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Facet-edge fluctuations with periphery diffusion kinetics
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Abstract

We investigate the novel scaling of the steps bounding a facet surrounded by a rough region. The hindered, asymmetric fluctuations
can be associated with the emergence of a dominant non-linear term in the Hamiltonian governing the step fluctuations. We explore the
crossover from unhindered to hindered fluctuations, calculating the growth exponent, b, with Monte Carlo simulation within the TSK
model. The hindered behavior is found in the simulations when the facet-edge step is separated by fewer than six atomic spacings from
the second step. Actual fluctuations are larger than in this calculation, particularly at higher temperatures, making the hindered behavior
easier to observe. In addition, we discuss the possibility that volume conservation effects in nanoscale structures may cause similar con-
finement in non-conserved fluctuations.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Due to the rapid growth of interest in quantum comput-
ing and the related demand for creating quantum dots,
controlled fabrication of nano-structures has become of
great importance [1–4]. For the evolution of nano-struc-
ture, the control of step dynamics is crucial, since the steps
are the fundamental building blocks of crystalline surfaces.
The equations of motion for straight steps on a vicinal sur-
face are well understood within the continuum step model
e.g. as applied to MBE growth and step bunching. The
power of this model is that it can be applied to both anal-
ysis of experimental observations [5–8] and comparison to
microscopic models, such as the terrace-step-kink (TSK)
model, using statistical methods and a handful of key
parameters [6,9]. In particular, Langevin-type analysis of
the statistical properties of steps can be used to relate the
physical properties of isolated steps to the thermodynamic
parameters of the continuum step model. Application of
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the Langevin approach has shown that the experimentally
accessible correlation functions (defined below) scale as
�y2a and t2b, where a and b are the roughness and growth
exponents, respectively. For isolated steps, a = 1/2, charac-
teristic of a random walk, and b depends on the principal
mass transport mechanism, e.g. attachment–detachment
(A/D), b = 1/4, and periphery diffusion (PD), b = 1/8 [5,6].

However, for nano-structures, the step equations of mo-
tion are not obvious due to the finite volume effects of the
nano-structure [10,11]. Although the steps can still be
viewed as 1D interfaces, not only local deformations but
global effects (overall shape and mass conservation) must
be considered to obtain the equations of motion. In a pre-
vious paper [12], we showed that a global curvature of an
island or a step at a facet-edge, as illustrated in Fig. 1a
and b, alters the step chemical potential compared to an
isolated step by breaking the symmetry of adatom motion
to the upper and lower terrace, resulting in a non-linear
equation of motion for the step. For a facet, furthermore,
the suppression of the fluctuation amplitude due to the
existence of a neighboring step alters the scaling behavior
of the noise term in the Langevin equation. Such changes
lead to two different university classes of dynamic scaling,
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Fig. 1. Schematic drawing of the continuum step model in the three cases
of (a) an island with radius r (b) a facet of a finite volume crystallite (with
curvature) with radius q and (c) a facet of a infinite volume crystallite
(straight steps) with d = x2 � x1.
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with a = 1/3 [13] for both and b = 1/5 and b = 1/11 for A/
D and PD, respectively [12].

Another previous conclusion [12] was that the global
curvature effect will be important for an island only when
its circumference is small compared to the capillary length;
this translates to a very severe condition on the equilibrium
chemical potential of the island (leq > 2pb~bX=kBT Þ [14,15].
In this paper, we show with the use of the continuum step
model that even with no curvature (straight steps), a facet-
edge step interacting with a single fixed neighboring step,
with dynamics conserving mass, can have a non-linear term
in the equation of motion. Monte Carlo simulations using
the TSK model are performed to confirm the proposed
effects.
2. Background

