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ANALYTIC FORMULAS FOR THE ORIENTATION DEPENDENCE
OF STEP STIFFNESS AND LINE TENSION: KEY INGREDIENTS
FOR NUMERICAL MODELING*
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Abstract. We present explicit analytic, twice-differentiable expressions for the temperature-
dependent anisotropic step line tension and step stiffness for the two principal surfaces of face-
centered-cubic crystals, the square {001} and the hexagonal {111}. These expressions improve on
simple expressions that are valid only for low temperatures and away from singular orientations.
They are well suited for implementation into numerical methods such as finite element simulation of
step evolution.
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1. Introduction. Study of stepped crystalline surfaces offers an exquisite combi-
nation of questions of fundamental physical interest and importance for technological
development. These surfaces play a central role in the modern electronics industry,
where they serve as templates in the computer chip manufacturing process. The
ability to model and quantify the evolution of such surfaces and ultimately engineer
surface structures over a wide range of length and time scales will be essential for
designing the next generation of computer chip components [1]. Even on the flattest
of surfaces, e.g., Si(111), steps are inevitable on the submicron scale due to minor
misorientations from facet directions. For metallic surfaces, steps appear on the scale
of 100nm. In some cases they provide a mechanism of stress relief [2].

In applications to electronics, template surfaces are often grown epitaxially: ma-
terial, usually in the form of atoms or molecules, is sputtered onto a crystalline sub-
strate; the goal is to grow layer by layer with as few defects as possible. Many excellent
books discuss this general problem from a variety of perspectives (e.g., [3, 4, 5]). If one
starts with a flat surface, growth begins at random nucleation sites. Islands expand
around these sites. Eventually the boundaries of the islands meet. If the atoms in two
abutting islands are in different domains, then a domain wall forms between them.
Such walls persist during growth and cannot readily be annealed away. Instead, it is
advisable to begin with a substrate that is intentionally slightly misoriented (typically
by a few degrees) from flat, high-symmetry orientation. Such surfaces are called “vic-
inal,” since they are in the vicinity of the facet orientation. They consist of a series
of atomically flat terraces, separated from one another by surface steps—boundaries
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where the surface height changes by an atomic unit. Ordinarily the adsorption energy
of a deposited atom is greatest at the crease at the lower edge of a step, since there
it can bind to the largest number of other atoms. Thus, if the temperature is high
enough so that the atoms diffuse relatively rapidly and the flux low enough, the atoms
will be more likely to attach to the step edge than to meet another deposited atom
to form a nucleation center on a terrace. Then, in this regime of “step-flow growth,”
the steps will gradually move across the terrace until, after deposition of a monolayer,
the surface looks very similar to the initial vicinal surface, only with one more layer.

Since steps play such a fundamental role, it is crucial to understand their proper-
ties and especially to clarify the few basic parameters that determine their behavior.
The lowest-energy excitation of a stepped surface is the kink, a unit deviation perpen-
dicular to the mean direction of the step. Since the energy to create an isolated atom
or vacancy defect on a terrace is several times that to create a kink, kinks are the
predominant defect on equilibrated surfaces at low temperatures. While these kinks
cost energy, they contribute to the entropy in the usual way, so that in equilibrium
this competition leads to the step free energy per length 3, or line tension.! In an
expansion of the projected free energy per area of a vicinal surface (i.e., the surface
free energy per area of the vicinal surface projected onto the terrace plane), 3 is the
coefficient of the density of steps. (At the roughening transition of the terrace plane,
[ vanishes and the projected free energy per area becomes quadratic in the density
of steps; the vicinal surface is in this technical sense rough already at the lower tem-
peratures under consideration.) In other words, the line tension indicates the extra
energy associated with a unit length of a step.

Steps need not run along high-symmetry directions; i.e., the surface normal (or
azimuthal misorientation) can be at an arbitrary polar angle 6. Furthermore, the
border of a single-layer island (or vacancy island) is just a step that is a closed curve—
somewhere between circular and polygonal—rather than a nearly straight line. The
celebrated Wulff construction [11] uses 5(6) to determine the equilibrium crystal shape
that minimizes the free energy at constant area.

