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Recently some of us have constructed a Fokker–Planck formalism to describe the equilibration of the ter-
race-width distribution of a vicinal surface from an arbitrary initial configuration. However, the meaning
of the associated relaxation time, related to the strength of the random noise in the underlying Langevin
equation, was rather unclear. Here we present a set of careful kinetic Monte Carlo simulations that dem-
onstrate convincingly that the time constant shows activated behavior with a barrier that has a physically
plausible dependence on the energies of the governing microscopic model. Remarkably, the rate-limiting
step for relaxation in the far-from-equilibrium regime is the generation of kink–antikink pairs, involving
the breaking of three lateral bonds on a cubic {001} surface, in contrast to the processes breaking two
bonds that dominate equilibrium fluctuations. After an initial regime, the Fokker–Planck time at least
semiquantitatively tracks the actual physical time.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

With equilibrium properties of vicinal surfaces-especially the
form of the terrace width distribution (TWD)—now relatively well
understood [1], much attention is focusing on non-equilibrium as-
pects, which have long been of interest. In a previous paper some
of us [2] derived the following Fokker–Planck (FP) equation (Eq.
(1)) to describe the distribution of spacings between steps on a vic-
inal surface during relaxation to equilibrium. The goal was to de-
scribe the relaxational evolution of this spacing distribution
rather than the evolution of the positions of individual steps as
in a previous investigation [3–6]. As in all those papers, we simplify
to a one-dimensional (1D) model, in which a step is represented by
its position in the x̂ direction (the downstairs direction in ‘‘Mary-
land” notation), averaged over the ŷ direction (along the mean
direction of the step, the ‘‘time-like” direction in fermionic formu-
lations) [7]. This picture implicitly assumes that one is investigat-
ing time scales longer than that of fluctuations along the step.

We started with the Dyson Coulomb gas/Brownian motion
model [8,9]; made the mean-field-like assumption, when comput-
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ing interactions, that all but adjacent steps are separated by the
appropriate integer multiple of the mean spacing; and set the
width of the confining [parabolic] potential in the model to pro-
duce a self-consistent solution. Details are provided in the Appen-
dix, which expands the earlier derivation and corrects some
inconsequential errors in intermediate stages [2]. We found the
following:
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where s is the distance w between adjacent steps divided by its
average value hwi, determined by the slope of the vicinal surface.

The steady-state solution of Eq. (1) has the form of the general-
ized Wigner surmise (GWS), thus
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where the constants b. and a. assure unit mean and normalization,
respectively. (The Wigner surmise, Eq. (2) pertains to the special
cases . = 1,2,4; the generalization is to use this expression for arbi-
trary . P 1.) The dimensionless variable . gauges the strength A of
the A/w2 energetic repulsion between steps: ð.� 1Þ2 ¼
1 þ 4A~b=ðkBTÞ2, where ~b is the step stiffness. The dimensionless
FP time ~t can be written as t/s; here the relaxation time s is hwi2/
C, where

ffiffiffiffi
C
p

is the strength of the white noise in the Langevin
equation (for the step position) underlying the FP equation [2].
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To confront data, both experimental and simulational, one typ-
ically investigates the variance r2(t) or standard deviation r(t) of
this distribution. If the initial configuration of the vicinal surface
is ‘‘perfect” (i.e., has uniformly-spaced straight steps), then r(t)
obeys [2]

ln 1� rðtÞ
rsat

� �2
" #

/ �t=s; r2
sat ¼

ð.þ 1Þ
2b.

� 1 ð3Þ

where r2
sat � rð1Þ is the variance for an infinite system at long

time. When dealing with numerical data, we take the variance to
be normalized by the mean spacing, so divided by the squared mean
terrace width, to mimic the formal analysis. The precise value of the
proportionality constant is not of importance to our analysis, since
we view s as the source of information for an activated process,
with any prefactor therefore insignificant. As discussed in the
Appendix (esp. Eq. (A15)), one might expect the prefactor to be
unity when the first moment has the assumed GWS value of one,
but with the approximations we make to obtain a compact solution,
the prefactor seems better described as two.

Time in this formulation is not the natural fermionic time asso-
ciated with the direction along the steps (ŷ in ‘‘Maryland nota-
tion”), i.e., that resulting from the standard mapping between a
2D classical model and a (1 + 1)D quantum model. Instead it mea-
sures the evolution of the 2D or (1 + 1)D system toward equilib-
rium and the thermal fluctuations underlying dynamics. Since
the time constant s enters rather obliquely through the noise force
of the Langevin equation, a key investigational objective in the pre-
vious Letter [2] and in this paper is whether s corresponds to a
physically significant rate. Monte Carlo simulations allow the
examination of a well-controlled numerical experiment. In the for-
mer we used our well-tested Metropolis algorithm to study a ter-
race-step-kink (TSK) model of the surface. We found a
satisfactory fit to the form of Eq. (3), from which we obtained
s � 714 MCS (Monte Carlo steps per site) for . = 2 (or A = 0, only
entropic repulsions) while s � 222 MCS for . � 4.47. This result
is in qualitative agreement with the understanding that C should
increase (and, so, s should decrease) with increasing ., as dis-
cussed in Ref. [2].

In this paper, we confront more systematically and thoroughly
the above-noted crucial issue, showing that the time constant
associated with the FP transcription can be related to the atomistic
processes underlying the relaxation to equilibrium and that the FP
time in some sense tracks (though of course does not replicate) the
literal physical time of the relaxing system. We use a standard,
simple lattice model that embodies the basic atomistic properties
of these surfaces. We report far more extensive simulations, using
kinetic Monte Carlo (KMC) [10,11] rather than the Metropolis algo-
rithm, for a solid-on-solid (SOS) rather than a TSK model, so that
we have real mass transport. Since atomic energies in this generic
model are proportional to the number of lateral nearest neighbors,
detailed-balance is satisfied. To simplify the analytic expressions
and, especially, the simulations, we concentrate in this paper on
the special case . = 2, corresponding to steps with only entropic
repulsions, ‘‘free fermions”. We find that the time constant, ex-
tracted from the numerical data by fitting to the time correlation
function in the form predicted by the FP analysis, has an activated
form that can be related to an atomistic rate-limiting process in the
simulations. Our goal is not to find the best accounting for the
dynamics of a real stepped surface, nor even of our model surface.
It is to show that the FP approach offers a relatively simple and
physically viable approach to accounting for the relaxation of arti-
ficial initial configurations toward equilibrium.

