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To obtain a more precise value for the variance �2 of the joint probability distribution of a symplectic
ensemble, we extend previous numerical evaluations of a power series. Our result �2�0.1041 shows that the
excellent approximation using the analytically simple Wigner surmise fractionally overestimates this value.
This behavior is important in establishing the trend of a generalization of the surmise to describe the terrace-
width distribution on vicinal surfaces. We also obtain precise estimates of the skewness and the kurtosis of the
exact distribution, as well as the related moments.
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The study of fluctuation phenomena has proved particu-
larly rewarding because of their universal properties �1–3�.
Beginning with the work of Wigner and of Dyson �4�, this
field—associated with random matrix theory �RMT�—has
now attained profound sophistication and has been applied to
an astonishingly broad range of physical systems. In particu-
lar, formally exact solutions have been developed for the
distribution of the nearest-neighbor level spacings of energy
eigenstates of systems described by Hamiltonians with or-
thogonal, unitary, or symplectic symmetry.

As formulated in the Calogero-Sutherland �CS� model
�5,6�, there is a remarkable correspondence between these
energy levels and the positions of fermions in one-
dimensional �1D� space that interact with an inverse-square
repulsive potential, so that the distribution of the separations
between energy eigenvalues also describes the spacings �in
the 1D space� between the fermions. This insight has led to
further applications of the theory, many of which are de-
scribed in excellent reviews �1–3�. A noteworthy example
that is not covered is the terrace-width distribution �TWD�
on a vicinal �7� surface. Steps traverse the surface without
crossing, leading to the association of their configurations
with the world lines of fermions evolving in 1D space, with
the inverse-square repulsions coming from steric and elastic
effects. Some of us have explored the implications of this
correspondence for several years �8–15�.

Of particular interest is the �normalized� probability
density �or joint probability distribution �16�� P����s�.
�P����s�ds is the probability that the nearest-neighbor spacing
lies between s and s+ds; s denotes the energy difference
between adjacent levels or the distance between adjacent fer-
mions, in either case divided by its average value.� The scale
of s is set so that the mean of P����s� is unity. For s�1,
P����s��s� �17�. According to the CS model,

� = 1 + �1 + 4Ã , �1�

where the dimensionless parameter Ã is proportional to the
strength of the s−2 repulsion between levels �or fermions or

steps�. The special cases �=1,2 ,4 �or Ã=−1/4 ,0 ,2� corre-
spond orthogonal, unitary, and symplectic ensembles, respec-
tively. While most RMT studies focus on the first two cases
�2,16�, the last is the most relevant to vicinal surfaces
�though the unitary case of “free fermions” with just entropic
repulsions is also germane �9� and much studied�. It is well
established that the exact solution for a symplectic ensemble
can be well approximated by the Wigner surmise

PW
�4��s� = � 64

9�
�3

s4 exp�−
64

9�
s2� . �2�

From Eq. �1� we see that in principle � can take on arbi-
trary values. Moreover, the proportionality of P����s� to s� at
s�1 for values of � beyond the special cases has been rig-
orously established �18,19�. In accounting for experimental

data for vicinal surfaces, for which Ã ranges from 0 to
	10–20 �cf. Table II of Ref. �12��, we have advocated and
described thoroughly �10–15� the use of a generalization �to
arbitrary �� of the Wigner surmise of Eq. �2�. �For those
interested in �more� details about applications to vicinal sur-
faces, the latest in the series �15� provides a good perspective
of the whole endeavor �10–15� while Ref. �14� is based on an
overview presentation for theorists.�

The experimental TWD is typically characterized by just
its width. Hence, it is important to determine precisely the
variance �2 of P�4�. In the second edition of Mehta’s authori-
tative classic �1�, the second moment �1+�2� is listed �20� as
1.105. This value was disconcerting since we expected �15�
the exact variance to be smaller than the variance 0.10447 of
the Wigner surmise Eq. �2�. �In the limit that �→�, the
variance of a Wigner-like expression is 1% too large while
for free fermions, �=2, it is 1% too small, and for �=1 it is
over 4% too small. �Cf. Refs. �1,10,15�, especially Table II of
Ref. �15�.� Hence, we suspected �15� that a numerical impre-
cision led to a rounding error, so that the exact variance to
three decimal places should be 0.104 rather than 0.105.
While superficially minor, this difference is important in es-
tablishing the overall trend of the generalization of the
Wigner surmise relative to the limited exact information
available �22�.

In order to confirm our hypothesis, we needed to extend
the earlier analysis by Dietz and Haake �23� �hereafter DH�
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�see also Ref. �3��, finding eventually that ��=4
2 =0.1041. We

communicated these results to Mehta in time for inclusion in
his third edition of Ref. �1�, which duly lists the second
moment as 1.104. In this brief paper, we present the numeri-
cal data supporting our claim. In the process of this work, we
also obtained the third and fourth moments, allowing us to
compute the skewness and kurtosis of P�4��s�.

Following DH we first write as a Taylor’s series the prob-
ability E�4��s� that a randomly chosen interval of size s con-
tains no levels,

E�4��s� = 

l=0

�

Els
l, �3�

where

El = 
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l�2n2−n

�l−n �− 1��l+n�/2

n! 

l1,…,ln

1,2,….