The thermal excitation of kinks along the step leads to meandering. Such fluctu-
ations are constrained by the stiffness 3(6) = 5(0) + " (0), which weights the squared
slope of the step relative to its mean direction (7, 8, 9]. (There is an analogy between
the ensemble of spatial configurations of the steps in two dimensions and the world
lines of particles evolving in one dimension; in this picture, the deviation of the slope
is analogous to velocity, and so the wandering corresponds to kinetic energy, with
stiffness playing the role of mass.) Furthermore, it is the stiffness that weights the
curvature in the Gibbs-Thomson term, the curvature contribution to the step or in-
terface energy. Thus, in many ways 3(6) is more fundamental than $(6) and in some
situations is better defined [12].

Accordingly, stiffness is one of the three parameters of the step continuum model,
which retains distinct steps but coarse-grains them into continuous “strings.” The
other two parameters are the strength of the inverse-separation-squared repulsion
between steps and the characteristic rate of the mechanism dominating step kinetics.
Then, at the mesoscopic scale, such surfaces can be envisioned as a collection of steps
separating atomically flat terraces and effectively tracing out surface contour plots.
By tracking the net movement, fluctuations, and interactions of steps, the evolution

1Line tension and step free energy per length are equivalent here, since the surface is maintained
at constant (zero) charge, but not in an electrochemical system, where the electrode potential ¢ is
fixed rather than the surface charge density conjugate to ¢ [10].
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of the entire surface can be monitored. The actual motion of atoms—at much smaller
length and time scales—which underlies this behavior appears only in the parameters,
which can be estimated from either calculation (or measurement) of atomic processes
or by fitting to data at the mesoscale. This idea, at the heart of the step-continuum
model [6], turns out to be an extremely efficient way of tracking surface evolution
over a wide range of experimentally relevant length and time scales. This picture
has been used to successfully account for a broad range of step properties, such as
mound decay, step and island fluctuations, cluster diffusion, electromigration, and
ripening [6]. Since one can never be certain of including all significant atomistic-scale
processes, the most meaningful test of the step continuum model is the check that
the same set of parameters describes quantitatively all these varied phenomena. One
can then return to the microscopic picture, invoke a simple model, and fit the key
model parameters as effective values to reproduce the mesoscopic behavior. If reliable
energetic calculations give agreement with these predictions, all the better.

In this paper we concentrate on the two densest, highest-symmetry faces of an
fee crystal, namely {100} and {111}, which have square and hexagonal symmetry,
respectively. (For {111} surfaces, if one imagines adsorption into both kinds of three-
fold sites [fcc and hep|, one has a honeycomb. This feature is unimportant for what
we consider here.) Late transition and noble metals have fcc crystal structure and
make good substrates for the sorts of experiments envisioned here, since they are
relatively soft, with atomic motion occurring adequately for equilibration at room
temperature or somewhat higher. As the close-packed Bravais structure, there is less
angular dependence on bonding, making near-neighbor models better approximations
than for bee metals. Note that {100} and {111} faces of all cubic Bravais crystals
have square and hexagonal symmetry, respectively. So does Si and other systems with
the diamond structure.

If one assumes that step adatoms interact with only nearest neighbors (NNs) or
next-nearest neighbors (NNNs), then it is possible to derive exact solutions for the line
tension based on the Ising or solid-on-solid (SOS) models. These solutions are implicit,
however, making their implementation into numerical simulations time consuming
and computationally demanding, particularly when dealing with the stiffness, which
requires two additional derivatives of the implicit line tension. For simplicity, then,
numerical studies often [13, 14, 15] (though by no means always [16]) assume an
isotropic line tension and stiffness. Except at high temperatures where an island
structure is nearly circular, this approximation turns out to be poor, especially near
facet orientations, where the line tension is notably smaller, and would be much
smaller if there is a quasi-straight edge (two-dimensional “facet”—at macroscopic
scales the island is rounded at finite temperature [17]). For the stiffness, the problem
is more severe, since 3”(0) is large near these special directions (though not infinite
as it would be in three dimensions), leading to a stiffness much greater than the value
at general orientations. Since it is easier to compute 5(6') in such high-symmetry
directions, such values have been used to characterize /;(9) at general 6, thereby
considerably overestimating the typical stiffness.