The second section describes the model and KMC algorithm that
we use. The third presents our numerical results. The fourth dis-
cusses them, with one subsection describing the crucial role played
by the creation of kink–antikink pairs and another investigating
the evolution of the shape of the distribution. The fifth makes com-
parisons with the venerable mean-field treatment of step distribu-
tions, and the final section sums up our findings. In an Appendix
we expand the derivation of the key Fokker–Planck equation given
in Ref. [2]; we present some new results for the evolving moments
of the P2ðs;~tÞ and correct some inconsequential errors in Ref. [2].

2. Model

Our SOS model assigns an integer height hr to each point r on a
square grid of dimensions Lx � Ly. We use periodic boundary condi-
tions in the ŷ direction. On our vicinal (001) simple cubic crystal,
we create N close-packed [100] steps, with mean separation
L = Lx/N, via screw periodic boundary conditions in the x̂ direction.
In our simulations we take N = 5 in the initial simulations [7] and
N = 20 in later investigations. The energy of a configuration is given
by the standard absolute SOS prescription:

H ¼ 1
2

Ea

X
rd

hrhrþd ð4Þ

where d runs over the four nearest-neighbors of a site, and the fac-
tor 1/2 cancels the double-counting of bonds.

In our SOS model, which has been described elsewhere [12], we
use barriers determined by the standard longstanding simple rule
[13–15] of bond-counting: the barrier energy Eb is a diffusion bar-
rier Ed plus a bond energy Ea times the number of lateral nearest
neighbors in the initial state. This number is 1 for an edge atom
leaving a straight segment of step edge for the terrace, 3 for a
detaching atom that originally was part of this edge (leaving a
notch or kink–antikink pair in the step), or 2 for a kink atom
detaching, either to the step edge or the terrace. Processes that
break four bonds, in particular the removal of an atom from a flat
terrace plane, are forbidden, as is any form of sublimation. No Ehr-
lich–Schwoebel barrier hinders atoms from crossing steps. We
chose values 0.9 6 Ed 6 1.1 eV and 0.3 6 Ea 6 0.4 eV, using temper-
atures 520 K 6 T 6 580 K. At these temperatures we expect no sig-
nificant finite-size effects in the ŷ direction for the values of the
mean terrace width L (in lattice spacings) that we use: 4 6 L 6 15.

The width Ly of the lattice should be greater than the ‘‘collision
length” ycoll, the distance along ŷ for a step to wander a distance L/2
in x̂. For a TSK model, estimates using a random-walk model give
ycoll = (L2/2)sinh2(Ek/2kBT) [16], where Ek is the formation energy
of a kink. At the temperatures and energies used in our simulation,
ycoll is of order 102 for L = 6 and 103 for L = 15. E.g., for T = 580 K,
Ek = Ea/2 = 0.175 eV, and L = 6, ycoll � 140. In almost all simulations
reported here, we use Ly = 104. While Ly may often be larger than
necessary, it allows for some self-averaging, decreasing the num-
ber of runs we need to carry out to get good statistics.

In our rejection-free KMC, we separate all top-layer sites into
four classes, those with i = 0, 1, 2, 3 nearest neighbors (NNs). (Those
with i = 4 are not allowed to move and are not considered when
updating.) Typical realizations of these four classes are isolated
adatoms, atoms protruding from a straight step edge, atoms at kink
sites, and atoms at the edge of a step, respectively. We compute
probabilities for each of the movable classes: Pi ¼ fi=

P3
i¼0 f i, where

fi = Ni � exp[�(Ed + i�Ea)/kBT], and Ni is the number of sites with i
NNs. (Of course, the four exponentiations are done once and for
all at the beginning for each set of energies.) For each update we
need four random numbers—r1,r2,r3,r4—uniformly distributed be-
tween 0 and 1. We use r1 to pick which of the 4 movable classes
will have the move. For the ‘‘winning” class, r2 determines which
of the Ni possible atoms will move. Then r3 determines in which
of the 4 NN directions the atom moves. In this rejection-free
scheme, we then decrease the height (the z value) of the initial



Fig. 1. Three examples of fits using Eq. (3), used to extract s. Note that the data are
very well fit in all three cases. The plotted r(t) is the standard deviation of the KMC
data divided by the mean step spacing L (listed in lattice constants), and Ed and Ea

are the energy barriers for diffusion and for breaking a bond, respectively. Time t is
essentially in seconds (see text). In all cases here and in later figures, . = 2. Here
N = 5. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)
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position by one and increase the height of the chosen direction
move from this initial site by one. This scheme can be (and has
been, elsewhere) modified to allow for an Ehrlich–Schwoebel bar-
rier. Finally r4 is used to advance the clock in standard KMC fash-
ion, similar to the n-fold way or BKL [17] approach, using the
prescription D t = �ln(r4)/R, where R is the total rate for a transition
from the initial state [10]. Explicitly, R ¼ m0

P3
i¼0 f i ¼ m0 exp½�Ed=

kBT�
P3

i¼0Ni � exp½�i � Ea=kBT�, where we take the hopping
frequency m0 = 1013 s�1.

We saved essentially every hundredth update; that interval cor-
responds to our unit of time, which is about 1 s. for the selected
temperature and energies.3 This update interval is long enough so
that the sum of the KMC update times varies insignificantly
(±0.01%) but short enough to capture the behavior during the steep
initial rise.

In our model, the mass carriers are atoms rather than vacancies
(or both). Since atoms with i = 4 are frozen in our model, atom-va-
cancy pairs cannot form spontaneously on a terrace. (More gener-
ally, this mechanism is highly improbable.) Mass carriers are thus
created at step edges. If MC moves depend on the difference be-
tween final and initial energies, as in Metropolis schemes, then
there is equivalence between atom and vacancy creation and
transport. (If one goes beyond a strict SOS model and allows local
relaxation, vacancies tend to be favored somewhat [18,19].) An
atom quitting a step edge for the lower terrace costs 3Ea if it leaves
a straight step and 2Ea if it leaves from a kink. At the upper side of a
step, a vacancy can be spawned if a step-edge atom moves out one
spacing onto the lower terrace (with the same energy cost as just
given) and its inner neighbor happens to move in the same direc-
tion before the initial atom returns to its initial position. In kinetic
Monte Carlo, however, rates are determined just by the difference
between the barrier energy and the initial-state energy. This does
not change the energy to produce an atom, but adds a cost of 3Ea

for the move of the second, inner-neighbor atom. Moreover, while
the energy for an atom to hop along the terrace is Ed, for a vacancy
it is Ed + 3Ea. Indeed, we never observed the unlikely concerted pro-
cess for vacancy creation in our simulations nor, for that matter,
did we see any vacancies. The number of isolated atoms was also
very small, with N0 being in single digits, and they moved very rap-
idly, rarely appearing in successive saved images.

