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ABSTRACT A history is given of the applications of the sim-
ple expression generalized from the surmise by Wigner and also
by Ibach to extract the strength of the interaction between steps
on a vicinal surface, via the terrace width distribution (TWD).
A concise guide for use with experiments and a summary of
some recent extensions is provided.

PACS 68.35.Md; 05.40.-a; 68.37.Ef

1 Introduction

Measurement of the terrace width distribution
(TWD) P̌(�) of vicinal surfaces is now used routinely to find
the dimensionless strength Ã of the elastic repulsion between
steps. The University of Maryland [1] and the Forschungszen-
trum Jülich [2] have been at the vanguard of this progress.
Use of an extension of the Wigner surmise from random ma-
trix theory has resolved ambiguities on how best to estimate
Ã from the variance. This paper discusses the history of this
development and the crucial role played by Harald Ibach in
divining from physical insight an analytic expression for the
TWD associated with the special case Ã = 0 that is essentially
the same as the simple expression that Wigner surmised de-
scribes (albeit, ultimately, not exactly) the distribution of the
energy differences of adjacent levels in a nucleus when the
coupling has unitary symmetry. This insight spawned my long
collaborative effort with FZ Jülich to develop generalizations
appropriate to arbitrary vicinal surfaces and to corroborate
the viability of the resulting formulation to account for ex-
tensive experimental data. In addition to a personal history
of this progress (with a few new results), I collect (with en-
hancements) in one place several tables from publications
and present a concise “User’s Guide” for applying the for-
malism and a short discussion of some recent developments,
e.g., for azimuthally misoriented vicinal surfaces and for non-
equilibrium situations. Space limitations preclude fuller dis-
cussions or an authoritative update on experimental progress.
Three of the four figures are heretofore unpublished. Also
interwoven are comments stimulated by several penetrating
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questions, many by Harald Ibach, that arose during talks I
gave in Germany that forced me to sharpen my thinking.
These are topics typically skirted in publications as being
well-established, but my experience is that they are not gen-
erally well understood. The use of “we” below is not a polite
affectation but instead reflects the crucial role played by my
many collaborators in this extended series of studies.

To set the stage (cf. Fig. 1), the direction perpendicular
to the terraces (which are densely-packed facets) is typically
called ẑ. In “Maryland notation” the normal to the vicinal sur-
face lies in the x–z plane, and the distance � between steps is
measured along x̂, while the steps run along the ŷ direction.
In the simplest and usual approximation, the repulsions be-
tween adjacent steps arise from two sources: an entropic or
steric interaction due to the physical condition that the steps
cannot cross, since overhangs cannot occur in nature. The sec-
ond comes from elastic dipole moments due to local atomic
relaxation around each step, leading to frustrated lateral relax-
ation of atoms on the terrace plane between two steps. Both
interactions are proportional to 1/�2.

FIGURE 1 Plots of generic lattice configurations and associated TWDs, to
illustrate essential features, as discussed in text, of steps on a vicinal surface
(with no energetic interactions). Top left: “perfect” cleaved crystal. Top right:
straight steps placed randomly, corresponding to a strictly 1D model. Lower
left: meandering steps in a TSK model. Lower right: TWDs P(s) associated
with these distributions. The downward arrow emphasizes the greatly de-
creased chance of finding steps at very small separation when they meander,
as compared to straight steps, due to the entropic repulsion
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FIGURE 2 Illustration of how entropic repulsion and energetic interac-
tions combine, plotted vs. the dimensionless energetic interaction strength
Ã ≡ aβ̃/(kBT)2. The dashed straight line is just Ã. The solid curve above it
is the combined entropic and energetic interactions, labeled Ãeff for reasons
explained below. The difference between the two curves at any value of the
abscissa is the dimensionless entropic repulsion for that Ã. The decreasing
curve, scaled on the right ordinate, is the ratio of this entropic repulsion to
the total dimensionless repulsion Ãeff. It falls monotonically with Ã, pass-
ing through unity at Ã = 0. See the discussion accompanying (16) for more
information and explicit expressions for the curves

To illustrate the essence of P̌(�), we consider in Fig. 1 its
shape for 3 idealized configurations. There is just one char-
acteristic length in the x̂ direction, namely the average step
separation 〈�〉. (Contrary to widespread misconception, 〈�〉
need not be a multiple of, or even simply related to, the sub-
strate lattice spacing. It is the step height times cot ϕ, where ϕ

is the arbitrary misorientation, as shown in Fig. 1.) Therefore,
we consider P(s) = 〈�〉−1 P̌(�), where s ≡ �/〈�〉, a dimension-
less length. For a “perfect” cleaved crystal, P(s) is just a spike
δ(s −1). If, as intrinsic to 1D models, the steps are imagined
as uncooked spaghetti dropped at any position with probabil-
ity 1/〈�〉, P(s) is a Poisson distribution exp(−s). Actual steps
do meander, as one study most simply in a terrace-step-kink
(TSK) model. In this model, the only excitations are kinks
(with energy ε) along the step. (This is a good approximation
at low temperature T since adatoms or vacancies on the ter-
race cost several ε [4ε in the case of a simple cubic lattice].
The entropic repulsion due to step meandering dramatically
decreases the probability of finding adjacent steps at � � 〈�〉.
To preserve the mean of one, P(s) must also be smaller than
exp(−s) for large s.

If there is an additional energetic repulsion A/�2, the mag-
nitude of the step meandering will decrease, narrowing P(s).
As A → ∞, the width approaches a delta function. Note that
the energetic and entropic interactions do not simply add. In
particular, there is no negative (attractive) value of A at which
the two cancel each other. Thus, for strong repulsions, steps
rarely come close, so the entropic interaction plays a smaller
role, while for A < 0, the entropic contribution increases, as
illustrated in Fig. 2 and worked out in detail below.