The next-simplest approximation assumes a sinusoidal variation reflecting the
substrate symmetry [18]. Again, there are shortcomings to this procedure, especially
near facet orientations, about which polar plots of the line tension as a function
of angle reveal sharp, cusp-like minima, implying the stiffness blows up (since the
curvature of a cusp is infinite). Such temperature-independent simplifications preclude
quantitative comparisons with experiment [19]. ~

In this paper we construct expressions for 3(0) and 3(6) that are well behaved
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analytically, being continuous and twice differentiable, and that give an accurate ac-
counting at all orientations and relevant temperatures. For convenience, all derived
formulas are summarized in Table 5.1. While not especially simple, they are straight-
forward to construct and easy to implement in numerical codes such as used in finite
element investigations [20, 21, 22], making quantitative comparisons with dynamic
experiments possible. We thus expect our results to be widely applicable.

Our approach begins with simple, low-temperature formulas for the orientation
dependence, on fcc surfaces, of the {001} and {111} stiffness and line tension that
we derived in two recent papers [23, 24]. (This approach is rooted in the lattice-gas
perspective, and so it is complementary to Shenoy and Ciobanu’s study of stiffness
anisotropy based on elasticity theory [25].) Our formulas assume the step fluctuations
are dominated by the rearrangement of geometrically forced kinks—kinks that are
not thermally activated. At temperatures low compared to the surface roughening
temperature (for noble metal surfaces, such as Ag and Cu, room temperature is
considered “low”), the formulas fail only for steps having a negligible number of
forced kinks, that is, steps oriented very close to the high-symmetry direction. When
the step angle is exactly 0° (aligned with the high-symmetry direction), the formulas
predict a cusp in the line tension and an infinite step stiffness. Here we correct
for the nonanalytic behavior by splicing our simple, low-temperature formulas with
small-angle expansions of the exact, implicit solutions based on the Ising and SOS
models.

In the following section, we describe the details of a general expansion for the
stiffness and line tension that is continuous and twice differentiable. In sections 3
and 4, we apply this expansion to fec {111} and {001} surfaces, respectively, to derive
surface-specific formulas for the stiffness and line tension. In the final section, we offer
concluding remarks as well as a synopsis of the derived expressions.

2. Explicit analytic approximation. At the microscopic level, the step stiff-
ness and line tension arise from the energy and rearrangement of step-edge kinks.
It is therefore natural to decompose () and () into two contributions: one part
originating from geometrically forced kinks and one part from thermally activated
kinks. Geometrically forced kinks, depicted in the inset of Figure 2.1, are present at
all temperatures and give the step an overall orientation 6. The further 6 is from
the high-symmetry direction, the greater the number of geometrically forced kinks.
Thus, at lower temperatures, as long as the orientation angle of a step is greater than
some small, temperature-dependent cross-over angle 6., there are many geometrically
forced kinks and relatively few thermally activated kinks, suggesting ﬁ(@) and (3(9)
can be well described by formulas based on geometrically forced kinks alone.

As an example, we have recently derived [23] a remarkably simple, low-temperature
formula for the {111} step stiffness assuming only NN adatom interactions and geo-
metrically forced kinks:

(2.1) kBT, sin(9)
5o~ 2v3

At sufficiently low (but experimentally relevant) temperatures, the formula works
well for steps at nearly all angles but predicts an infinite stiffness when 6 = 0. For-
tunately, the exact, implicit solution based on the NN Ising model can be explicitly
written for steps having this orientation. We can therefore expand the exact solution
about § = 0 and splice it with our low-temperature solution at ., thereby producing
an explicit form for [;’(9) valid at all angles. This idea is illustrated in Figure 2.1.
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Fic. 2.1. (Color online). The contributions to the step stiffness can be decomposed into parts
originating from geometrically forced kinks (lower blue region bounded from above by the line labeled
“low-T”) and thermally activated kinks (the remaining red region, bounded from above by the line
labeled “exact”). At relatively low temperatures, the {111} step stiffness is well approzimated at an-
gles greater than 6. by a relatively simple, explicit function f(0), since the thermal part is evidently
insensitive to angle. To account for all angles, the formula can be spliced with a small-angle expan-
sion of the exact NN Ising model solution (from which explicit forms for the stiffness can be obtained
at 0 = 0 and at w/6, depicted here by hollow circles). The solution at w/6 is used to determine A.
The expansion coefficients ay, are obtained by matching the solutions at = 0 and 0.. The inset
depicts a step edge from above. Each square represents an adatom which is part of the step edge.
The uppermost square represents a thermally excited adatom, which forms four thermally-activated
kinks. The remaining kinks are geometrically forced—they must be present to give the step edge an
overall angle 6.