The freezing of i = 4 processes marks a violation of detailed bal-
ance (since such a vacancy, if it existed, could be filled by a roving
adatom); however, given the negligible occurrence of such vacan-
cies in our simulations, the violation should be insignificant. In
some physical systems, motion of surface vacancies does evidently
dominate mass transport [20]. Again, our goal in these calculations
is not to account generally for experiments but to create a fully-
controlled data set to see how well the dynamics can be described
using our Fokker–Planck formalism.

3. Computed results

We extract a characteristic time (or inverse rate) s from numer-
ical data by fitting the dimensionless width using Eq. (3), as illus-
trated in Fig. 1. The fit is notably better than that found in the
Metropolis/TSK study in Ref. [2]. [However, the saturation value
is notably higher than in Ref. [2], with the normalized standard
deviation r (the value in the simulation divided by L) approaching
�0.48, or a dimensionless variance of 0.24, rather than 0.18 as
found in Ref. [2] and anticipated from Eq. (3). This difference arises
because the present algorithm allows steps to make contact along
3 The mean of the Poisson-distributed update intervals [11] was about 0.01 s. We
saved when the counter reached 100 times this mean. The mean overshoot was also
about 0.01 s.
edge links rather than just at corners as in the usual fermion sim-
ulations. The variance of 0.18 is appropriate to ‘‘free fermions” with
. = 2. As we discuss in detail elsewhere [21], the present algorithm
leads to a smaller (and L-dependent) effective . as the steps come
in contact more frequently, i.e., for smaller L and higher T (cf.
Fig. 1). For the present choice of parameters (L = 6, kBT/Ed � 1/20),
the TWD has close to . = 1, for which the dimensionless variance
is 0.27. This feature is inconsequential for the arguments in this
paper.]

We expect that the decay time exhibits Arrhenius behavior:
s / exp(Eb/kBT). We investigate Eb closely in the two traces of
Fig. 2. We show typical runs at T = 580 K, corresponding to
kBT � 1/20 eV. First, we ramped Ed, holding Ea fixed at 0.35 eV
(open squares, red). In the semi-log plot of reduced energies (ener-
gies/kBT), we find a slope of 0.99 ± 0.02, indicating that in the effec-
tive barrier, the multiplier of Ed/kBT, is essentially unity, as
expected. In a second set of runs, we ramped Ea, holding Ed fixed
Fig. 2. Semilog plots of the relaxation time s (in sec.) vs. the diffusion barrier Ed

(squares, upper line, red) or thrice the bond energy Ea (triangles, blue), with the
other held fixed, both in eV, with kBT = 0.05 eV and N = 5. The numbers indicate the
slopes; both are essentially unity. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)



Fig. 3. Demonstration of the robustness of the form of the evolving standard
deviation, r(t) = r(1)[1 � exp(�t/s)]1/2, for five temperatures. In the inset, the five
values of s by which the curves are rescaled are plotted vs. (Ed + 3Ea)/kBT, showing
their Arrhenius form. Here Ed = 1.0 eV and Ea = 0.35 eV. In this and subsequent
figures, N = 20.

Fig. 4. Typical step configurations during the evolution of initially straight steps in
Fig. 3. The panels are 120 � 5000 site portions extracted from the full 120 � 10000
net; there is considerable compression in the ŷ direction. The panels range from
early time to near saturation. Specifically, the ratios of the image time to s are:
�1/80, �1/8, �1/2, and somewhat over 3. From the step images alone, one would be
hard pressed to distinguish the uphill direction, which is to the left.
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at 1.0 eV (open triangles, blue). Plotting now vs. 3Ea/kBT, we find a
slope 0.94 ± 0.02, indicating that the effective energy barrier Eb is
Ed + 3Ea. To corroborate this idea, we ramped T from 520 to
580 K, fixing Ea = 0.35 eV and Ed = 1.0 eV. As illustrated in the inset
of Fig. 3, we determine the fitted activation energy to be
2.03 ± 0.03, in excellent agreement with Ed + 3Ea = 2.05 [eV]. Evi-
dently the rate-determining process is the removal of a 3-bonded
atom from a straight step, creating a pair of kinks (i.e., a kink and
an antikink [22]) rather than the presumably more frequent pro-
cess, with energy Ed + 2Ea, in which an atom leaves a kink position
of a step [22,23]. (Of course, kink–antikink pairs also arise with a
lower barrier when an atom from the terrace or from a kink site at-
taches to a step edge or splits off from a kink site. However, as
members of class i = 1, such edge-atom structures are likely to be
very short-lived.) The main part of Fig. 3 shows the standard devi-
ation (/TWD width) vs. time scaled by the relaxation time of each
of the five temperatures. Evidently the fit to r(t) = r(1)[1 �
exp(�t/s)]1/2 is robust.

Initially the steps retreat as atoms are emitted. There is also an
asymmetry in fluctuations from a straight step, since retreating
moves involve higher barriers than advancing fluctuations. Once
the continuum picture becomes applicable, the fluctuations appear
to be symmetric, with typical configurations shown in Fig. 4.

To check consistency, we compare the intercepts of the linear
fits in the two semilog plots, i.e., the prefactors of the exponential
term in which the particular energy is ramped. In addition to the
activation components there is the leading factor s0 � hw i2/4m0

[2],4 where we make the standard assignment for the hopping fre-
quency, m0 = 1013 Hz. Since hwi � L = 6 in our simulations, s0 is
9 � 10�13s. In the ramp of Ed, the prefactor is s0 exp(3Ea/kBT), pre-
dicted to be 1.19 � 10�3s. The value we find from the simulations
is (1.2 ± 0.1) � 10�3 s, in excellent agreement. Similarly in the ramp
of Ea, the prefactor s0exp(Ed/kBT) is predicted to be 4.366 � 10�4 s
and measured from the fit as (4.36 ± 0.15) � 10�4 s.

We also varied the system size Lx, holding the number of steps
fixed, and thereby ramping hwi. From the random-walk analogy,
4 The factor of 4 accounts for the 4 directions in which an atom can move from a
general position on the surface. In some treatments it is absorbed into m0.
the prediction is that s / hwi2. We find tolerable agreement, with
a slope 18% below the expected value. We suspect that the reason
behind the poorer agreement than for L = 6 above originates in the
L-dependence of the variance associated with the peculiar algo-
rithm used in our simulations, which allows steps to touch [21].