2 History

Investigation of the interaction between steps on
vicinal surfaces is a core part of the flourishing field of ex-
ploring the properties of these technologically important and
scientifically rich systems, as discussed in several excellent

reviews [1–3]. The earliest studies seeking to extract A from
TWDs used the mean-field-like Gruber–Mullins [4] approxi-
mation, in which a single active step fluctuates between two
fixed straight steps 2〈�〉 apart. Then the energy associating
with the fluctuations x(y, t) is

∆E = −β(0)L y +
L y∫

0

β(θ(y))

√
1 +

(
∂x

∂y

)2

dy , (1)

where β is the step free energy per length (or line tension [5]1)
for a step at orientation θ relative to the mean direction of the
step (and the direction of the fixed, bounding steps), and L y is
the size of the system along the mean step direction (i.e., the
step length with no kinks). We expand β(θ) as the Taylor se-
ries β(0)+β′(0)θ + 1

2 β′′(0)θ2 and recognize that the length of
the line segment has increased from dy to dy/ cos θ ≈ dy(1+
1
2 θ2). For close-packed steps, for which β′(0) = 0, it is well
known that (using θ ≈ tan θ = ∂x/∂y),

∆E ≈ β̃(0)

2

L y∫

0

(
∂x

∂y

)2

dy , β̃(0) ≡ β(0)+β′′(0) , (2)

where β̃ is the step stiffness [6]. Most treatments gloss over
the fact that the stiffness has the same definition for steps with
arbitrary in-plane orientation. The key point is that to cre-
ate such steps, one must apply a “torque” [7] which exactly
cancels the linear term β′(0)θ . Stasevich [8] provides a more
formal proof.

Since x(y) is taken to be a single-valued function that
is defined over the whole domain of y, the 2D configura-
tion of the step can be viewed as the worldline of a particle
in 1D by recognizing y as a time-like variable. Since the
steps cannot cross, these particles can be described as 1D
fermions. We also see from (2) that in the (1 +1)D formula-
tion, ∂x/∂y → ∂x/∂t, with the form of a velocity, so that the
stiffness plays the role of a mass; indeed, it serves as the in-
ertial parameter of steps in this fermion perspective (though
not with regard to actual dynamics in response to external
forces [9]). Moreover, stiffness is one of the three ingredients
of the very-successful step-continuum model [1].

Pursuing this analogy for polymers in 2D, de Gennes [10]
showed nearly four decades ago that this problem could be
mapped into the Schrödinger equation in 1D, with the thermal
energy kBT replacing h. Then in the Gruber–Mullins approx-
imation [4], the step with no energetic interactions becomes
a particle in a 1D infinite well of width 2〈�〉, with well-known
groundstate properties

ψ0(�) ∝ sin

(
π�

2〈�〉
)

; P(s) = sin2
(πs

2

)
; E0 = (πkBT)2

8β̃〈�〉2
.

(3)

Thus, it is the kinetic energy of the ground state in the quantum
model that corresponds to the entropic repulsion (per length)

1 Line tension and step free energy per length are equivalent here since
the surface is maintained at constant (zero) charge, but not in an electro-
chemical system, where the electrode potential ϕ is fixed rather than the
surface charge density conjugate to ϕ.
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of the step. In the exact solution for the free energy expansion
of the equilibrium crystal shape [11], the numerical coeffi-
cient in the corresponding term is 1

6 rather than 1
8 . Note that

P(s) peaks at s = 1 and vanishes for s ≥ 2.
Suppose, next, that there is an energetic repulsion U(�) =

A/�2 between steps. In the 1D Schrödinger equation, the
prefactor of −∂2ψ(�)/∂�2 is (kBT)2/2β̃; hence, A only en-
ters the problem in the dimensionless combination Ã ≡
Aβ̃/(kBT)2 [12]2. In the Gruber–Mullins picture, the potential
(per length) experienced by the single active particle is (with
�̌ ≡ �−〈�〉):

Ũ(�̌) = Ã

(�̌−〈�〉)2
+ Ã

(�̌+〈�〉)2

= 2 Ã

〈�〉2
+ 6 Ã�̌2

〈�〉4
+ 10 Ã�̌4

〈�〉6
+ . . . (4)

The first term is just a constant shift in the energy. For Ã suf-
ficiently large, the particle is confined to a region |�̌| � 〈�〉,
so that we can neglect the fixed walls and the quartic term, re-
ducing the problem to the familiar simple harmonic oscillator,
with the solution:

ψ0(�) ∝ e−�̌2/4w2 ; PG(s) ≡ 1

σG
√

2π
exp

[
− (s −1)2

2σ2
G

]
, (5)

where σG = (48 Ã)−1/4 and w = σG〈�〉.
For Ã of 0 or 2, it turns out, as we shall see, that the TWD

can be computed exactly. For these cases, (3) and (5), re-
spectively, provide serviceable approximations. It is (5) that
is prescribed for analyzing TWDs in the most-cited resource
on vicinal surfaces [1]. Indeed, it formed the basis of initial
successful analyses of experimental STM data [13]. However,
it has some notable shortcomings. Perhaps most obviously, it
is useless for small but not vanishing Ã, for which the TWD
is highly skewed, not resembling a Gaussian, and the peak,
correspondingly, is significantly below the mean spacing. For
large values of Ã, it significantly underestimates the variance
or, equivalently, the value of Ã one extracts from the ex-
perimental TWD width: Ihle et al. [14] point out that in the
Gruber–Mullins approximation the TWD variance is the same
as that of the active step, since the neighboring step is straight.
For large Ã the fluctuations of the individual steps on an actual
vicinal surface become relatively independent, so the variance
of the TWD is the sum of the variance of each, i.e., twice
the step variance. Given the great (quartic) sensitivity of Ã
to the TWD width, this is problematic. As experimentalists
acquired more high-quality TWD data, other approximation
schemes were proposed, all producing Gaussian distributions
with widths ∝ Ã−1/4, but with proportionality constants no-
tably larger than 48−1/4 = 0.38.