Here, an additional orientation-independent contribution to the stiffness from ther-
mally activated kinks A is also included for completeness. Similar to high-symmetry
steps, the stiffness of maximally kinked steps (6 = 7/6) can be exactly obtained from
the NN Ising model, so that A can be determined explicitly.

To generalize this approach, we assume () and 5(0) are well described at angles
greater than 6. by simple, analytic functions representing contributions from geomet-
rically forced kinks. Explicit forms for these functions [23, 24] will be discussed later.
For now, to be general, we simply write them as f(6).

At sufficiently low temperatures, 6. is small, and so we may accurately repre-
sent (3(6) and the inverse stiffness 3’1(0) at angles less than 6. using small-angle
expansions. (We expand the inverse stiffness because, in the § = 0 limit, it vanishes
at low temperatures, making it mathematically better behaved than the stiffness it-
self, which diverges.) Specifically, we construct an approximant X (6) to represent
the dimensionless form of the function we wish to expand—either 3(0)a) /(kpT) or
kBT/(B(G)aH), where )| is the close-packed distance between atoms (i.e., the atomic
diameter), and kpT is the Boltzmann energy—and we define

2N-1
n " 'f (&)
22) X(6) = ;)a 0" ifo <0
1(6) if 0> 0,.

To fully specify this function, we must find the appropriate expansion coefficients, a,,.
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We obtain their values by matching (2.2) and its higher order derivatives with the
exact solutions at @ = 0 (which can be systematically obtained) and the approximate
(yet accurate) solutions obtained from f(f) at 6 = 0., analogous to performing a
spline fit [27]. Specifically, for the boundary conditions at § = 0, we have

(2.3) an =

L X'(O), n < N,

n

where 05 X (0) = 0" X (0)/06™|9=o. The remaining N coefficients are found from the
boundary conditions at 6 = 6., which form a set of N coupled linear equations:

2N-1

YL' —m m
(2.4) > manag =95 f(6.),
n=N )

where m =0,1,2,...,N — 1.

For use in continuum models, /3 (#) should be continuous and twice differentiable.
To ensure the second derivative remains continuous at 6 = 0., this requires, at mini-
mum, N = 3. In this case, (2.4) is simultaneously solved to give

20(f = X) = 8f 0.+ (/" — 3X") 02

(2.5) az = 209 ,
—30(f — X))+ 14f" 6, — (2f" — 3X") 62

(2.6) ay = ( ) 363 ( ) ,
12(f — X) —6f 0.+ (f" — X") 6>

(27) as = ( ) 2 002 ( ) c’

where the prime represents differentiation with respect to 6; for brevity we write
f = f(f.) and X = X(0). Note we have also used (2.3), which implies ag = X,
ap = X', and as = X"”/2. Because both the line tension and the stiffness are con-
tinuous and symmetric about 6§ = 0, we know that a; = X’ = 0. In the remaining
sections we apply this approximation to specific cases where explicit forms for X and
f can be obtained.

3. {111} surfaces with NN interactions. For {111} surfaces with only NN
adatom interactions, Zia found an implicit form for the full orientation dependence
of the step line tension [26]:

T T
,f;; = m(0)un (6, 7) +1-(0)2 <a, 7) ,

where n9(0) = (2/v/3)sin(0), n+(0) = cos(f) + (1/v/3)sin(f). Here T. is the criti-
cal temperature of the NN lattice-gas model. The ¢’s are solutions of the pair of
simultaneous equations for the angular constraint,

sinh(tpy — §¢2) cosh($1) _ o
sinh(¢y — S¢1) cosh(ypy) — m_

and the thermal constraint,

(3.1)

(3.2)

2 _
(3.3) coshtpy + cosh)g + cosh(¢y — 1ho) = 31273,



96 T. J. STASEVICH AND T. L. EINSTEIN

where y = /(32 +1)/2(1 — 2) and z = 37 7/T. The latter can be rewritten z =

exp(—2e¢x/kpT), where € is the energy of a kink on a close-packed step and

€L o
(3.4) P ok In V3.