Independently, another argument corroborates that the kink
creation rate has an activation energy of Ed + 3Ea: At equilibrium
the creation and the annihilation rates are equal, so we compute
the latter. Annihilation of kinks requires that an adatom diffuses
to a step-edge notch—a kink–antikink pair, whose density is
nk�ak � exp(�2Ek/kBT) � exp(�2(Ea/2)/kBT). Since the equilibrium
adatom density is ceq = exp(�2Ea/kBT), the annihilation rate
of kinks at a step edge is proportional to Dceqnk�ak �
exp[ � (Ed + 2Ea + Ea)/kBT] (cf. Ref. [24]). This in turn implies that
the activation energy for the kink creation rate is Ed + 3Ea.

4. Discussion of results

4.1. Crucial role of kink creation

The key energy in the relaxation time is that for detaching 3-
bonded atoms rather than kink atoms, a remarkable observation.
Neither equilibrium nor growth processes involve 3-bonded
atoms. At equilibrium, step fluctuations are controlled by the so-
called step mobility, which is proportional to the emission rate of
adatom from kinks [25], which involves 2-bonded atoms. Hence,
the relaxation towards equilibrium should also be controlled by
the step mobility. However, our results evidently contradict this
notion in the far-from-equilibrium regime.

One possible explanation of our remarkable finding is that kinks
have to be formed first, requiring the extraction of atoms from
straight steps. (As noted earlier, the addition of an atom to a step
edge also creates kink–antikink pairs, but the ‘‘tooth” is of class
N1, so very short-lived.). In that case, our initial configuration, in
which steps are perfectly parallel and straight may be introducing
a bias in the results. To investigate this possibility, we considered
two other initial states with equal numbers of kinks and antikinks,



Fig. 5. Checks of dependencies on initial conditions and update moves. Evolution of
the standard deviation r of the TWD for three initial configurations: straight steps
(solid, black), ‘‘decimated” edge (dash-dotted, red), and crenelated (dotted, blue)
edge. The 120 � 10,000 lattice has 20 steps, with L = 6; we choose T = 580 K,
Ed = 1 eV, and Ea = 0.4 eV. For equilibrated non-interacting (free-fermion-like, . = 2)
steps, r approaches 0.42 = rW, as expected. The smooth curve is a fit to an
exponential approach to saturation. The smooth curve is r(t) = r(1)[1 � exp(�t/
74852)]1/2. Inset: Surface azimuthally misoriented by 0.0005 radians, forcing 5 kinks
along the 104-site steps. The three filled (red) circles represent runs with an initial
‘‘perfect” configuration of 5 straight 2000-site segments; the reduced slope,
indicated by the solid line, is 3.0 ± 0.3, in excellent agreement with the steeper
line in Fig. 2, indicated here with a dashed line, having reduced slope of 2.9 ± 0.1.
Thus, processes in which 3 bonds are broken govern the scaling of the relaxation
time s (given in sec. as in Fig. 1). The open circles are from runs with 3-bonded
atoms immobile; the corresponding reduced slope is 2.0 ± 0.1, so that now 2-
bonded atoms control the (much larger) s. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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i.e., in which one produces kinks by adding atoms to (or removing
atoms from) a straight edge.5 In the ‘‘decimated” case every tenth
atom along a straight step is removed; in the other case every other
atom is removed to create a ‘‘fully kinked” step, so that the edge
resembles dentil molding or castle crenelations. In Fig. 5 we plot
the resulting evolution of the standard deviation r of the TWD for
the three cases. During the early-time rapid spreading of the initial
sharp TWD, the slope increases with the number of initial kinks. In
this regime, our model is not expected to apply (nor should any
other 1D, continuous model); indeed, Eq. (3) does not describe the
steep initial part of the traces very well. After about 4 � 104 MCS
the curves are essentially indistinguishable within the noise level.
The smooth curve is a one-parameter best fit of the data for the ini-
tially straight step by r(t)/r(1) = 1 � exp(�t/s). For this case we find
s � 7.5 � 104 (in units that are essentially sec.).

We formulated the crenelated configuration because it creates
at the outset a high density of atoms of class N1: 8 � 10�2 atoms/
site, three orders of magnitude greater than the equilibrium den-
sity of 5 � 10�5. These atoms quickly lead to a burst of adatoms
that should quickly thermalize the step configurations. If it were
only the supply of adatoms that limits equilibration, then for this
scenario the subsequent creation of kinks would not be crucial.
Evidently this is not so; even for the crenelated case, the relaxation
5 For initial states small polar misorientations and so with small densities of kinks
with one orientation, equilibration of the step shape still involves creation of new
kinks, and this in turn implies detachment of 3-bonded atoms, since detachment of an
atom from a kink does not change the number of kinks. For larger misorientations and
kink densities, more subtle effects—with profound implications—come into play.
Since these findings distract from the focus of this Communication, we defer
discussion to a separate paper [21].
kinetics are determined by the rate of creating kinks–antikinks
pairs, with the usual energy barrier.

To corroborate that kink–antikink creation is indeed the rate-
limiting process, we computed the relaxation rate of a surface with
steps azimuthally misoriented so as to create kinks via screw
boundary conditions in the ŷ direction. Specifically, in the initial
state the in-plane misorientation slope was set at 0.0005, so that
geometry forces the existence of 5 kinks for Ly = 10,000. Keeping
the diffusion barrier fixed at 1 eV, we varied Ea. The results are
shown in the inset of Fig. 5 as filled circles. We computed just three
points, but clearly, essentially no difference is found with respect
to the relaxation rate of straight [100] steps (the red line in
Fig. 2). The latter is drawn as a dashed line in the inset. The fitted
slope to the data (times kBT) is 3.0 ± 0.3, fully consistent with 3-
bonded ledge atoms being responsible for the rate-limiting pro-
cess. We also checked that the relaxation rate is enormously slo-
wed if 3-bonded atoms are kept immobile: Fitting the
distribution width with Eq. (3), we ramped Ea while holding fixed
Ed = 1 eV. The extracted relaxation times are shown in the inset of
Fig. 5 as open circles. The reduced slope is 2.0 ± 0.1, consistent with
2-bonded kink atoms providing the rate-limiting process for the
step motion in this case. The characteristic time is at least an order
of magnitude larger than the previous case, which can be inter-
preted as due to the inability to create new kink sites, so that the
number of sources for 2-bond escape of atoms to the straight seg-
ments of the step is limited to the initial 5 kinks. Without the azi-
muthal misorientation, this surface would be inert. Furthermore,
the eventual width of the distribution, rsat, is only about half the
size of the 3-bond case. Thus, at least over the course of our long
runs, the surface is never able to equilibrate.