For the “free-fermion” ( Ã = 0) case, Joós et al. [15] de-
veloped at the beginning of the 1990’s a sequence of analytic
approximants to the exact but formidable expression [16, 17]
for P(s). The procedure is based on a discrete version of
the problem, representing the fermion-like steps in terms of
second-quantized operators and taking note that the TWD is

2 This expression assumes that β̃ does not depend on Ã.

not just a pair-wise step-step correlation function but actu-
ally a many-particle correlation function in which we demand
that no step lie between the steps at 0 and �. The nth ap-
proximant behaves well at smaller s but eventually passes
through 0 around s = n and then behaved non-physically. Spe-
cifically, the leading behavior of each approximant is 1 −
[sin(πs)/(πs)]2 ≈ 1

3 (πs)2. In the asymptotic region, a differ-
ent approach shows leading behavior for large s is P(s) ∝
s7/4 exp[− 1

8 (πs)2], where the proportionality constant has the
numerical value ∼ 9.46. (The analytic form is in [15].) This
expression works to surprisingly small s, reproducing the
peak semi-quantitatively. (It would have gone to even smaller
s than indicated in Fig. 4 of [15] had the two leading asymp-
totic corrections not been included!) Finally, [15] as well as
a slightly earlier paper [18] draw the analogy between the
TWD of vicinal surfaces and the distribution of spacings be-
tween interacting (spinless) fermions on a ring, the Calogero–
Sutherland model [19–22], which in turn for three particular
values of the interaction – in one case repulsive ( Ã = 2), in
another attractive ( Ã = − 1

4 ), and lastly the free-fermion case
( Ã = 0) – could, astonishingly, be solved exactly by connect-
ing to random matrix theory [17, 23, 24]; Fig. 5 of [15] depicts
the three resulting TWDs.

This was the state of affairs when H. Ibach presented me
(seemingly sometime during his sabbatical stay in College
Park during 1996–1997) with Fig. 3, in which he achieved
outstanding agreement with [numerical approximation visu-
ally indistinguishable from] the exact solution by plotting
what essentially amounts to

P2(s) = 32

π2
s2 exp(− 4

π
s2) , (6)

where the subscript of P refers to the exponent of s, and the
pair of numerical factors ensure that the distribution is nor-
malized and has a mean of one. He challenged me to explain

FIGURE 3 The graph for the expression deduced by H. Ibach for the TWD
of steps with no energetic repulsion (solid curve), essentially (6) surmised by
Wigner, while the points are generated using the formalism for the approxi-
mants, given in [15]
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his insight, and Fig. 3 graced my office wall, greeting me
each morning, for well over a year. Not hearing back from
me, he put the remarkable expression (albeit with some ty-
pos that obscured its potency) into [25]. On Feb. 2, 1998, Safi
Bahcall gave an intriguing condensed-matter seminar at Uni-
versity of Maryland on “Superconductivity and Random Ma-
trices” (cf. [26]). In subsequent discussions he rifled through
a preprint of Guhr et al.’s seminal review of random matrix
theory [27], and I spotted Fig. 12 therein, noting the similarity
to Fig. 5 in [15], as well as the accompanying discussion of the
Wigner surmise, their equation (3.50) being the first I had seen
of what will be (9) below.

The other two curves correspond to corresponding Wigner
surmises for those cases:

P4(s) =
(

64

9π

)3

s4 exp
(

− 64

9π
s2

)
; (7)

P1(s) = π

2
s1 exp

(
−π

4
s2

)
. (8)

In random matrix literature the exponent of s, viz. 1, 2, or 4,
is called β, due to an analogy with inverse temperature in one
justification. To avoid possible confusion with the step free
energy per length β or the stiffness β̃ for vicinal surfaces, we
have called it instead by the Greek symbol that looked most
similar, �. The Appendix offers transparent arguments on how
the three kinds of symmetry lead to the associate exponents 1,
2, and 4. As seen most clearly by explicit plots, e.g., Fig. 4.2a
of Haake’s text [28], P1(s), P2(s), and P4(s) are excellent ap-
proximations of the exact results for orthogonal, unitary, and
symplectic ensembles, respectively, and these simple expres-
sions are routinely used when confronting experimental data
in a broad range of physical problems [27, 28]. (The agree-
ment is particularly outstanding for P2(s) and P4(s), which are
the germane cases for vicinal surfaces: the variance is 1% be-
low and 0.4% above the exact values, respectively; for P1(s) it
is 4–1/2% below. This agreement is significantly better than
any other approximation (cf. Table 2 of [29]) and far better
than the Gruber–Mullins approximation, as depicted in Fig. 1
of [30], Fig. 1 of [31], and Fig. 2 of [32].)

With the values � = 1, 2, and 4, the three specific expres-
sions (6)–(8) comprising the so-called Wigner surmise [27,
28] can be written as a single formula

P�(s) = a�s� exp
(−b�s2) , (9)

where the constants b�, which fixes its mean at unity, and a�,
which normalizes P(s), are

b� =
⎡
⎣Γ

(
�+2

2

)

Γ
(

�+1
2

)
⎤
⎦

2

, a� =
2

[
Γ

(
�+2

2

)]�+1

[
Γ

(
�+1

2

)]�+2 = 2b(�+1)/2
�

Γ
(

�+1
2

) .

