the
substrate atoms and residing in structures with nearest-
neighbor occupation. We find then that the appropriate
trio interactions for determining one sort of statistical
property can differ from that needed to assessing another.
Resorting to interactions among 4 or more adatoms to
“correct” for the relaxations lowering trio interactions is
disquieting. Given the fundamental place of the lattice-
gas picture in modeling behavior, it is important to find
a way to go beyond ad hoc patches. Progress calls for
imaginative reformulations of the overlayer problem, and
it is heartening that some are already appearing [49].
The goal should be to provide a systematic approach to
parametrize the lattice-gas model for targeted applica-
tions in a way that takes into account the subtle effects
of lateral relaxations on direct interactions.
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