We considered the number of N2 sites, typically kinks along
steps. This quantity rose much more rapidly than the variance.
Referring to the main plot of Fig. 5, N2 achieves its saturation value
by t � 3 � 104. Thus, the process controlling s is not the initial for-
mation of an adequate number of kinks but rather the maintenance
of this number. For our chosen energies, about 1 in 30 sites along a
step was a kink, far higher than in our azimuthally slightly-misori-
ented case.

For [unphysically] large values of Ea, the two straight lines in the
inset of Fig. 5 cross, so that processes breaking two bonds become
rate-limiting. However, since s depends on the dimensionless ratio
Ea/kBT, this crossing should also happen at low temperatures. For
our far-from-equilibrium conditions, we expect that the two-
bond-breaking rate is roughly proportional to the number of forced
kinks, and so the azimuthal misorientation, while the three-bond-
breaking rate is relatively insensitive to this angle. Hence, as one
gets closer to straight initial steps, the crossover occurs at ever
lower temperatures. To model this behavior, we could take the
overall rate to be N2 and N3 times their respective rates from the
inset of Fig. 5. Unfortunately, the slow evolution of the lattice at
the low temperatures precludes our investigating this crossover is-
sue with KMC.

In a different limit, we applied a similar analysis of the variance
of the TWD to a vicinal (001) surface misoriented in along an azi-
muth rotated 45� so as to have zig-zag [110] steps. For such steps,
every outer atom has i = 2 lateral neighbors. Our analysis then
shows that these 2-bond kink atoms produce the rate-limiting
step, with a slope of 2 in the equivalent of the plot of s vs. Ea in
the inset of Fig. 5. This system has some idiosyncratic behavior
due to the ease of creating fluctuations of steps from their mean
configuration. Discussions of these subtleties would cloud the fo-
cus of this paper. Hence, we defer details to a future communica-
tion [21].

In short, we reach the striking conclusion that the equilibration
of a terrace width on a vicinal (001) simple cubic crystal with
close-packed [100] steps (or steps not far from close-packed)
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and the fluctuations of the same terrace width at equilibrium are
qualitatively different phenomena in the time regime of our KMC
calculations. The latter can take place with a constant number of
kinks, while the former requires creation of new kink–antikink
pairs. This single well-defined process sets the time scale for far-
from-equilibrium relaxation. Fluctuations from the equilibrium
distribution, having the form of Eq. (2), will not lead to arbitrary
initial configurations such as a perfect cleaved crystal with
straight, uniformly-spaced steps. It seems that the near-equilib-
rium regime is reached only at time scales several times longer
than considered in our simulations, when the variance is relatively
close to saturation.

4.2. Higher moments of the TWD

So far, we have only considered the first two moments of the
TWD. Several different distributions might account for these two
moments. As a further check that P2ðs;~tÞ describes the KMC data
well, we study higher moments of the TWD in comparison with
the analytical expressions in Eqs. (A16) and (A17). This is a far
more demanding test than considering just the variance; nonethe-
less, in the temporal regime under study, semiquantitative
accounting for the KMC data is achieved.

In Fig. 6 we plot the second, third, and fourth moments (with
respect to the origin) for initially-straight steps. (Since we wish
to compare with P2ðs;~tÞ, we divide the ‘‘raw” KMC jth moment
by the jth power of the mean spacing to determine ljð~tÞ.) For each
moment there is a steady rise (from unity) that approaches the
equilibrium value lj(1) exponentially. (Steps which are initially
decimated or crenelated behave similarly, though in somewhat
‘‘noisier” fashion.) For l2, l3, and l4, these saturation values
agree well with the analytic results 3p/8 � 1.18, p/2 � 1.57,
15p2/64 � 2.3, respectively, as which can be read off Eqs. (A12),
(A16), and (A17). For ease of comparison, we plot ljð~tÞ=ljð1Þ in
Fig. 6, so that each normalized moment approaches unity. The ap-
proach to saturation is evidently slower for successively higher
moments.

To make contact between the moments extracted from the KMC
data and the analytic expressions in dimensionless units arising
Fig. 6. From top to bottom, the second (squares, red), third (circles, black), and
fourth (triangles, blue) moments (with respect to the origin) of the evolving KMC-
generated TWDs for initially straight configurations and the same parameters as in
Fig. 5; for ease of comparison, the jth moment ljð~tÞ is divided by its equilibrium
value lj(1). To make contact with the exponential approach of these moments to
their saturation values, one must rescale the KMC time. For l2 the rescaling factor,
as in Fig. 5, is 7.5 � 104. For l3 and l4, the approach to saturation is progressively
slower; the rescaling times are 1.15 � 105 and 1.37 � 105, 3/2 and 9/5 as large,
respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
from our Fokker–Planck analysis, we seek whether by rescaling
KMC times by some tj leads to a good description of the data by
the deduced moments. For l2 such a rescaling factor t2, with
t2 = 7.5 � 104, was already used in analyzing the data in Fig. 5. In
other words, we adjust t2 so that l2(t/t2)/l2(1) from Eq. (A12) fits
the data as well as possible, as illustrated in Fig. 6. For l3 and l4,
the approach to saturation is progressively slower; the rescaling
times t3 and t4, similarly obtained, are 1.15 � 105 and 1.37 � 105,
3/2 and 9/5 as large, respectively.

The analytic expressions for the four moments, given in Eqs.
(A12), (A13), (A16), and (A17), all approach saturation asymptoti-
cally from below like expð�~tÞ. Indeed, Pðs;~tÞ itself approaches
P2(s) like expð�~tÞ, so all its moments must do likewise. However,
in the temporal regime corresponding to the KMC simulations,
higher-order terms cause the evident exponential-like approach
to depend on ~t=s rather than simply ~t, where s is some effective
time constant of order unity.

To determine sj we consider in Fig. 7 the evolution of
�~t= ln½1� ljð~tÞ=ljð1Þ� for each moment (j = 2, 3, 4). To the degree
that this trace is horizontal, the Ansatz is appropriate. The thin
curves in Fig. 7 show that this assumption becomes progressively
better as time advances. While all three curves eventually converge
to unity, in the time regime under consideration the three mo-
ments have significantly different time constants, with the higher
moments having progressively larger magnitudes, consistent with
the KMC findings displayed in Fig. 6.