(10)

As noted above the Calogero–Sutherland model provides
a connection between random matrix results, notably the
Wigner surmise, and the distribution of spacings between
fermions in 1D interacting with dimensionless strength Ã.
Specifically,

Ã = �

2

(�

2
−1

)
⇔ � = 1 +

√
1 +4 Ã . (11)

For an arbitrary system, there is no reason that Ã should take
on one of the three special values. However, it seems impos-
sible to generalize the arguments in the Appendix to general
values. For our purposes, the obvious solution is to use (11) for
arbitrary � or Ã. Curiously, this form has not been applied in
conventional investigations involving RMT, but instead other
analytic phenomenological expressions, e.g., those proposed
by Brody [37]3 and by Izrailev [38]4 are used (cf. [27]). Such
applications typically involves mixtures of systems of two
of the symmetries; neither they nor other models involving
crossover between well-defined symmetries [39] are analo-
gous to systems based on the Calogero–Sutherland model for
arbitrary �.

For arbitrary � there is no symmetry-based justification of
distribution based on the Wigner surmise of (9). Nonetheless,
we have argued that it provides a viable, arguably optimal in-
terpolation scheme between the two special values of � and
also out to the Grenoble expression for nearly-infinite repul-
sion [30, 31]; we have also used it successfully to analyze
experimental data [31, 40, 41]. For brevity, we refer hereafter
to this set of formulas, (9) and (10) as the GWD (general-
ized Wigner surmise); elsewhere [29, 31, 41] we have called it
CGWD (continuum generalized Wigner distribution).

The moments of the GWD can be expressed simply in
terms of b�:

µ′
n ≡

∞∫

0

a�s�+n exp
(−b�s2) ds =

Γ
(

�+1+n
2

)

bn/2
� Γ

(
�+1

2

) . (12)

The variance σ2
W = µ2 = µ′

2 −1 of the GWD is then

σ2
W = �+1

2b�

−1 ≈ 1

2�
− 3

8�2
+ 3

16�3
− 7

384�4
+O(�−5) ,

(13)

for large values of �, as given in equation (A8) of [41]. Note
that b� cancels in the ratio:

µ′
n

(µ′
2)

n/2
=

Γ
(

�+1+n
2

)
(

�+1
2

)n/2
Γ

(
�+1

2

) . (14)

Similarly, the peak of p�(s) (i.e., its mode) occurs at

smax =
(

�

2b�

)1/2

≈ 1 − e−�

4
− 1

4�
. (15)

For the special values of �, the peak positions are tabulated in
Table 1. We further note that smax = 0.96, 0.97, and 0.98 occur
for � = 6.1, 8.2, and 12.4, respectively. When dealing with ex-
perimental data, such shifts from smax = 1 would be difficult to
distinguish.

While there are some formal justifications for the GWD as
an optimal description of TWDs for arbitrary Ã, arguably the
most convincing argument is a comparison of the predicted

3 pBro
q (s) = cqsq exp

(−cqq̂sq+1
)
, c = q̂Γ q+1(q̂), q̂ ≡ 1/(q +1).

4 pIzr
� (s) = A�s� exp

[−(π2�/16)s2 − (
B� −π�/4

)
s
]
.
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Property Case � = 0 � = 1 � = 2 � = 4 � → ∞
“Random” Attractive Non-interact Repulsive Extreme rpl.

Ã = �
2 (

�
2 −1) Ãeff = ( �

2

)2 = Ã + �
2 Ã = 0− Ã = −1/4 Ã = 0 Ã = 2 Ã = �2/4

Underlying H symmetry [Poisson] orthogonal unitary symplectic [SHO + phonons]

Variance Exact 1 0.286 0.180 0.1041 0+
σ2 = µ2 GWD: [(�+1)/2b�]−1 0.5708 0.2732 0.1781 0.1045 0.500�−1

= µ′
2 −1 GM (all):

√
15/8π4 .= 0.139 Ã−1/2 – – 0.1307 0.0981 0.278�−1

GM (NN): 1/
√

48
.= 0.144 Ã−1/2 – – 0.1307 0.1021 0.289�−1

Alternative G (all): 1
π

∫ 2π

0
1−cos ϕ
ϕ(2π−ϕ)

.= 0.247 Ã−1/2
eff – – – 0.1747 0.495�−1

estimate G (NN):
√

2/3π2 .= 0.260 Ã−1/2
eff – – – 0.1838 0.520�−1

of σ2 S: 2/π2 .= 0.203 Ã−1/2
eff – – 0.203 0.101 0.405�−1

Neighboring Exact cova (s1, s2) 0 −0.27 −0.31 −0.34
terraces Exact 〈(s1 + s2 −2)2〉 2 0.416 0.248 0.138 0+

Peak Exact 0 0.77 0.8840 0.941 1−
position GWD: (�/2b�)1/2 0 0.7979 0.8862 0.9400 1−0.250�−1

smax Gruber–Mullins – – 1 1 1

Skewness Exact 2 0.4972 0.350(1)
µ3/σ

3 = GWD: µ′
3 = (�+2)/2b� 0.9953 0.6311 0.4857 0.3542 0.707�−1/2

(µ′
3 −1)/σ3 −3/σ Gaussian Approx. – – 0 0 0

Kurtosis Exact 9 3.1 3.027(1)
µ4/σ

4 GWD: µ′
4/σ

4 = (�+3)/(�+1) 3.8691 3.2451 3.1082 3.0370 3+0.750�−2

Gruber–Mullins – – 2.4062 3 3

a Covariance of adjacent terrace widths: cov(s1, s2) ≡ 〈(s1−〈s1〉)(s2−〈s2〉)〉[
〈(s1−〈s1〉)2〉〈(s2−〈s2〉)2〉