The continuum step model uses a discrete array of 1D
continuous interfaces to represent the steps on the surface.
A facet-edge step of a crystallite with infinite volume
(straight steps) is illustrated in Fig. 1c. With appropriate
approximations, the step equation of motion is given by
a Langevin equation

oxðy; tÞ
ot

¼ f ½xðy; tÞ� þ gðy; tÞ; ð1Þ

where x(y, t) is the position of the facet-edge at time t, f[•] is
a function of x(y, t) describing the deterministic relaxation
process, and g(y, t) is a noise term, which can be conserva-
tive or non-conservative depending on the nature of f[•].
The free energy of the facet step with a projected length
L is
F ¼
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where b is the step free energy per length, g is the step inter-
action coefficient, h is the step height and x2 is the position
of the neighboring step, which is approximated as straight
and fixed in position. The step chemical potential is derived
as
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where X is the atomic area, ~b ¼ bþ o2b=oh2 is the step stiff-
ness, and the superscript dot denotes differentiation with
respect to y. The deterministic part of the Langevin equa-
tion is obtained by modeling the microscopic transfer pro-
cesses at the facet step-edge. Non-conserved dynamics is
used to represent the random A/D of adatoms from the
reservoir as

oxðy; tÞ
ot

¼ �CAD

kBT
l½x; _x;€x� þ gðy; tÞ; ð4Þ

where CAD is the A/D-driven step mobility and g(y, t) is
non-conserved white noise. Similarly for PD, conserved
dynamics is used to represent atoms moving along the step
edge

oxðy; tÞ
ot

¼ CPD

kBT
o2l½x; _x;€x�

oy2
þ gCðy; tÞ; ð5Þ

where CPD is the edge-hopping-driven step mobility (differ-
ing from Ch of Ref. [5] by a factor of X), and gC(y, t) is con-
served white noise.

3. Results

To obtain the stable mean position x1 of the facet-edge,
Eq. (3) is set equal to the ‘‘reservoir’’ chemical potential l0

of the crystallite [11]. Neglecting the local curvature term
(first term) in Eq. (3) gives

x1 ¼ x2 � h
2Xg
l0

� �1=3

or d ¼ h
2Xg
l0

� �1=3

ð6Þ

where d = x2 � x1 is the distance between the top two steps
as shown in Fig. 1c. Assuming the fluctuations to be small,
Eq. (3) is expanded about this x1.

l½x;€x� ¼ �X~b€xþ l0 þ
3
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Using dimensionless variables,
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Fig. 2. Magnitude of the three coefficients in Eq. (8) as a function of (a)
temperature T[e/kB](d = 4) and (b) step–step distance d[a](T = 1). The
fourth-order derivative term, second-order derivative term, and the non-
linear KPZ term are given as a dashed, dash–dot and solid line,
respectively. The thermodynamic parameters, step free energy b, step
stiffness ~b and step–step interaction coefficient g, were calculated with the
TSK model. The thin vertical line is T = 1 and d = 4 in (a) and (b),
respectively.
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we obtain:

~l½~x;€~x� ¼ �€~xþ 2~g þ 6~g~xþ 12~g~x2 þ � � � : ð7cÞ
Thus, with ~t ¼ ðCPDX~b=kBTd4Þt, the dimensionless Lange-
vin equation in the PD case is

o~xðy; tÞ
o~t

¼ � o
4~x
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þ 2~g þ 6~g

o
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þ 24~g
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þ ~gCðy; tÞ ð8Þ

where ~gC ¼ ðCX~b=kBTd3ÞgC. All higher order terms in ~x are
negligible since ~x� 1. The fourth term on the right hand
side of Eq. (8) is non-linear, characteristic of the Kardar–
Parisi–Zhang (KPZ) equation, and has the same form as
the non-linear term that arises from the global curvature ef-
fect [12]. If dominant, such a non-linear term can lead to
totally different behavior in the shape evolution of nano-
crystallites. The dominance at the short and long times is
determined by the relative magnitude of the coefficients
of each term. The physical origin here, however, arises
from the asymmetry of the effective potential which the fa-
cet step experiences from the fixed single neighboring step,
which also breaks the symmetry of adatom motion to the
lower and upper terrace. The effective potential (grand po-
tential) N(x) is obtained from the free energy in Eq. (2) and
the ‘‘reservoir’’ chemical potential l0

~Nð~xÞ ¼ b
~b
þ ~g

ð1� ~xÞ2
� 2~gð~xþ ~x1Þ;

ffi const:þ 3~g~x2 þ 4~g~x3 þ � � � ;
ð9Þ

where ~Nð~xÞ ¼ NðxÞ=~bL;~x1 ¼ x1=d. Note that when ~g ¼ 0;
Eq. (9) is a constant, and Eq. (8) reduces to the equation
of motion for an isolated straight step.