The inset of Fig. 7 displays the first moment of l1ð~tÞ. As de-
scribed in the Appendix, it is a couple percent smaller than the
proper value of unity in the region around ~t � 1. (This is clearly a
deficiency only of the analytic results. The KMC data have
l1ð~tÞ � 1 by construction.) In order to estimate how much the
mean-field approximation affects higher-order moments, we com-
pute the ‘‘corrected” moments by recasting Pðs;~tÞ as a function of
s=l1ð~tÞ rather than s. Then the ‘‘corrected” moments are
lcorr

j ð~tÞ ¼ ljð~tÞ=l
j
1ð~tÞ, where, obviously, lcorr

1 ð~tÞ � 1. The higher mo-
ments lcorr

2 ð~tÞ, l corr
3 ð~tÞ, and lcorr

4 ð~tÞ are displayed as the thick curves
in Fig. 7. These curves flatten considerably sooner than the thin
curves, and to a value �1/2, reminiscent of Eq. (A15). For these
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Fig. 7. Analytic results for the moments of the evolving TWD predicted by the (1D
continuum) Fokker–Planck theory: Plot of the effective exponential decay time of
the difference between the evolving second (solid, red), third (long-short-dashed,
black), and fourth (dashed, blue) moments of the solution to Eq. (1), P.¼2ðs;~tÞ, given
explicitly in the appendix in Eqs. (A12), (A16), and (A17), and their steady-state,
asymptotic values associated with Eq. (2). As in the KMC data in Fig. 6, the decay is
significantly slower for the higher moments. The thicker set of curves corrects for
the modest deficiency of the the first moment l1ð~tÞ; l1ð~tÞ is depicted in the inset
(upper left, italicized axes labels) and given analytically in Eq. (A13). See text for
details. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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curves, (s3 � s2)/s2 is somewhat over 0.1 while (s4 � s2)/s2 is about
twice as large, capturing the trend of the numerical data. If we use
the analytic expressions for the corrected moments as the rescaling
factors, then the time rescaling factors are 1.75 � 105, 1.9 � 105,
and 2.0 � 105, respectively. Then (s3 � s2)/s2 � 0.09 and (s4 � s2)/
s2 � 0.14, closer to the KMC values.

As detailed in the Appendix, all moments eventually approach
their saturation value by a term proportional to expð�~tÞ, the lead-
ing term of a power series in that exponential. Those higher-order
terms, which underlie the effective decay times we find in the
computed time regime, become insignificant eventually, but only
on a time scale several times that in the KMC simulations, when
the variance is relatively close to its saturation value. One might
speculate whether the characteristic time after which the higher
moments behave as expð�~tÞ corresponds to the time for which
one is close enough to equilibrium that two-bond-breaking pro-
cesses control the relaxation rate. Meaningfully addressing that
possibility, e.g. by scrutinizing N2 at times several times as great
as in our reported simulations, is beyond the scope of our
simulations.

Accounting for the skewness and the kurtosis poses a more dif-
ficult test for our kinetic Monte Carlo simulation of our model. Due
to the interplay of several moments in computing these statistics,
our numerical data is not adequate to test these predicted behav-
iors meaningfully. Such analyses are arguably the most stringent
tests, in which we seek differences from random-walk, Gaussian
behavior; they corroborate the conclusion above that the surface
never fully equilibrates. Far more extensive computations might
clarify this matter, but are beyond the scope of our present
analysis.

5. Comparison with Gruber–Mullins

To help place our approach in context, we compare it with pre-
vious approximations in the literature based on the fermion
description of the fluctuating steps. The celebrated Gruber–Mullins
(GM) approximation [26] considers a fluctuating step between two
fixed neighbors treated as rigid boundaries. In fermion language,
the step is the 1D trajectory of a quantum particle confined to
the segment (0,2hw i) by an infinite potential. Two cases are easily
treated: For non-interacting steps, the fluctuating step is then the
trajectory of a free fermion, and is equivalent to a classical particle
performing a random walk in a potential of the form [27]

VðxÞ ¼ �2 ln½sinðpx=2hwiÞ�: ð5Þ

Then s � w/hwi obeys the Langevin equation

_s ¼ pc
hwi2

1
tanðps=2Þ þ g: ð6Þ

This approximation preserves the logarithmic behavior of the repul-
sive potential at short range; even the amplitude is correct:
(2b.s � ./s)j.=2 = (8s/p � 2/s) in Eq. (1) is replaced by �pcot(ps/2),
nearly the same for s < 0.7. However, the GM potential has bogus
symmetry about hwi, truncating the long-range tail of P(s).

For strongly interacting steps, the fluctuating step feels an
(approximately) quadratic confining potential, and the TWD distri-
bution is predicted to be Gaussian [26]. In our formalism the
replacement is now ðs� 1Þ=r2

G, where r2
G is the variance of the

Gaussian TWD (so half the variance of the associated ground-state
wavefunction, which we used to construct the FP potential [27].)
This replacement should be compared with ð2b.s� .=sÞ �
ð.þ 1

2Þs� .=s [28]. In the GM approximation, r�2
G ¼ ½12.ð.�

2Þ�1=2, with (12)1/2 � 3.5 replaced by (2p4/15)1/2 � 3.6 if the
interactions with all steps rather than just the two bounding steps
are considered [28]. An improved approximation (‘‘modified
Grenoble”) gives r�2
G � 2:1. [28]. Our expression for the FP poten-

tial now differs at small s from that derived for these approxima-
tions because the Gaussians actually extend (unphysically, albeit
with insignificant amplitude) to negative values of s. Our approach
is globally superior to the celebrated GM approximation (as well as
to the usual alternatives [1]), both quantitatively and qualitatively,
for all physical values of the step–step interaction strength [29].
Moreover, our FP Eq. (1) is fully soluble, so that the TWD can be ob-
tained analytically as a function of time.
6. Summary

In summary, we have shown that the relaxation time of the var-
iance of the solution of our Fokker–Planck equation for step relax-
ation on a vicinal surface can be fit to the comparable variance in a
kinetic Monte Carlo simulation of the standard simple model of
atomistic processes at surfaces. This time has Arrhenius behavior
that is related to microscopic processes, substantiating that this
FP approach can offer useful physical insight into the evolution
of complex surface structures toward equilibrium. Thus, once the
continuum formalism becomes appropriate, the FP time in some
sense tracks actual time in our model of an evolving physical sys-
tem of steps with no energetic repulsion. The formalism also read-
ily allows such repulsions, inviting future simulations to test how
well the Fokker–Planck formalism describes such systems. Since
the steps communicate from the outset, the continuum formalism
might apply sooner. For the situation we have considered, we have
presented several pieces of evidence that the rate-determining
process in step relaxation is the creation of kink–antikink pairs,
distinctly different from the processes associated with step mean-
dering near equilibrium. We have also examined higher moments
of the distribution, both analytically and with simulations. While
we make no pretense that our approach is either exact or a formal
theory, we have shown that it can be a fruitful way to treat
relaxation of steps on surfaces. Many avenues of extension are
possible.
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Appendix. Derivation of Eq. (1) and some consequent results

In this appendix we expand the derivation of the Fokker–Planck
equation given in Ref. [2], as well as correct some algebra over-
sights in intermediate steps presented there. We also present some
simpler expressions for quantities of interest that arise for the case
of non-interacting [energetically] steps (. = 2) investigated in the
reported computations.