]1/2 = σ−2[〈s1s2〉−1] = −1+〈(s1 + s2 −2)2〉/2σ2

TABLE 1 Tabulation of various measurable properties of terrace-width distributions P(s) [where s is the terrace width normalized by its average value]
based on exact results at the three soluble values of the dimensionless interaction strength Ã, the corresponding generalized Wigner distribution (GWD) ex-
pression, and the various Gaussian approximations: Gruber–Mullins (GM), modified Grenoble [14, 30, 33] (G), and Saclay [34](S). (In the original Grenoble
approximation [14, 33], σ2 ∝ Ã−1/2 rather than Ã−1/2

eff ≡ 2/�, but with the same prefactor as indicated in this table.) SHO ⇒ simple harmonic oscillator, i.e.
uniformly spaced steps (energies). The extreme case � = 0, for which exact results are trivial, is included to dramatize trends in � [35]6. As � increases,
the TWD becomes narrower, more symmetric, and more nearly Gaussian. Anticorrelations of neighboring terrace-width fluctuations increase. For the three
exactly-solvable (non-trivial) cases, the GWD provides an excellent approximation, far better than any alternative. [Adapted from [30], with most results for
the “Exact” case from [17, 27], with new evaluations for symplectic case from [36]]

variance with numerical data generated from Monte Carlo
simulations. We include in the comparisons some Gaussian
approximations (viz. approximation schemes which lead to
TWDs that are Gaussians), alluded to earlier, e.g., in Table 1.
For these the dimensional variance of the TWD must scale like
〈�〉2. The approximations differ in how the dimensionless part
depends on Ã. The approximation developed in Grenoble by
Ihle, Pierre-Louis, and Misbah [14, 33] focuses on the limit of
large �, neglecting the entropic interaction in that limit. While
the variance σ2 ∝ Ã−1/2, the proportionality constant is 1.8
times that in the Gruber–Mullins case (cf. Table 2). One im-
prove this approximation, especially for repulsions that are
not extremely strong, by including the entropic interaction in
an average way. This is done by replacing Ã by

Ãeff =
(�

2

)2 = Ã + �

2
. (16)

(cf. (11).) In this modified scheme, σ2 ∝ �−1.
The physical meaning of Ãeff has not been adequately dis-

cussed heretofore. It corresponds to the full strength of the
inverse-square repulsion between steps, i.e., the modification
due to the inclusion of entropic interactions. From (16) it is
obvious that the contribution of the entropic interaction, viz.
the difference between the total and the energetic interaction,

as discussed in conjunction with Fig. 2, is �/2. This quan-
tity, as noted then, depends sensitively on Ã. Note also that,
remarkably, the ratio of the entropic interaction to the total
interaction is (�/2)/(�/2)2 = 2/�; this is the fractional contri-
bution that is plotted in Fig. 2.

Barbier et al. at Saclay [34, 42–44] consider instead the
m-terrace width relative to m〈�〉, comparing the variance for
large m to the coefficient of ln m expected from roughening
theory, they conclude that σ2 = 4/(π2�), i.e., the same form
as the modified Grenoble approximation but with a propor-
tionality constant K that is 82% as large. This information is
summarized in Table 2. Note that for the Saclay and Wigner
approaches, one must assume all steps interact with an in-
verse square repulsion; for the others, one can treat either that
assumption or allow only nearest neighbors to interact ener-
getically.

In Fig. 4 we compare how well all these theoretical ap-
proximations account for the behavior extracted from a well-
controlled numerical experiment, Metropolis Monte Carlo
simulations [45] of a TSK model. For this model (with A = 0),
the characteristic distance between close approaches of neigh-
boring steps is [46]

ycoll = 〈�〉2β̃/4kBT = (〈�〉/2)2 sinh2(ε/2kBT) , (17)
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Vicinal T (K) σ2 � Ã W/G

Pt(110)-(1×2) [48] 298 2.2 0.13 –
Cu (19,17,17) [41, 49] 353 0.122 4.1 2.2 0.77
Si(111) [50] 1173 0.11 3.8 1.7 0.96
Cu(1,1,13) [25, 41] 348 0.091 4.8 3.0 1.27
Cu(11,7,7) [41, 49] 306 0.085 5.1 4 1.37
Cu(111) [41, 49] 313 0.084 5.0 3.6 1.39
Cu(111) [41, 49] 301 0.073 6.0 6.0 1.58
Ag(100) 300 0.073 6.4 6.9 1.58
Cu(1,1,19) [25, 41] 320 0.070 6.7 7.9 1.64
Si(111)-(7×7) [51] 1100 0.068 6.4 7.0 1.67
Si(111)-(1×1)Br [13] 853 0.068 6.4 7.0 1.67
Si(111)-Ga [52] 823 0.068 6.6 7.6 1.67
Si(111)-Al

√
3 [53] 1040 0.058 7.6 10.5 1.85

Cu(1,1,11) [34] 300 0.053 8.7 15 1.95
Cu(1,1,13) [25, 41] 285 0.044 10 20 2.12
Pt(111) [54] 900 0.020 24 135 2.59

TABLE 2 Compendium of experiments measuring the variances of terrace
width distributions of vicinal systems, as of the end of the last decade. The es-
timate of Ã is obtained from the (normalized) variance using (18), except for
the first-row entry, which is based on a direct fit using the 2-parameter GWD
(cf. 6th item of “User’s Guide”). W/G stands for the ratio of the estimates of
the interaction strength based on Wigner and Gruber–Mullins perspectives,
ÃW/ ÃG, as given in (19). (Condensed from [31])

which is about 35 at kBT/ε = 1/2 and 〈�〉 = 10, used in our
most extensive calculations. For A > 0, meandering is sup-
pressed, making this distance is larger. In most cases, we used
L y = 2000 � ycoll, and N = 100 steps7. We used a standard
high-quality random-number generator (Ran3 [47]) and aver-
aged over 100 runs using different initial seeds. In these runs
the variance reached its steady-state value after about 3000
MCS (Monte Carlo steps per site); we started “taking data”
after 104 MCS, recording results every 10 MCS until reaching
3 ×104 MCS [29].