4. Simulation

Metropolis Monte Carlo (MC) simulations, valid for
equilibrium, were performed based on a standard TSK
model (square lattice with steps along a close-packed direc-
tion) with PD kinetics. In the TSK model the only excita-
tions are thermal kinks with energy e along a step
described by a single-valued function xn(y), where n is the
step number. The term ejxn(y + 1) � xn(y)j in the Hamilto-
nian leads to a step free energy per unit length of b = e/
a + (kBT/a) ln [tanh (e/2kBT)] [16] (a, atomic length) and
step stiffness of ~b ¼ ð2kBT=aÞsinh2ðe=2kBT Þ [17]. The non-
touching constraint xn+1(y) > xn(y) results in an entropic
repulsion gh3/l2, where l is the step–step distance and
g = (pkBT)2/6h3b [18]. PD kinetics is obtained by moving
atoms to their neighboring sites from randomly chosen step
positions. For an atom to move, it must break and reform
bonds; if there are just nearest neighbor bonds, the net
change in energy has only three possibilities, corresponding
to the net gain/loss of 2 (±4e), 1 (±2e), or 0 bonds.

From the results above, the magnitude of the coefficients
of each term in Eq. (8) can be calculated within the TSK
model and are given in Fig. 2 as a function of (a) temper-
ature T (in units e/kB) with d = 4 (in units of a) and (b)
step–step distance d with T = 1. The fourth-order deriva-
tive term, second-order derivative term and the non-linear
KPZ term are shown as dashed, dash–dot and solid lines,
respectively. At high temperatures and small step–step dis-
tance, the KPZ term should dominate at long time. For
large step–step distances the fourth-order derivative term
is always dominant, a situation equivalent to an isolated
step. Note that the TSK model underestimates fluctuations
at high temperatures since overhangs are prohibited; the Is-
ing model is more appropriate [19]. Fortunately, similar
calculations of the step free energy using the Ising model
[20] show that qualitative features of the TSK model are
still valid although the curves equivalent to those in
Fig. 2 will differ quantitatively at high temperature. For
calibration, note that ~bTSK=~bIsing is �1.2 at T = 0.8 and
�2.4 at T = 1. We used the relatively high temperature in
order to achieve adequate statistics in our simulations in
our limited runs.

For statistical analysis of facet step-edge fluctuations,
we calculated the spatial and time correlation functions,
G(y, t0) and G(y0, t), respectively,



Fig. 3. A snap shot of the MC configuration, x(y) of an isolated step (d = 500) and d = 4 for T = e/kB and L = 100. Initial step and equilibrated step are
shown as dashed and solid line, respectively. The x = 0 line is the position of the fixed neighboring step.

Fig. 5. Log–log plot of G(y, t0) obtained after equilibration for d = 4 and
d = 500. The fit of the slope m (i.e. 2a) is �0.67 and �1 for d = 4 and
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Gðy; t0Þ ¼ ½xðy þ y0; t0Þ � xðy0; t0Þ�2
D E

y0

; ð10aÞ

Gðy0; tÞ ¼ ½xðy0; t þ t0Þ � xðy0; t0Þ�2
D E

t0
; ð10bÞ

for a fully equilibrated step (i.e.after the width has attained
its saturation value).For lengths and times shorter than the
correlation length and crossover time, the correlation func-
tions scale as G(y,t0) � y2a and G(y0, t) � t2b, yielding the
roughness exponent a and growth exponent b.Fig.3 shows
a MC snapshot of an essentially isolated step (d = 500 [a])
and d = 4 at T = 1 [e/kB] and L = 100 [a], initially (dashed)
and after equilibration (solid) (also see Ref.[21]).To simu-
late confinement, the neighboring step is fixed at distances
d = 2,3,4,5,6 [a].Fig.4 shows G(y0, t) obtained after equili-
Fig. 4. Log–log plot of G(y0, t) obtained from 107 MC steps per site after
equilibration and averaged over 10 realizations. (a) Shows results for d = 4
with a fit to the slope of �0.25 and �0.18, close to the predicted values of
2b = 1/4 and 2b = 2/11. (b) Shows results for d = 2 � 500. For d = 2 the
logarithmic behavior (b = 0) is observed and for d = 500 it is 2b = 1/4.