From (3.2), (3.3) it follows that

(3.5) 01(0) = %@(0) — cosh™! (“%1) .

With 41 (0) and 12(0) in hand, we can differentiate the constraints, (3.2), (3.3), set
0 = 0, and systematically solve for all the higher order derivatives of the 1’s, which,
according to (3.1), are sufficient to find the higher order derivatives of 3. We will
utilize these higher order derivatives to derive explicit, analytic approximations for
the stiffness and line tension.

3.1. Step stiffness. In this case, X (0) = kBT/(ﬂN(Q)aH)7 which is six-fold sym-
metric for {111} surfaces with only NN adatom interactions. To utilize our explicit
analytic approximation, we require f(6)—the contribution to the reduced stiffness
from geometrically forced kinks—which, in the first sextant (—m/6 to 7/6), takes a
relatively simple form [24]:

2
(3.6) f(0) = % <sin(36) + \/% _ 1) i

The last two terms, called A in Figure 2.1, are included to ensure f(6) matches the
exact solution for steps with orientation angle § = 7/6. The physical origin of the A
terms is the thermal fluctuations of a maximally kinked step. Such fluctuations are
relatively inexpensive in terms of energy. They dominate the fluctuation contribution
while a significant fraction of the step is not close-packed, so that the thermal con-
tribution for such orientations is relatively independent of orientation. Since only the
first term has any 6 dependence, f’ and f” are simple to calculate.

Now only X and its first two derivatives need to be determined. As mentioned in
the preceding section, these can be systematically determined. In particular, we find
(see eq. (23) for a derivation of X in our earlier paper [24])

(3.7) Y= kT _ 3y—1)
aB0)  2y\/y* -2y -3

(3.8) X' =0,

(3.9) X7 y> — 2y% — 15y + 36

S 2y —1)VR -2y -3

Of course, based on symmetry, we already knew that X' = 0.

By combining the functional forms for f and X and their derivatives with (2.2)—
(2.7), we can plot the stiffness and compare it to the numerically evaluated exact
solution. We show this comparison in Figure 3.1, where 6. was determined at a
variety of temperatures by doing least square fits to the exact solution. The agreement
shown in Figure 3.1 is very good at low temperatures and is quite reasonable at
temperatures all the way up to 7./5. (This behavior is remarkable, since slightly
above T,/5.5, 0. becomes greater than 30°; i.e., the power series is used for the entire
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Fic. 3.1. (Color online). In the left plot, the orientation dependence of our explicit approzi-
mation for the {111} step stiffness (solid lines) and its inverse (inset, solid lines) are compared to
the ezact, implicit solutions (symbols). Because of the siz-fold symmetry of the solution, only the
positive half of the first sextant is shown (the negative half is mirror-symmetric). The right plot
shows the values used for 0. (solid dots) in the construction of the left figure and the corresponding
exponential fit (solid line), good over the temperature range of interest. The fit is expressed in terms
of the kink energy ey, which is related to Te by (3.4). The inset shows the sum of squared vertical
deviations (Y X?) versus angle in a least square fit for 6.. At each temperature, 0. is the angle that
minimizes this sum.

range of orientations. Once |6.| > 30°, the slope of kBT/(ﬁ(G)aH) no longer vanishes
at 30°.) At higher temperatures, the angular dependence becomes negligible, and so
B(6) become isotropic.

The right plot in Figure 3.1 shows the values used for 6., along with an exponential
fit:

(3.10) 6c(T) ~ 11.2 exp(—ex /kpT) = 642[°](v/3)~T/T.

The second form uses the units in Figure 3.1, reexpressing the prefactor in degrees
and the exponent in T;./T. The Arrhenius decay reflects the importance of thermally
activated kinks for 0] < 0.

3.2. Step line tension. We follow the same procedure for the line tension.
In this case X(0) = 3(0)a)/kpT. Corresponding to the T = 0 divergence of the
stiffness at § = 0 is a cusp in the line tension, indicating a facet in the equilibrium
shape. At finite T the cusp, like the divergence, vanishes, since a facet on a two-
dimensional structure corresponds to one-dimensional long-range order. Specifically,
the contribution (in the first sextant) to the line tension from geometrically forced
kinks is fairly simple [23]:

(3.11) f0)=—nyInz—nplnng +n-Inn_ 4+ nolnn.