As in Ref. [2], we begin with the correspondence found by Dys-
on between RMT and his Coulomb gas model [8]: N classical parti-
cles on a line, interacting with a logarithmic potential, and
confined by an overall harmonic potential. Dyson’s model helps
our understanding of the fluctuation properties of the spectrum
of complex conserved systems. This model can be generalized to
the dynamic Brownian motion model, in which the N particles



6 For stationary initial distributions, Stratonovich proceeds by separation of
variables, finding the spatial eigenfunctions in terms of Laguerre polynomials. Taking
into account Stratonovich’s unconventional normalization of his Laguerre polynomi-
als and, eventually, removing the initial stationary distribution in his Eq, (4.77), we
can recapture Montroll and West’s [31] Eq. (3.32).

7 Specifically, Eq. (3.21) of Ref. [31] shows that the variance of the Gaussian
distribution is proportional to 1 � exp(�2t).
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are subject, besides the mutual Coulomb repulsions, to dissipative
forces [30]. The particle positions xi then obey Langevin equations

_xi ¼ �cxi þ
X
i–j

.̂
xi � xj

þ
ffiffiffiffi
C
p

g; ðA1Þ

where g is a delta-correlated white noise and .̂ (/.) is the ‘‘charge”
of each particle. The probability of finding the particles at the posi-
tions {xn} at time t is the solution of the multidimensional FPE

oPðfxng; tÞ
ot

¼
X

i

o

oxi

o

oxi
Pðfxng; tÞ þ cxiPðfxng; tÞ

� �

�
X
i–j

o

oxi

.̂
xi � xj

Pðfxng; tÞ
� �

: ðA2Þ

In the 1D case, c�1 would essentially be the variance of the station-
ary distribution. Narayan and Shastry [9] showed that the CS model
is equivalent to Dyson’s Brownian motion model, in the sense that
the solution of the FPE (A2) may be written as
P({xn},t) = w({xn},t)w0({xn},t), where w({xn},t) is the solution of a
Schrödinger equation with imaginary time, derived from the CS
Hamiltonian. The deterministic force of Eq. (A1)

FðxmÞ ¼ �cxm �
X
k>m

.̂
xk � xm

þ
X
q<m

.̂
xm � xq

ðA3Þ

so that

Fðxmþ1Þ � FðxmÞ ¼ �cðxmþ1 � xmÞ � .̂
�2

xmþ1 � xm

�
ðA4Þ

þ
X

k>mþ1

xmþ1 � xm

ðxk � xmþ1Þðxk � xmÞ

þ
X
q<m

xmþ1 � xm

ðxmþ1 � xqÞðxm � xqÞ

#
:

Our goal is to find the distribution of widths w. Mindful of the Gru-
ber–Mullins approach [26], we construct a single-‘‘particle,” mean-
field approximation in which the dynamical variable is the nearest-
neighbor distance wm � xm+1 � xm. To decouple the force on wm

from the other particles, we assume—in the spirit of GM—that the
denominators (xk � xm+1)(xk � xm) in Eq. (A4) are replaced by their
mean values, the average being taken in the stationary state:

hðxk � xmþ1Þðxk � xmÞist ¼ hw2istðk�m� 1Þðk�mÞ; ðA5Þ

Each of the two sums in Eq. (A4) then simplifies greatly, taking the
form

ðxmþ1 � xmÞ
hw2ist

�
XN

p¼1

1
ðpþ 1Þp ¼

N
N þ 1

!
N!1

1

 !
: ðA6Þ

Hence, the interaction of a particle pair with all other particles acts
on average as a harmonic potential, increasing the ‘‘spring constant”
of the external confining potential. We arrive at a single-particle
Langevin equation for the terrace width w:

dw
dt
¼ �2

c
2
þ .̂
hw2ist

� �
w� .̂

w

� �
þ

ffiffiffiffiffiffiffi
2C
p

g: ðA7Þ

Our goal is to convert Eq. (A7) into a FPE for which Eq. (2) is a stea-
dy-state solution. We change to dimensionless variables s �w/hwist

and ~t � Ct=hwi2st . Treating c as a self-consistency parameter and rec-
ognizing .̂ ¼ .C=2, we set c = C/hw2ist. Then the coefficient in
parentheses in Eq. (A7) becomes

ð1þ .ÞC
2hw2ist

¼ b.C

hwi2st

; ðA8Þ

using the second moment of P.(s) [hs2i = (. + 1)/(2b.)]. Furthermore,
if hg(t)g(t

0
)i = d(t � t

0
), then ~gð~tÞ �

ffiffiffiffiffiffiffiffiffi
2=C

p
hwistgðtÞ satisfies
h~gð~tÞ~gð~t0Þi ¼ dð~t � ~t0Þ. With these results, we recast Eq. (A7) into
the Langevin equation

ds
d~t
¼ � 2b.s� .

s

h i
þ ~g ðA9Þ

and thence the sought-after FPE given in Eq. (1).
To solve Eq. (1) we must specify the initial distribution in s0. For

an initial (at ~t ¼ 0) sharp distribution d (s � 1), corresponding to a
perfectly cleaved crystal, the solution is essentially written down
by Montroll and West [31,32]:6

Pðs;~tÞ ¼ 2~b.s
.þ1

2 e
ð.�1Þ~t

4 I.�1
2

2~b.se�
~t
2

� �
e�

~b.ðs2þe�~t Þ; ðA10Þ

where ~b. � b.=ð1� e�~tÞ. In the limit of long times, we showed in
Ref. [2] that, as ~t increases, this Pðs;~tÞ approaches P.(s) of Eq. (2).