d = 500, respectively.
bration for 107 MCS (MC steps per site) and averaged over
10 realizations.Fig.4a shows results for d = 4.The fit to the
data shows definite crossover.At early times the slope is
m � 0.25 and later m � 0.18, close to the predicted values
of 2b = 1/4 and 2b = 2/11 for isolated and facet (confined)
step-edge fluctuations, respectively, with PD kinet-
ics.Fig.4b shows results for d = 2,3,4,5,6 and 500.For
d = 2 the neighboring step is so close that no type of
power-law behavior can be identified.As the step–step dis-
tance increases, the crossover time from 2b = 1/4 to
2b = 2/11 also increases.When d > 6, within the range of
107 MCS, crossover time is not observed, and the slope
shows 2b = 1/4.From the results of d = 500 [a] we can esti-
mate CPD, since the result for an isolated step is analytically
known [6,8,22], and obtain CPD = 0.213 [a3/MC steps].Us-
ing this result, an estimated crossover time ~t ¼ ð24~gÞ�4=3

from 2b = 1/4 to 2b = 2/11 gives t = 130 MC steps for
d = 4 [a], which is fairly close to the results in Fig.4a for
a crude estimate forCPD. Fig. 5 shows results of G(y,t0) ob-
tained after equilibration for d = 4 [a] and d = 500 [a].
Since the length of the step is limited, it is difficult to say
anything conclusive; however, the initial portion of the
data is fit to a slope of m � 0.67 and m � 1.0 for d = 4 [a]
and d = 500 [a], consistent with the prediction of 2a = 2/3
and 2a = 1 for confined and isolated steps, respectively.
5. Discussion

Only for a limited range of crystallite size d is the non-
linear term dominant in the dynamics. In our TSK model,
the upper end of this range is �12 [a] (Fig. 2b), where the
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scaling crosses over to isolated step behavior (b = 1/8); the
lower end is �3 [a] (Fig. 4b) where ~x� 1 becomes invalid,
and the logarithmic (b = 0) behavior characteristic of a
step in a 2D step train [5] is seen. This seems to imply an
extremely limited range of conditions. The actual range
for experimental observations of non-linear-dominated
behavior is considerably larger than the narrow range pre-
dicted by this model. First, the TSK model greatly under-
estimates fluctuations at high temperatures: more realistic
models allowing more complex excitations e.g. the Ising
model, increase the effect of the non-linear term. Secondly,
only entropic interactions are considered here. Generally
there are also elastic ones, which increase the value of d

(by d � g1/2 for straight steps [5]) also enhancing the non-
linear term effect. Third, no global curvatures are consid-
ered here, which increases the asymmetry of the effective
potential in Eq. (9). Such considerations raise substantially
the upper limit for d, which make experimental observa-
tions with a restricted time range more likely [21].

Although PD is known to be the dominant mass trans-
fer process for many metal (111) surfaces at moderate
temperature [5,6], A/D cannot be completely neglected in
real systems, in contrast to the present simulations. Since
Eqs. (4) and (7c) show that A/D does not generate the
non-linear term, the experimental relevance of our results
may also appear rather limited. Again, this is not the case,
for a subtle reason that stems from arguments of the con-
servation of mass. At equilibrium, for a crystallite with
fixed volume, the individual layers fluctuate, exchanging
matter among themselves, not with any reservoir. Thus
far from the facet, fluctuations are strongly suppressed
due to high step density and volume conservation: energy
barriers quash mass transfer. The net result is that ada-
toms detaching from the facet-edge have a strong tendency
to return, as for step fluctuations in the presence of a
strong Ehrlich-Schwoebel barrier [22], and so one finds
the same dynamical exponents as PD [22]. Thus, it may
be possible to see qualitatively similar effects for confined
step fluctuations even when mass transport includes other
physical mechanisms.

However, there is a more serious contradiction between
simulation and theory. We observe b = 1/11 in the simula-
tion, which is characteristic of PD with global curvature
[12] and not characteristic for the KPZ term with conserved
noise, although they are both non-linear terms. This may
suggest a possible step-step interaction in the simulation
depending on local angle; this scenario is beyond the scope
of the present work and will be the subject of future
investigation.
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