Just as for the stiffness, we systematically determine X and its first two derivatives
by differentiating the exact solution, (3.1)—(3.5),

_ b0 g (vt
(3.12) X = kT 2 cosh 5 )
(3.13) X' =0,
2 _ —
(3.14) X7 VY -2y =3 \/3?/(21?;3 '
=

The last equation can be rearranged to find the reduced stiffness at 8 = 0, as expressed
earlier in (3.7). With these parameters in hand, we compare our approximation for
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Fic. 3.2. (Color online). The orientation dependence of the explicit approzimation for the
{111} line tension (solid lines) is compared with the numerically evaluated exact result (symbols).
Because of the siz-fold symmetry, only the positive half of the first sextant is shown. (The negative
half is mirror-symmetric.)

the full orientation dependence of the reduced line tension with the exact, numerically
evaluated solution in Figure 3.2. For the critical angle, we use (3.10). As before, the
fit works remarkably well at temperatures as high as T,/5.

4. {001} surfaces with NN and NNN interactions. For {001} surfaces
with just NN interactions, an exact, explicit form for the full orientation dependence
of the line tension was first determined by Abraham and Reed [28]. For such surfaces,
however, NNN interactions are often significant [23|, and so it is desirable to find a
solution including their effects. We denote by R the ratio of NNN to NN adatom
interaction strengths; the latter is assumed to be attractive (negative), and so a
positive R indicates that the NNN interaction is too.

Although no exact solution to the Ising model with both NN and NNN interactions
exists, the SOS model provides an excellent approximation at reasonable temperatures
(~ T./2 based on our comparisons with the imaginary path weight random-walk
method developed by Akutsu and Akutsu [30]). This model can be solved exactly [23],
yielding the following implicit form for the reduced line tension:

BO)ay,

(4.1) T [p(0)sin 6 + g(p(0))] cos b,

where p(6) is found by inverting

2sinh p sinh S

(42) tanf = (cosh S — cosh p) [2sinh S — (cosh S — cosh p)(y + 1)]”

while g(p) is

(4.3) o(p) = S—n <E 2 sinh § > .

y—1 +17ycosthcoshp

Here y =1-22% S = —(R+1/2)Inz, z = (14 v2)72%/T = exp(—2¢;, /kpT), while
T, is the critical temperature for R = 0 (just NN interactions):

(4.4) k;kT =In(1+v2),
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where the kink energy e, now refers to a close-packed step on an {001} surface. We will
utilize the exact, implicit solution equations (4.1)—(4.3) to determine the parameters
required to find an explicit approximation for the stiffness and line tension below.

4.1. Step stiffness. To begin, we let X (0) = kBT/(ﬁ(G)aH). The symmetry of
{001} surfaces require X () be four-fold symmetric. Accounting for just geometrically
forced kinks, the reduced inverse stiffness is well approximated in the first quadrant
(—m/4 to w/4) for 0] > 6. by the following function [23]:

(45) £y = 20

By differentiating (4.5), f" and f” are easily obtained.

To determine X, X', and X" (and, potentially, any higher order derivatives), we
utilize the exact solution of the NNN SOS model. Equation (4.2), for example, implies
that po = 0 when 6 = 0. With some effort, it can be shown that

1 — ysin(20).

(4.6) - 2sinh S
’ " (cosh S —1)[2sinh S — (cosh S — 1)(y + 1)]’
(4.7) X' =0,
v 12coshS+1  fcoshS—1y+1
(“48) X = X coshs 1 SN

As required by symmetry, X’ = 0.

Combining the functional forms for f, X, and their derivatives with (2.2)—(2.7),
we can plot the inverse step stiffness and compare it to the numerically evaluated
exact solution, just as before. We show this comparison in Figure 4.1, where 0. was
determined by doing least square fits to the numerically evaluated exact solution (with
R =1/5). The agreement shown in Figure 4.1 is excellent at low temperatures and is
very reasonable at temperatures all the way up to 7,/5, as was the case for the {111}
solution.

Although it was not initially obvious, the relative size of the NNN interaction R
has little effect on .. This fortuitously implies that a single 6. works for all values of
R, as depicted in the lower plots of Figure 4.1.

