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1LASMEA, UMR 6602 CNRS/Université Blaise Pascal–Clermont 2, F-63177 Aubière Cedex, France
2Department of Physics, University of Maryland, College Park, Maryland 20742-4111 USA

(Received 15 December 2006; published 27 November 2007)

In island nucleation and growth, the distribution of capture zones (in essence proximity cells) can be
described by a simple expression generalizing the Wigner surmise (power-law rise, Gaussian decay) from
random matrix theory that accounts for spacing distributions in a host of fluctuation phenomena. Its single
adjustable parameter, the power-law exponent, can be simply related to the critical nucleus of growth
models and the substrate dimensionality. We compare with extensive published kinetic Monte Carlo data
and limited experimental data. A phenomenological theory elucidates the result.
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In the active field of statistical mechanics applied to
materials, an important unsettled problem in morphologi-
cal evolution during epitaxial thin film growth [1] is char-
acterizing the statistical properties of nucleating islands.
The island-size distribution (ISD) is an important tool for
experimentalists, since simulations have shown it to be a
unique function of the size i of the critical nucleus (see
below), a quantity that describes the largest unstable clus-
ter. In particular, for over a decade the universal scaling
shape of the ISD has been investigated numerically with
kinetic Monte Carlo (KMC) simulations, but analytical
evaluation has proved elusive. Only rate equations [2,3]
or complicated (often implicit) expressions [4,5] have been
proposed.

A decade ago Mulheran and Blackman (MB) [4,6]
proposed subordinating the ISD to the distribution of areas
of Voronoi polygons (proximity—generalized Wigner-
Seitz—cells) built around the nucleation centers. Once
an island is nucleated, it efficiently captures most of the
adatoms diffusing within the capture zone (CZ), which
coincides roughly with its Voronoi polygon. This break-
through led to several investigations [1,3,5] that allowed
accurate prediction of the ISD for point islands, at the price
of performing extensive KMC simulations or of solving a
system of several coupled, nonlinear rate equations, which
is computationally as taxing as KMC. Hence, an empirical
functional form, proposed in Ref. [2], which fits KMC
results well, is still widely used to analyze data.

Since a gamma distribution describes the area distribu-
tion of a two-dimensional (2D) random Voronoi network
[7], MB [6,8] proposed it as an alternative description for
CZ distributions. The characteristic exponent [called � in
Eq. (6)] perforce increases from �3:6—the point-island
limit—dramatically (in an ill-defined way) as exclusion is
included [6], but with no succinct interpretation.

In this Letter, we propose a different approach. We show
that the generalized Wigner surmise (GWS) distribution, a
class of probability distribution functions rooted in random
matrix theory (RMT) [9,10], yields an excellent quantita-
tive description of the CZ size distributions for all values of

the critical-nucleus size i in published simulations. Thus,
this relatively mature subject can be related to universal
aspects of fluctuations. RMT savants will find it remark-
able that the signature exponent has atomistic meaning in
these nonequilibrium systems. A phenomenological argu-
ment suggests the physical origins of the GWS description.

RMT [9,10] successfully describes the fluctuations of
spacings in manifold physical systems, e.g., highly excited
energy levels of atomic nuclei, quantum chaos [11], cross
correlations in financial data [12], stepped crystal surfaces
[13], and even arrival time intervals between successive
buses in Cuernavaca [14] and distances between parked
cars [15]. The last example is analogous to our study: the
RMT-derived formula accounts for the data—in a system
with irreversible dynamics—at least as well as, usually
better than, more complicated ad hoc expressions devel-
oped over many years.

RMT applies to systems with special symmetries, rep-
resented by orthogonal, unitary, or symplectic matrices.
For such cases, the Wigner surmise (WS) P��s�,

 P��s� � a�s
� exp��b�s

2�; (1)

(cf. Fig. 1) provides a simple, excellent approximation for
the distribution of spacings [9,10]. Here s is the fluctuating
variable divided by its mean, and � is the sole WS pa-
rameter [16]—taking the values 1, 2, or 4, respectively.
The constants a� and b� are fixed by the normalization and
the unit-mean conditions, respectively [17].

The GWS posits that Eq. (1) has physical relevance for
systems not manifesting these symmetries, so having gen-
eral non-negative � [18], as in Dyson’s Coulomb-gas
model [19(a)] or the Calogero-Sutherland model of one-
dimensional (1D) fermions [19(b)–19(e)]. We show here
that the CZ distribution is excellently described by the
GWS with � � �2=d��i� 1�, where d � 1; 2 is the spatial
dimension (see Fig. 2). The GWS also describes the dis-
tribution of terrace widths on stepped surfaces [13,18],
where the step-repulsion strength determines �. As in
that case, the significance of applicability of the GWS is
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not so much the usually improved fit of data, but rather the
greater insight obtained.

The explicit dependence of � on dimension is a novel
feature of this study. Most other applications of RMT are
either essentially 1D or insensitive to d. While P1�s�
describes well the nearest-neighbor spacings between ran-
domly distributed points on a plane [11], GWS fits of
Voronoi tessellations of such points are not particularly
good [22,23]. For island nucleation, subtle correlations
between nucleation centers lead to a distribution of tessela-
tion cells (Fig. 2) described by the GWS.