	�

i=1

n

li,
l − n

2
�


 

t1

0,. . .,l1

, . . . , 

tn

0,. . .,ln

det� 1

2li − 2ti + 2tj + 1
�


 �
k

1. . .n �2lk + 1

2tk
� 1

�2lk + 1�!�1 −
4tk

2lk + 1
� . �4�

Terms with n�5 are enough to determine the first 62 coef-
ficients Pl, which are given in Table I. This table extends to
l=62 the list given in DH to l=42 �24�. There is a corre-
sponding Taylor expansion� for the probability density
P�4��s�= �d2 /ds2�E�4��s�,

P�s� = 

l=0

�

Pls
l, Pl = �l + 2��l + 1�El+2. �5�

These Taylor coefficients Pl are tabulated in Table I.
The asymptotic distribution obtained by Dyson �21� is

�1,23,25�

Eas = 29/8eB�2�s − 1�−1/8e−��2/4�s2+��/2�s Pas = Eas� �s� , �6�

where B= 1
24ln 2+ 3

2���−1��−0.219250583 Ref. �1�. As our
first approximant of the exact P�4�, we use the power series
with the coefficients from Table I up to some crossover value
of s, after which we use Pas from Eq. �6�. We select this
crossover s as that value which produces both normalization
and unit mean of the approximant. This value is s=1.9187,
with negligible change on the scale of ±0.0003. It is then
straightforward to estimate 2, 3, and 4, the second, third,
and fourth moments, respectively. These are listed in Table
II.

TABLE I. Tabulation of Pl of Eq. �5�, using Eq. �4�, up to l
=62. Numbers in square brackets denote powers of 10.

l Pl l Pl

1 0 32 4.069314164�−6�
2 0 33 −1.208912930�−6�
3 0 34 −4.320684951�−7�
4 11.54478116 35 1.444119216�−7�
5 0 36 3.831511457�−8�
6 −26.04398239 37 −1.542093305�−8�
7 0 38 −2.373910020�−9�
8 29.37643465 39 1.481972070�−9�
9 0 40 −2.106884211�−11�

10 −22.1273823 41 −1.289235835�−10�
11 0 42 3.975772815�−11�
12 12.60254549 43 1.020528743�−11�
13 −0.08972077 44 −8.818304854�−12�
14 −5.767995139 45 −7.384058833�−13�
15 0.142183183 46 1.443470291�−12�
16 2.185535259 47 4.902183361�−14�
17 −0.11136461 48 −2.032183919�−13�
18 −0.696689017 49 −2.990951537�−15�
19 0.057406553 50 2.584509877�−14�
20 0.188941319 51 1.663636643�−16�
21 −2.187532238�−2� 52 −3.036116364�−15�
22 −4.401657003�−2� 53 −7.985564711�−18�
23 6.560453940�−3� 54 3.335453235�−16�
24 8.888154747�−3� 55 2.262609974�−19�
25 −1.609790563�−3� 56 −3.454096248�−17�
26 −1.568617360�−3� 57 2.075792033�−20�
27 3.318113094�−4� 58 3.390775820�−18�
28 2.436873663�−4� 59 −6.081053185�−21�
29 −5.855493089�−5� 60 −3.168731972�−19�
30 −3.348583956�−5� 61 1.020388478�−21�
31 8.975777681�−6� 62 2.828240383�−20�

TABLE II. Summary of results for moments and related prop-
erties of P�s� for symplectic ensemble. For the ’s and the variance,
all tabulated digits are significant. For skewness and kurtosis, �1�
indicates ±0.001 uncertainty.

Property Exact Wigner surmise

2 1.1041
45�

128
� 1.10447

3 1.3241
27�

64
� 1.32536

4 1.7044
2835�2

16384
� 1.70778

variance 0.1041 0.10447

skewness 0.350�1� 0.35424

kurtosis 3.027�1� 3.03698
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DH suggest that an improved approximant can be found
by multiplying the asymptotic expression Pas by a Padé in-
terpolation expression, which has the particular advantage of
removing the obvious singularity in Eq. �6� at s= 1

2�. For the
Padé interpolant we used the expression in DH,

Padé =



m=1

lmax/2

�8m−7xm−1�x�1/8 + �8mxm

�0 + 

m=1

lmax/2

�8m−1xm−1�x�−1/8 + �8mxm

, �7�

where x2�s−1. We began by using the values for �m and
�m tabulated in DH �for lmax=42 in the Taylor expansion,
and replaced the pure asymptotic expression by the version
multiplied by the Padé interpolant above the crossover value
of s, consistent with the procedure used by DH �26�. We
found no change in the moments to five decimal places
�though the optimal crossover value for s rose modestly to
1.9193, so we did not pursue extending DH’s tabulated val-
ues of �m and �m.

As listed in Table II, the variance of P�4��s� is found to be
�22−1=0.1041. The third and fourth moments are mea-
sured to be 3=1.3241 and 4=1.7044, respectively. Our
various checks indicate that all these digits are significant.
One can also calculate the moments by directly using Eqs.
�3� and �5�, which gives the same result as the previous case.
Because of the subtractions involved, the skewness �3
−32+2� /�3 and the kurtosis �4−43+62−3� /�4 are
very sensitive to the precision of the moments used to deter-
mine them. Accordingly, we computed them “directly” rather
than by using the computed moments. In Table II we list
their values as 0.35 and 3.027, respectively; these numbers
should be viewed as ±0.001. In any case, all these values are
lower, albeit marginally, than the corresponding values for
the Wigner surmise for �=4, so that the latter serves not just
as an excellent approximation but also as an upper bound for
these statistical properties of P�4��s�.
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