For the particular case .=2, ~b. becomes 4=½pð1� e�~tÞ�, while
I1

2
ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpzÞ

p
sinhðzÞ. Then Eq. (A10) simplifies to

Pðs;~tÞ ¼ 2
3
2e3~t

4 s

p sin h
1
2ð~t2Þ

sinh
ð4=pÞs

sin h ~t
2

� �
0
@

1
A exp �4ðs2 þ e�~tÞ

pð1� e�~tÞ

" #
: ðA11Þ

In experiments, P(s) is generally characterized just by its variance
r2 � l2 � l2

1, which can be calculated from its second and first mo-
ments, l2 and l1, respectively:

l2ð~tÞ ¼
3p
8

u~t þ e�~t ¼ 3p
8
� 1

� �
ð1� e�~tÞ þ 1 ðA12Þ

l1ð~tÞ ¼
1
2

u
1
2
~t

exp
�4=p
e~t � 1

� �
þ 1þ 8

p
� 1

� �
e�~t

	 

!ð~tÞ

� �
ðA13Þ

where, for brevity, we take u~t � 1� expð�~tÞ, which obviously ap-
proaches unity exponentially from below. Furthermore, we write
!ð~tÞ � ðp=4Þ expð~t=2Þerfð2=½pðexpð~tÞ � 1Þ�1=2Þ, where erf is the error
function [33]; !ð~tÞ also approaches unity exponentially, but from
above, after rising initially from p/4 to about 1.01.

Scrutiny of Eq. (A13) reveals that each of the two summands in
the square brackets approaches 1 for large ~t. As ~t approaches 0, the
first summand vanishes while the second rises to 2. Thus, l1ð~tÞ has
the expected value for vanishing and large ~t, as illustrated in the
inset of Fig. 7. There is, however, an initial rapid drop, reaching a
minimum of about 0.9745 around ~t ¼ 0:582, and then rising
smoothly, reaching 0.99 by ~t ¼ 1:95, 0.995 by ~t ¼ 2:685, and
0.999 by ~t ¼ 4:33. The small deviation from unity is presumably
due to the approximations in using Eq. (A5) to reach Eq. (A7),
which apparently break the symmetry of the fluctuations of the
steps (m and m + 1) bounding wm [34].

To the extent that this deviation is negligible (and in any case
for qualitative purposes), we get

r2ð~tÞjl1�1 ¼ r2
W ð1� e�~tÞ: ðA14Þ

If we numerically evaluate r2ð~tÞ using Eqs. (A12) and (A13), we find
a similar expression but with a more rapid rise to the equilibrium
result; remarkably, it is well approximated by

r2ð~tÞ ¼ r2
W ð1� e�2~tÞ: ðA15Þ

reminiscent of the solution of the Fokker–Planck equation for a
Brownian particle in a quadratic potential.7 In any case, the Arrhe-
nius behavior of the characteristic time of the exponential will not
be affected by such modest changes in the prefactor.
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If the Fokker–Planck description of step relaxation is robust,
then the higher moments of Pðs;~tÞ should also characterize those
moments extracted from the KMC data, as displayed in the text
in Fig. 6. Thus, we present explicit analytic formulas for the third
and fourth moments:

l3ð~tÞ ¼
1
2

e�~tu1=2
~t
þ 5p

16
u3=2

~t

� �
exp � 4=p

e~t � 1

� �

þ 4
p

e�2~t þ 3u~te
�~t þ 3p

16
u2

~t

� �
!ð~tÞ ðA16Þ

� p
2
� 3p� 8

4

� �
e�~t � 1� 3p

16
� 4

5p

� �
e�2~t þ Oðe�3~tÞ ðA16aÞ

� 1þ p
2
� 1

� �
ð1� e�~t=T3 Þ ðA16bÞ

l4ð~tÞ ¼
15p2

64
u2

~t þ
5p
4

e�~tu~t þ e�2~t ðA17Þ

¼ 15p2

64
� 5p

32
ð3p� 8Þe�~t þ 1� 5p

32
þ 15p2

64

� �
e�2~t ðA17aÞ

� 1þ 15p2

64
� 1

� �
ð1� e�~t=T4 Þ ðA17bÞ

In the long-time limit, l2ð~tÞ, l3ð~tÞ, and l4ð~tÞ all asymptotically ap-
proach their limit lj(1) from below as e�~t , as shown explicitly in
Eqs. (A16a) and (A17a) and by quick inspection of Eq. (A12). Indeed,
all moments should approach their asymptotic limit in this way,
since we can expand Eq. (A11) in its entirety as a power series in
e�~t . Such a more detailed exploration of the crossover to the

asymptotic limit is beyond the scope of this paper.
We also can write approximate expressions for l3ð~tÞ and l4ð~tÞ

in Eqs. (A16b) and (A17b) in the form of the exact result for l2ð~tÞ
in Eq. (A12). By setting T3 ¼ T4 ¼ 1 one obtains a mediocre approx-
imation which underestimates l3ð~tÞ and l4ð~tÞ by as much as 6%
and 15%, respectively. A far better accounting is obtained by taking
T3 � 0:79 and T4 � 0:76; the best values of these time constants de-
pends weakly on the temporal range over which one seeks to opti-
mize the agreement. The approximate expressions then
underestimate the actual ljð~tÞ (by at most 2% and 3%) up to
~t � 3=2 and then overestimate it (by at most 1

2 % and 1%), respec-
tively. Thus, l3ð~tÞ and l4ð~tÞ can be well described by curves start-
ing rising smoothly from unity and decaying exponentially toward
their long-time limit, but with values of tj that are smaller than
unity. Evidently the time regime relevant to the KMC simulations
is before the (single-term) asymptotic limit. Finally, note that the
approximate expressions based on Eqs. (A16b) and (A17b) are
not used in the analysis of the moments in Section 4.2; hence,
the values of the Tj play no role there.

From these results the skewness can be expressed analytically
but has an unwieldy form. However, it is semiquantitatively de-
scribed by 0.4857 tanhð~tÞ (i.e., to within ±4% for ~t P 0:46 and with-
in a percent for ~t P 1:9). In other words, the skewness rises
smoothly and monotonically from 0 initially to the equilibrium va-
lue. Since for large ~t, tanhð~tÞ � 1� 2 expð�2~tÞwe find the same ap-
proach to saturation as for the variance in Eq. (A15). The kurtosis
begins at 3 but dips (to about 2.87 near ~t ¼ 0:5) before rising to
its equilibrium value of 3.1082. The approach to this asymptotic
value is well approximated by 3:11ð1� 0:58e�2~tÞ.
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