With this in mind, the values used for 6. were determined just as they were for the
{111} case but with R = 1/5. These are shown in the upper-right plot of Figure 4.1,
as well as a simple fit that is accurate over the temperature range of interest:

(4.9) 0(T) ~ 6.72e~+/*5T = 385[°](1 + v2) T/,

As for (3.10), the second form uses the units in Figure 4.1, reexpressing the prefactor
in degrees and the exponent in 7./7. Again, the Arrhenius decay is anticipated,
since 6. represents the angle below which thermally activated kinks on close-packed
segments become important.

Finally, we point out that the {001} step stiffness is much more anisotropic than its
{111} counterpart. In fact, at Tt /6 the anisotropy is as large as the {111} anisotropy at
T./9. Furthermore, 6. is less sensitive to temperature than its {111} counterpart. This
follows from the relative ease of thermally activating kinks on {111} steps, requiring
only the breaking of one NN bond, as compared to two for {001} steps. For {111}
steps, then, the angle 6, below which thermally activated kinks become important is
larger than for {001} steps.

However, there is no need to include an “off-angle” correction A as was needed
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Fic. 4.1. (Color online). In the upper-left plot the orientation dependence of the explicit ap-
prozimation for the {001} step stiffness (solid lines), and its inverse (inset, solid lines) are compared
to the ezact, implicit solutions (symbols). Because of the four-fold symmetry of the solution, only the
positive half of the first quadrant is shown (the negative half is mirror-symmetric). The upper-right
plot shows the values used for 0. (solid dots) in the construction of the upper-left figure and the
corresponding exponential decay fit (solid line), good over the temperature range of interest. The fit
is expressed in terms of the kink energy ey, which is related to T, by (4.4). The inset shows the sum
of squared vertical deviations (Y. X?) versus angle in a least square fit for Oc. At each temperature,
0. is the angle that minimizes this sum. The two lower plots show the {001} inverse stiffness for a
variety of different R at two temperatures, Tc/9 and Te/5 (the extremum of the temperature range
of interest). Notice that for a given temperature, all curves align at an angle greater than the largest
critical angle 07"%F. This behavior means 6., practically speaking, does not depend on R at these
temperatures.

for the {111} case, at least in the case of just NN interactions (R =0, y = —1). In
that case one can readily find the difference between the stiffness of the exact result
(29, 30] and f(7/4) from (4.5):
(4.10)

1 . QﬂsinhQ(ek,/kBT)

Ao = —= -1 =t
V2 | /1 - dsech? (e /kpT) tank® (e, /k5T) cosh(2ex/kpT) — 3

Over the range of temperatures of interest here, numerical evaluation shows Ajgq is
negligible.

4.2. Step line tension. We proceed as usual, letting X () = 3(0)a) /kpT. The
contribution from geometrically forced kinks is found by solving the low-temperature
form of (4.2), which becomes quadratic in e?~%. Solving gives

s_ V1= ysin(20) + ysinf — cos 0
(14 y)sind '

(4.11) e~
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Fic. 4.2. (Color online). The orientation dependence of the explicil approzimation for the
{001} line tension (solid lines) is compared with the numerically evaluated exact result (symbols).
Because of the four-fold symmetry, only the positive half of the first quadrant is shown. (The negative
half is mirror-symmetric.)

Plugging this into (4.1) yields an excellent approximation f(6) for the reduced line
tension X () valid in the first quadrant (—m/4 to m/4) for |6] > 6.:

(1—vy) (sin@ + cosf — W)

(I4+vy) (si110 —cosf + \/W)
m—&-ysmé’ —cos 6

(I+y)sind

(4.12) f(0) =cosf | S+1In

+sinf | S+ In

Differentiating twice straightforwardly gives f" and f”. Equation (4.12) can be written
more compactly by defining and inserting w(6,y) = [cos6 — \/1 — ysin(26) | /sin®,
as done in Table 5.1.

This leaves X and its derivatives. They too can be explicitly determined from the
exact solution. Setting both § =0 and p =0 (as (4.2) demands) in (4.1), we find X:

X =9(0)
y+1 2 sinh S
41 —5-1 ‘
(4.13) s Il(y—l+1—ycosh5—l
Similarly, it can be shown that
(4.14) X' =0,
(4.15) X (cosh § —1)[2sinh § — (cosh S —1)(y +1)] X

2sinh S
This last equation can be rearranged to give the reduced step stiffness, as previously
written in (4.6).