Island nucleation is pictured as atoms deposited on a
substrate (at rate F) and then diffusing on the surface at
diffusion rate D (most properties depending only on D=F
[1]). When adatoms meet, they form bonds, whose lifetime

depends on temperature T. At low enough T, bonding is
virtually irreversible, so that an adatom pair is a stable—
and immobile—island, which grows only by capturing
other adatoms. A single adatom is then called a critical
nucleus; equivalently, the critical-nucleus size is i � 1 at
low T. At higher T a single bond will be broken before
other adatoms can be captured, so the critical nucleus will
be a larger cluster, whose size will depend on the surface
lattice symmetry, generally i � 2 or 3 on a (111) or (100)
surface, respectively [2,24].

We first test our approach on data computed by
Blackman and Mulheran [4] with KMC simulations of
the nucleation of point islands on a 1D substrate
[cf. Fig. 2(a)]. Since i � 1 then, we predict that the CZ
size distribution has the GWS form with � � 4. Figure 3
shows the results of their simulations, along with two
curves. The simple expression P4�s� accounts arguably at
least as well for the numerical data as the thin solid line,
from their statistical numerical calculation replacing the
solution of a complicated integro-differential equation.

Many authors have treated 2D deposition, diffusion, and
aggregation models extensively. MB [6] report KMC simu-
lations of growth of fractal islands (i � 1) and circular
islands (i � 1 to 3). For the circular islands we find very
good agreement between the data and the GWS using � �
�2=2��i� 1� [25(a)], with the trend for increasing i well
reproduced. Even better agreement is found between the
GWS Pi�1�s� and Mulheran and Robbie’s [5] more recent
KMC simulations of nucleation and growth of circular
islands for i � 0 and 1, as shown in Figs. 4(a) and 4(b),
again superior to their numerical-analytical theory [5].

FIG. 2. (a) Schematic for 1D (vertical). Black rectangles cor-
respond to 1D islands. Horizontal lines mark the midpoints
between the edges of two neighboring islands, with the CZs
defined as the resulting proximity cells (edge cells [1,20]). An
alternative definition, implicit in the point-island approximation,
uses the midpoint between the centers of islands, indicated by
dashed lines and leading to Voronoi cells. For islands (nearly) the
same size, the two (nearly) coincide; otherwise, edge cells have a
narrower distribution [21]. (b) 2D illustration of the islands
(approximated as circular) and the Voronoi polygons that bound
their CZ, from Ref. [6(b)].

FIG. 3 (color online). CZ size distributions for critical-nucleus
sizes i � 1 and d � 1. Symbols are from Fig. 12 of Ref. [4], for
various pairs of values of (D=F in units of 105, coverage in
monolayers) � (5, 0.11), � (5, 1.19), 4 (5, 12.65), � (50, 0.11),
� (50, 1.19). The thin curve is the theory prediction (requiring
an integration and fitting a free parameter) of Ref. [4]. The thick
(red) curve is the simpler P4�s�. The inset shows similar results
for distribution of gaps between point islands from Fig. 11 of
Ref. [4], with the added thick (red) curve giving P3=2�s�; its self-
convolution [4] [viz. 2
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FIG. 1 (color online). Plots of the GWS of Eq. (1) Pn�s�, n �
1; 2; 3; 4, of relevance in this Letter, indicated by long dashes
alternating with n short dashes, also P3=2�s�, indicated by the
long dashed, short dashed, dotted curve. The thin (blue) solid
curve shows the gamma distribution �7�s�, discussed later.
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Popescu et al. [26] also report extensive KMC simulation
data of irreversible nucleation (i � 1) of point, compact,
and fractal islands, but do not compute CZ size distribu-
tions. Their rate-equation approach was designed to de-
scribe island sizes and capture numbers, so it should not,
and does not [25], describe the CZ distribution well.

To understand why the CZ distribution is well described
by P��s� with � � �2=d��i� 1�, we offer a phenomeno-
logical model. We draw on our recent demonstration [27]
that the GWS appears in the context of RMT as the mean-
field solution of Dyson’s Brownian motion model [10,11],
based on a Coulomb gas of logarithmically interacting
particles [28] in a 1D quadratic potential well. We argue
that the CZ size distribution can be extracted from a
Langevin equation for a fluctuating CZ size in a confining
potential well created by two competing effects: (1) The
effective confining potential well should increase for
small-size CZ: nucleation of a new, small island causes a
CZ of finite—and not greatly different from the local
mean—size to appear (cf. Fig. 19 of [20]), so that a large
force must prevent fluctuations of the CZ size toward
vanishingly small values. As i increases, the chance of
finding a very small CZ should decrease. (2) The neighbor-
ing CZs also prevent the one under scrutiny from growing,
exerting a sort of external pressure, which may be assumed
to come from a quadratic potential. A noise term represents
atoms in a CZ attaching to other than the proximate island.