The excellent agreement between the GWD expression
and numerical data generated with Monte Carlo simulations
is displayed in Fig. 4. The various predictions of the variance
are plotted vs. Ã. A logarithmic scale is used for the horizontal
axis so as not to give undue visual emphasis to larger values of
Ã nor to blur the region of rapid variation for small (but non-
vanishing) Ã, for which an exact calibration point exists. The
Wigner result is essentially given by (18). Table 2 shows that
the physical values of Ã range from near 0 up to the mid teens.
Some pathology is presumably involved in the rare cases in
which larger values are observed. There are relatively few re-
ports of small but non-zero values of Ã. A reason might well
be that any of the Gaussian approximations manifestly fail
in this regime, so that before the recognition of the utility of
the Wigner distribution, one could not deal quantitatively with
small Ã [48].

To heighten the contrast, the data in Fig. 4 can be replot-
ted (in Fig. 2b of [29]) using as the ordinate �( Ã)×σ2( Ã), so
that approximations for which σ2 ∝ Ã−1/2

eff become horizontal
lines. With such rescaling, then, the Saclay and the modi-
fied Grenoble (all steps interacting) predictions appear as
lines at ordinates 0.405 and 0.495, respectively (cf. Table 1).
The solid curve representing the GWD rises slowly, from
0.4 at Ã = 1 toward 1/2, capturing a similar rise of the MC
data.

7 For Ã = 50, we found it safest to increase to L y = 3000, N = 200.

FIGURE 4 The variance σ2( Ã) vs. Ã on a logarithmic scale, plotted for the
GWD (light solid curve) and for the various Gaussian approximations: the
modified Grenoble (short-short-long dashed for all steps interacting, short-
long dashed for NN step interactions only), Saclay (short-short-long-long
dashed line), and Gruber–Mullins (long dashed for all steps interacting, short
dashed for NN steps only). Monte Carlo data are shown as •’s, with statisti-
cal errors less than the size of the symbols. See text for discussion. (Fig. 2a
of [29])

3 User’s guide: Synopsis of findings

References [2] and [40] contain several figures
showing applications, to experimental TWDs, of the perspec-
tive discussed above. In the following we summarize several
specific ideas that should be of use in confronting data.

3.1 Interaction strength from variance

From (13) and (11), one can estimate the variance
from Ã, but experimentalists usually seek the reverse, meas-
uring the variance of the TWD and seeking to extract A. An
excellent estimate [41] of the GWD-predicted Ã from the
variance, based on series expansion of (13), is:

Ã ≈ 1

16

[
(σ2)−2 −7(σ2)−1 + 27

4
+ 35

6
σ2

]
, (18)

with all four terms needed to provide a good approximation
over the full physical range of Ã. The Gaussian methods de-
scribed earlier essentially use just the first term of this expres-
sion and adjust the prefactor.

3.2 Gaussian fits of the GWD

Since TWDs for strong repulsions are well de-
scribed by Gaussians, the GWD is well approximated by
a Gaussian in this limit. In [41] a quantitative assessment
is given of how closely the two distributions correspond as
a function of �. At the calibration point (for which an exact
solution exists) for repulsive interactions (� = 4), the relative
difference of the standard deviation of a Gaussian fitted to
P�(s) from the actual standard deviation of this GWD (viz.
the square root of the second moment of P�(s) about its mean
of unity) is ∼ 1%, and decreases monotonically with increas-
ing �. (The χ2, however, is poorer with a Gaussian than with
the GWD.) For this range (� ≥ 4) differences between esti-
mates of Ã obtained from GWD and the various Gaussian-fit
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methods come primarily from different philosophies of ex-
tracting Ã from σ rather than from differences in the fitting
schemes.

Gaussian approximations assume the peak (mode) is at
s = 1 (� = 〈�〉); in fact, since peak of the GWD must lie be-
low one to achieve a mean of one; the tabulations in Table 1
bear this out. Only to the extent that the mode is close to unity
is a Gaussian approximation reasonable. Formulas have been
derived [41] indicating the errors in fitting � due to errors in
the first or zeroth moment of the distribution. Another crite-
rion for the validity of the Gaussian fitting function is that the
TWD not be noticeably asymmetric about its peak, i.e., that it
be negligible for � > 2〈�〉.
3.3 Analyzing TWD skewness: unfulfilled hopes

When � is too small for the TWD to meet the crite-
ria for adequate fitting by a Gaussian, we hoped that one could
obtain reliable estimates of Ã by analyzing the skewness. Al-
though we tried a variety of formulas and schemes [30, 40], it
turned out that in the end a fit to the GWD was needed, so that
skewness did not offer a shortcut to �.

3.4 Correcting estimates based on Gruber–Mullins

When dealing with tabulations of data analyzed in
the traditional way [1] based on the Gruber–Mullins perspec-
tive, it is useful to recast (18) in a form that indicates the factor
by which the estimate ÃW based on GWD exceeds the tradi-
tional estimate ÃG:

ÃW/ ÃG[≡ AW/AG] ≈ 3 −21σ2 + 81

4
σ4 + 35

2
σ6 . (19)

Since Ã = Aβ̃/(kBT)2, the ratio of the physical interaction
strengths is the same as that of the dimensionless strengths.

3.5 Alternative: fitting with gamma distribution

Although the GWD is a simple, single-parameter
function, it is not a “canned” distribution and that one needs
to input gamma functions. For the smaller values of � when
a Gaussian is inappropriate, there is a preprogrammed func-
tion that is available: the gamma distribution

PΓ (x) = xα−1e−x/θ

Γ(α)θα
, (20)

is serviceable if one recasts the data in terms of x as s2; one
the can identify θ as b−1

� and, more importantly, α as (�+1)/2.
This approach has not yet been tested with actual data.