By combining the functional forms for f and X and their derivatives with (2.2)-
(2.7), we can plot the reduced line tension and compare it to the numerically evaluated
exact solution. We show this comparison in Figure 4.2, where 6, was determined from
(4.9) and R = 1/5 (other values yield equally good agreement). As before, the approx-
imation works well at temperatures up to 7. /5 (and, in this case, perhaps even higher).

5. Summary and concluding remarks. We have constructed explicit, twice-
differentiable approximants for the full anisotropy of step stiffness and line tension
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TABLE 5.1
(Color online). Summary of results for approzimants of dimensionless inverse stiffness and
line tension. X = X(0), while f = f(0.); B = (kgT) ™', the subscript needed to distinguish it from
the line tension. The upper part of the table (dark red) refers to the steps on the hexagonal-lattice
face, with just NN interactions. The lower part (blue) refers to the square-lattice face; by setting
R =0, one retrieves the simpler formulas for just NN interactions.

EXPLICIT APPROXIMATION FOR STIFFNESS & LINE TENSION

’ " _q " 2
2N-1 a0 = X, az = 20(f—=X)—8f 2tng(f —3Xx") ec’
> an 07, 0<0e, , 2F_ax!h 62
X ={ = 4 =0, = —30(f—X)+14f290C;(2f ~3x") 02
1(0), 0> 0. _ X" 12(f=X)=6f 0. +(f"—X"") 62
02="3, = 203

{111} Surfaces with NN interactions

1 0[] =642 e Pk, 2 =3"Te/T =208k y=./(3241)/2(1 — 2)
Stiffness (X (0) =~ kBT/a”é) Line tension (X (8) = a||8/ksT)
_3w-l) 9cosh—1(¥=L
X T cosh™(%57)
,, y®—242—15y+36 29Vy2-2y=3 ¢
X 2(y—1)vy?—2y—3 3(y—1)
1 : 3442 *
10 33 (sm(SB) + \/ﬁ - 1) —n4+In(zny) +n—Inn_ +nolnmno
2sinh S _ y+l | 2  sinh§
X (cosh S—T)[2 sinh S—(cosh S—1)(gF1)] S-In (#*1 Tty 005115*1)
1 2cosh S41 osh S—1 y41 (cosh S—1)[2sinh S—(cosh S—1)(y+1)]
X Y e[t +x] X
sin (s - . g (A—y)(A+w(0,y))
£(0) Q20 /T =y sin(20) cosd [$+In (TG ]
ol v @]
+ sin 6 [b+ln §E=n) }

T {001} Surfaces with NN and NNN (= R X NN) interactions

27

T, S=(1+2R)Bpe, y=1-2zF

0.[°]=385 e~ Bk, z=e 208k =(14++/2)"

*n+ = cosb + % sin6, no = % sin 0 fw(8,y) = cot 6 — csc0/T—ysin(20)

on both {001} and {111} surfaces of fcc crystals, the metallic systems that have
been subjected to the greatest scrutiny with regard to island properties [4, 31]. Our
expressions are accurate over a broad range of experimentally relevant temperatures;
they fail only when the stiffness is nearly isotropic, i.e., when their use is no longer
required. Implementation into continuum simulations is straightforward and efficient.
They are much more usable than numerically extracting solutions from the underlying
sixth-order equations, and more flexible and convenient than constructing immense
look-up tables as functions of angle and temperature from such a procedure. Our
expressions are greatly superior to conventional explicit formulas for step stiffness and
line tension, which usually take the form of simple sinusoidal variation that neither
carry temperature dependence nor accurately capture the anisotropy (extreme for
the step stiffness) observed at lower temperatures. For clarity and convenience, we
summarize our results in Table 5.1.

We have implemented these formulas into state-of-the-art finite element simula-
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tions [20, 21, 22], where we have tested them by numerically determining the equilib-
rium shape of two-dimensional islands at various temperatures [32, 33]. Explicitly, this
is done by finding the shape that minimizes the chemical potential (proportional to
the product of the step curvature and stiffness) of a single, island-bounding step. We
have also used these simulations to model island relaxation from an arbitrary shape
to the equilibrium shape and are currently using them to model recent experiments
monitoring the relaxation of depinned Ag(111) steps [32, 33].
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