More formally, we argue that the CZ distribution can be
described by a Fokker-Planck equation that has the GWS
P��s� [27], with � � �2=d��i� 1�, as its stationary solu-

tion. That equation is associated with the Langevin equa-
tion, for d � 1; 2 [29],

 _s � K
�2=d��i� 1�=s� Bs� � �; (2)

where K is a kinetic coefficient. The fluctuating repulsion
(with strength B) from the neighboring CZs yields a con-
tribution to ( _s) of �KBs� �, where � arises from the
random component of the external pressure.

To rationalize the �2=d��i� 1�=s repulsion, we analyze
quantitatively the nucleation of new islands, following
Ref. [30]. If N is the stable island density, n the adatom
density, D the adatom diffusion constant, � the capture
coefficient of an island, andNi the density of critical nuclei
(islands with i atoms), the nucleation rate _N, in 2D and
assuming unit lattice spacing, is [30]

 

_N � �nNi 	 Dni�1: (3)

In the rightmost expression we have used � 	 D [30] and
the Walton relation Ni 	 ni [31]. The exponent i� 1 leads
to the strength of the s�1 repulsion.

One approach [25,29] argues phenomenologically that
there is an effective entropy kB ln�ni�1� whose derivative
with respect to s leads to the repulsive term in Eq. (2).
Instead, we here take the inverse approach, perhaps more
convincing, of showing that the CZ distribution should be
/ s�2=d��i�1� for small s and that the repulsion thus must
have the claimed strength. If we consider the analogue of
Eq. (3) for each capture-zone area A (s � A=hAi), then

 

_N�A� 	 Dni�1P�s�: (4)

We also note that nucleation of an island with CZ of order
A takes place in a region where the neighboring CZs have a
similar size, especially for small CZs, A hAi. As the
mean adatom density �n is the solution of a deposition/
diffusion equation, �n� ‘2 in a region of linear size ‘
(independent of d) [32]. Thus, �n�A� is nA=hAi, and

 

_N�A� 	 D �n�i�1� 	 D�nA=hAi��i�1�: (5)

Comparing, we have the desired result P�s� 	 s�i�1�. For
d � 1, where the CZs are line segments, we can make a
similar argument, but the local mean adatom density is now
�n�A� 	 n�A=hAi�2; hence, P�s� 	 s2�i�1�.

The GWS is qualitatively similar to MB’s [6,8] semi-
empirically [33] proposed gamma distribution, explicitly
(with unit mean enforced)

 ���s� � 
��=�����s��1 exp���s�: (6)

For 1 � � � 4, � is roughly 2�� �0, where �0 is an
offset of order one [cf. P3�s� and �7�s� in Fig. 1]; the value
of �0 depends on what property of P��s� and ���s� is
equated [34]. However, the slower decay of the ���s�
leads to considerably greater skewness, with a distinctly
greater shift of the peak to smaller s. Like P��s�, ���x�
approaches a Gaussian for large �. Trying to distinguish
e��s from e�bs

2
decay is problematic due to the large

fractional uncertainty. Also, modifying our Fokker-

FIG. 4 (color online). (a) Symbols are numerical data from
Fig. 2(b) of Ref. [5], giving the CZ size distribution for nuclea-
tion of islands with i � 0 in 2D. The thick (blue) curve is P1�s�.
(b) Same as panel (a), but symbols for i � 1 are from Fig. 2(d) of
Ref. [5], and the thick curve is P2�s�. In both panels the thin
curve is the theory of Ref. [5].

PRL 99, 226102 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
30 NOVEMBER 2007

226102-3



Planck argument [27] to produce ���s� rather than P��s�
as the stationary solution (e.g., by replacing in Eq. (2) KBs
with a constraining force independent of CZ size s) essen-
tially eliminates proper correlations between fluctuating
CZs. Arguably the main advantage of the GWS is that �
identifies the critical-nucleus size i and connects to the
extensive work on fluctuations.

Very recently ���s� has been used as a tool for analyz-
ing experimental CZ distributions [35,36]. Our trial fits of
the data with the GWS form are generally at least as good;
moreover, the extracted value of i is plausible. Amar et al.’s
popular rate-equation-derived expression for ISD’s, noted
at the outset, is fi�s� / si exp��iais1=ai�, i � 1, where ai is
a complicated constant [2]. By construction, it peaks at s �
1. While not designed for CZ distributions, fi�s� has been
tried as an alternative to ���s� for quantum dots, with
neither being fully satisfactory [36(b)]. Voronoi tessella-
tion has also been applied to studying biological systems,
e.g., lipid-bilayer head groups [37].

In summary, as for spacings between parked cars [15],
the Wigner surmise provides a simple, universal expression
that accounts better for data than more complicated ex-
pressions developed over years of investigation. For our
problem of the capture-zone distribution in island nuclea-
tion, the exponent � of the generalized Wigner surmise
P��s� provides information about the size i of the critical
nucleus and reflects the dimensionality d. Our phenome-
nological argument provides insight into the physical ori-
gin of this behavior. Both features are significant advances
beyond previous empirical analytic descriptions of the CZ
size distribution [notably ���x�]. The connection to uni-
versal properties of fluctuations enhances the interest and
importance of studies of CZ distributions and suggests
many avenues for further investigations.
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