3.6 Wigner distribution as a 2-parameter fit

The GWDs giving the best fits of experimental
TWDs sometimes have first moments that differ somewhat
from the first moments of the data, especially in cases termed
“poor data” [40, 41] which exhibit a small “hump” at large
values of s, beyond the mode. Moreover, it may be desir-
able to determine the scaling length (the “effective mean”,
which equals the first moment for ideal GWDs) and the vari-
ance in a single fitting procedure rather than to predetermine

this length from the first moment. This “refined” scaling im-
plies that the argument of P� should be �/�̄, where �̄ denotes
the characteristic length determined along with � in a two-
parameter least-squares fit of the data to a GWD, leading to the
replacement8:

P�(s) → (〈�〉/�̄)P�(s〈�〉/�̄) , i.e. (〈�〉/�̄)P�(�/�̄) . (21)

In the specific applications to data for copper [31], 〈�〉/�̄ tends
to be greater than unity, typically by several percent, but it
is unclear whether this is true for semiconductors (or even
for other metals). In our Monte Carlo simulations [29], where
we have greater control of purity and uniformity than in ex-
periments, the optimal �̄ is essentially identical to 〈�〉: a two-
parameter fit is unnecessary.

3.7 Effects of lattice discreteness

For large values of Ã, the continuum picture breaks
down and one must confront the discreteness of the lattice
both in actual physical systems and in Monte Carlo simula-
tions. This problem is discussed extensively in [31] and [29]
but are not repeated here since the relevant values of Ã are
larger than found in many physical systems. By adapting the
celebrated VGL model [55], we have found [29] that the
roughening criterion translates to ÃR = 〈�〉4/6. Note that vic-
inal surfaces are rough, in contrast to the flat terrace orienta-
tion. Thus, for 〈�〉 = 3, e.g., when ÃR exceeds ∼ 14 (so above
the physical range), the vicinal orientation becomes a facet. In
some cases such as Si(113), the steps are exceedingly straight
and uniformly spaced, making them excellent templates for
growth of nanowires [56]. It is, therefore, likely that this sur-
face is a facet rather than a rough vicinal.

3.8 Estimate of number of independent measurements

In order to estimate uncertainties in the determin-
ation of the TWD and, ultimately, Ã, it is important to have
a realistic value of the number of independent measurements,
a number generally much smaller than the total number of
measurements. This problem is discussed in [41]. The upshot
is that the number of “independent” terrace widths is reduced
from L y N (the number of atomic spacings across the sampled
area along the mean step direction times the number of steps)
by up to nearly two orders of magnitude, due to slow decay
of correlations perpendicular to the steps. Thus, several STM
images are needed to obtain decent statistics.

4 New developments and directions
4.1 Pair correlation function

The TWD amounts to a many-particle correlation
function since one insists that there be no step between 0 and
� (or s). Instead one can study the step-step correlation func-
tion h�(s), essentially the probability of finding a pair of steps

8 Since s is still determined from the raw data as �/〈�〉, the refined scaling
translates into replacing s by s〈�〉/�̄ in the argument of the distribution.
If the integration variable s were similarly replaced, then the refined
scaling would amount to a redefinition of a dummy variable, normaliza-
tion would still be realized; however, the independent variable is kept as
s [31].
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separated by � regardless of how many steps lie in between.
Until � reaches ∼ 〈�〉 there is little difference between the two,
but then the pair correlation begins to rise and peak near 2〈�〉
and at subsequent multiples of 〈�〉, with a decreasing enve-
lope around the oscillations, so that eventually h → 〈�〉−1. For
fitting experimental data (in this case, Si(111) at 1100 ◦C),
we [57] used an asymptotic expression [58]

〈�〉h�(s) ∼ − 1

π2� s2
+2

∞∑
j=1

d2
j (�)

(2πs)4 j2/�
cos(2π js) ,

dj(�) = Γ

(
1 + 2 j

�

) j−1∏
m=1

(
2m

π�

)
Γ 2

(
2πm

�

)(
2m

�

)
, (22)

that works well for s > 1/2, better than the conventionally
used harmonic lattice approximation, since the conventional
“harmonic” approximation [59] is insufficiently accurate. For
smaller s we patched onto a�s�. While Ha [60] derived a gen-
eral exact solution for h�(s), it is computationally intractable.

4.2 Fokker–Planck

Recently, Pimpinelli et al. [9], starting from Dy-
son’s 1D Coulomb gas model and making plausible assump-
tions, derived a Fokker–Planck equation

∂P(s, t̃)

∂ t̃
= ∂

∂s

[(
2b�s − �

s

)
P(s, t̃)

]
+ ∂2

∂s2
[P(s, t̃)] , (23)

where t̃ ≡ t/τ , and the characteristic time τ is 〈�〉2 over the
squared strength of the noise in the underlying Langevin equa-
tion. The steady-state solution of (23) is the GWD. With
it we can describe with compact analytic expressions the
evolution toward equilibrium of steps from several experi-
mentally relevant initial distributions: perfect cleaved crystals
(P(s) = δ(s − 1) as in Fig. 1), step bunches, and prequench
equilibrated distributions at different temperatures (P�0(s)).
The decay time τ of the difference of variance of P(s, t) from
its saturation value, we have also found [61], can be related
to underlying atomistic processes in kinetic Monte Carlo sim-
ulations of the evolution of an initially constrained vicinal
surface.

These ideas have broad ramifications. In econophysics the
same formalism arises for the distribution of the means of
stock prices in the Heston model [62]. Similar behavior may
occur in precipation patterns at geothermal hot springs [63].

The argument [9] for (23) bolsters the formal justification
for the GWD, as does work by Richards et al. [64] that uses
a two-particle Calogero model [19, 20] (harmonically bound
interacting spinless fermions on a line).

4.3 Azimuthal misorientation

Most of the above has tacitly assumed that the steps
are close-packed or at least oriented along high symmetry
directions. For vicinal surfaces that are misoriented in the
azimuthal in addition to the polar orientation, there are com-
plications in applying the GWD formalism, particularly in
determining the dependence of Ã – ultimately of β̃ and A –
on in-plane misorientation θ . For β̃ we have made substan-
tial progress recently, again prompted by collaboration with

the Jülich group [65] and by persistent probing questions by
Ibach. For the {100} and {111} faces of fcc cubic crystals,
we have derived surprisingly simple formulas for the β(θ) and
β̃(θ) for low T (compared to the terrace roughening tempera-
ture) [66, 67]; in the case of Cu and other noble metals, this
criterion is easily satisfied for room T . For arbitrary T , we
have generated a more complicated analytic expression that is
straightforward incorporate in continuum simulations, in par-
ticular finite-element codes [68]. We have also carried out ab
initio calculations of the characteristic energies of the lattice–
gas models used to understand β̃(θ) for Cu, to insure that
these numbers are consistent with those estimated from ex-
periments using statistical-mechanics reasoning [69]. Fuller
discussion is beyond the limits of the article.

Much less is known about A(θ), but again the Jülich group
is at the forefront of these investigations [70]. Another im-
portant open is the relation between A and surface stress [71].
There has been no successful extension of the seminal theory
for isotropic substrates [3, 72] to account quantitatively for A
of a realistic surface [73].

5 Conclusion

The GWD has proved a powerful tool to link the
study of the step spacings on vicinal surfaces to very gen-
eral ideas of fluctuations. It is remarkable that H. Ibach could
deduce its form, for the A = 0 case, from physical insight.
His perspicacious graph (Fig. 3, spawned great progress in
understanding and exploiting the fluctuations of the spacings
between steps. Even if one chooses to fit with a Gaussian, the
theory of GWD provides the most reliable way to extract the
strength of the step repulsions from the TWD. In addition to
clarifying the equilibrium properties of steps, these ideas are
now helping us to understand non-equilibrium aspects, no-
tably the relaxation of steps toward equilibrium. Pimpinelli
and I are also actively investigating applications to various as-
pects of growth in surface and interface problems.
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Appendix

How the Hamiltonian symmetries
lead to the Wigner surmise exponents

This appendix, based on [74] (see also §4.3 of [28]), describes
how the exponents of s in (6)–(7) come about. For physicists,
random matrix theory is rooted in the study of energy eigen-
values in nuclear physics. As recounted beautifully in [27],
conventional statistical mechanics treats ensembles of identi-
cal physical systems with the same Hamiltonian but different
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initial conditions. In contrast, Wigner considered ensembles
of dynamical systems governed by different Hamiltonians H
having some common symmetry property and sought generic
properties of such ensembles associated with the symmetry.
Dyson extended this work to show that there are three sym-
metries of the matrices of the Hamiltonian: orthogonal (real
symmetric) matrices correspond to time-reversal invariance
with rotational symmetry, unitary (complex) matrices to vi-
olated time-reversal invariance (as for electrons in a mag-
netic field), symplectic (see (2.3) of [27], §2.4 of [17]) to
time-reversal invariance with broken rotational symmetry and
1/2-integer spin. Wigner then, for convenience, considered
Gaussian weightings,

p(H) ∼ exp[−bN tr(H2)] , (A.1)

with the idea that for large matrices the fluctuations of the
eigenvalues should be independent of the weight factors as
well as of the specific form of the level spectrum. (There is no
information about the average values.)

As described in [74], we start with the simplest case,
an orthogonal ensemble (β = 1) with N = 2 (just 2 par-
ticles), with H having diagonal elements h11 and h22, and
off-diagonal element h12(= h21). We focus on the Jacobean
associated with a change of variables for the Gaussian-
ensemble probability distribution function in going from the
joint probability distribution function p(E1, E2) for adja-
cent eigenenergies E1, E2 to P(s)ds; we define variables h̄ ≡
(h11 +h22) /2, u ≡ h11 −h22 and s ≡ (

u2 +4h2
12

)1/2 = |E2 −
E1|. Thus, E1,2 = h̄ ± s/2. We must now take into account all
possible matrix elements h11, h22, h12. From (A.1) and with
dh11 dh22 = dh̄ du,
∫∫∫

p dh11 dh22 dh12

=
∫

ds
∫∫

exp
[−2b(E2

1 + E2
2)

]
dh̄ du

∣∣∣∣ dh12

ds

∣∣∣∣ . (A.2)

Hence we can identify the inner double integral of
(A.2) as p(s). Since h12 = ±(1/2)(s2 −u2)1/2, |dh12/ds| =
(s/2)(s2 − u2)−1/2. Since E1,2 do not depend on u, we can
pull the exponential out of the integration over u, leaving the
elementary integral

(s/2)

s∫

−s

(s2 −u2)−1/2 du = πs/2 . (A.3)

Next, since 2(E2
1 + E2

2) = s2 +4h̄2, the integration over h̄ is
also elementary, and we are left with P(s) ∼ s exp(−bs2). This
exact result for N = 2 provides an excellent approximation for
large N as well. Indeed, near the level crossing (correspond-
ing to s → 0) the problem tends to reduce to a 2 ×2 problem.
The integral for P(s) over variables u and h12 includes in its
integrand a Dirac delta function δ

(
s −[u2 +4h2

12]1/2
)
, which

vanishes for s = 0 only when the two [squared] independent
variables do. Hence, P(s) ∝ s, corresponding to a circular
shell in parameter space, and we again have β = 1.

For unitary ensembles there is an additional independent
parameter since h2

12 becomes (Re h12)
2 + (Im h12)

2. Hence,

P(s) ∝ s2, corresponding to a spherical shell in parameter
space, i.e., β = 2. The argument for the symplectic ensemble
leads similarly – but via quaternions or Pauli spin matrices –
to β = 4.
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