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Spurred by recent theoretical predictions [Phys. Rev. E 69, 035102(R) (2004); Surf. Sci. Lett. 598, L355
(2005)], we find experimentally using STM line scans that the fluctuations of the step bounding a facet
exhibit scaling properties distinct from those of isolated steps or steps on vicinal surfaces. The correlation
functions go as t0:15�0:03 decidedly different from the t0:26�0:02 behavior for fluctuations of isolated steps.
From the exponents, we categorize the universality, confirming the prediction that the nonlinear term of
the Kardar-Parisi-Zhang equation, long known to play a central role in nonequilibrium phenomena, can
also arise from the curvature or potential-asymmetry contribution to the step free energy.
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Technological demands on the fabrication and proper-
ties of nanostructures [1] provide renewed motivation for
understanding the properties that control morphology
changes on the nanoscale. In the past decade, the step
continuum model has allowed several successful quantita-
tive correlations of direct observations of step fluctuations
with kinetic and thermodynamic descriptions of nanoscale
structural evolution [2–6]. For complex structures where
mass transport is limited by geometry, the fundamental
question of how fluctuations behave in a constrained envi-
ronment becomes experimentally accessible. For an iso-
lated step on a flat fcc(111) metal surface, experimental re-
sults typically show that the principal mass transport
mechanism is step-edge diffusion (SED), with time corre-
lations t1=4 at low temperature T [3,5,6], and crosses over
to other behavior with increasing T [7]. However, for
smaller structures, issues of finite volume (shape effects
and volume conservation) become non-negligible [8,9].
Although the step can still be viewed as a 1D interface
obeying a Langevin-type equation of motion, not only lo-
cal deformation but global effects must be considered
when calculating the step chemical potential. These con-
siderations alter the equation of motion, including the noise
term, resulting in different university classes of dynamic
scaling [10].

Finite-volume effects on nanocrystallites with a Gruber-
Mullins-Pokrovsky-Talapov surface free energy density
[11] have been found to produce metastable states with
different crystal shapes [12] for a given crystal-substrate
interface boundary condition [9,13]. All shapes have a
facet smoothly connected to a vicinal region, which obeys
an x3=2 shape power law in equilibrium [14]. Once a
crystallite attains a stable state, the step that serves as the
interface between the facet and the vicinal region [see
Fig. 1(b)] fluctuates around its stable position, which is
determined by the asymmetric potential established by
step-step interactions and the ‘‘reservoir’’ chemical poten-
tial of the crystallite. When step interactions are solely
entropic, recent theoretical work [15], within a terrace-
step-kink (TSK) model with volume conservation, estab-

lishes rigorously that the static scaling of the facet-edge
fluctuations have a roughness exponent � � 1=3, different
from � � 1=2 of a random walk. From heuristic and
scaling perspectives, some of us [16] reobtained � � 1=3
for facet-edge fluctuations in a way that suggests this result
holds even when elastic effects supplement the entropic
repulsion between steps. The effect of the asymmetric
potential can be directly evaluated from the step chemical
potential [17,18], and then enters the equation of motion as
a nonlinear term of the form �rx�2, characteristic of the
Kardar-Parisi-Zhang (KPZ) equation [19], if the fluctua-
tions are small compared to the interstep spacing. The KPZ
term affects the noise term and restricts the amplitude of
fluctuation, which leads to different scaling properties of
the noise. Extensions to dynamic scaling yield a growth
exponent� � 1=5 or� � 1=11, depending on the limiting
kinetics, attachment-detachment (AD) or SED, respec-
tively [16]. General considerations of the various univer-
sality classes [20,21] that can arise for different types of
spatial confinement for the two cases of limiting kinetics
are summarized in Table I.

FIG. 1 (color online). An STM image of (a) an isolated step on
a crystallite facet (room temperature) and (b) a crystal facet edge
(350 K). The small superimposed double arrows indicate the tip
path that leads to line-scan images as in Fig. 2.

PRL 97, 080601 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
25 AUGUST 2006

0031-9007=06=97(8)=080601(4) 080601-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.97.080601


Here we report the first experimental observations of the
novel scaling predicted for facet-edge fluctuations on crys-
tallites. Our crystallites were formed by depositing a 20–
30 nm Pb film at room T on a Ru(0001) substrate in UHV
[23], and subsequently dewetting at 620 K. The liquid Pb
droplets solidified upon slow cooling and were left to
equilibrate to a stable state at the T of the experiment
[23,24]. The crystallites are observed with a variable-
temperature scanning tunneling microscope (VT-STM)
after equilibration. Figure 1 depicts a STM image of
(a) an isolated step (room temperature) and (b) facet
edge (350 K). A crystallite in a stable state as shown in
Fig. 1(b) has a flat, close-to-circular (111) facet and a
smoothly-connecting vicinal region.

By repeatedly scanning perpendicularly to a single po-
sition along the facet-edge or step (cf. Figure 1), we obtain
a line-scan STM image [3] x�t�, as shown in Fig. 2 for

(a) an isolated step (step from a screw dislocation) and (b) a
facet edge, both at 350 K. Digitized step positions x�t� ex-
tracted from these ‘‘pseudoimages’’ are used for statistical
analysis. To evaluate the growth exponent �, we calculate
the early behavior of the time correlation function G�t�

 G�t� � h�x�t� t0� � x�t0��
2it0 	 t

2�: (1)

To evaluate the roughness exponent �, we calculate the
saturation value of the width w of the fluctuating step:

 w2 � h�x�t� � �x�2i 	 L2�; (2)

where L is the system size.
In Fig. 3 we show the time correlation function G�t�

measured for (a) facet edges and (b) isolated-step edges.
Squares, circles, and triangles correspond to measurements
at 300 K, 350 K, and 400 K, respectively. Each curve
represents the average over the correlation functions for
10–30 measurements of x�t�. The slope of the curves on
the log-log plot yields the exponent 2�. The values for the
individual curves are listed in the figure caption. As ex-
pected, the exponents show no systematic dependence on

FIG. 2 (color online). Segment of a line-scan image of (a) an
isolated step (step from screw dislocation) and (b) a facet edge at
350 K, showing also the correlated fluctuations of the neighbor-
ing steps. The time interval between lines is 0.02 s, and 2000
lines are measured per image.

(a)

(b)

FIG. 3 (color online). Log-log plot of G�t� [Eq. (1)] of (a) facet
edges and (b) isolated steps with facet radii from 60 to 190 nm.
The symbols represent 300 K (squares), 350 K (circles), and
400 K (triangles). For guidance, solid and dashed lines show
slopes 2=11 and 1=4, respectively. Individual fits to each of the
data sets yield slopes of (a) facet edges: 300 K (0:18� 0:01,
0:13� 0:06, 0:13� 0:02), 350 K (0:17� 0:04, 0:17� 0:04,
0:12� 0:03, 0:11� 0:05); 400 K (0:12� 0:12), and (b) isolated
steps: 300 K (0:32� 0:03, 0:26� 0:008), 350 K (0:24� 0:03,
0:24� 0:04), 400 K (0:30� 0:04).

TABLE I. Summary of the dynamical scaling universality
classes for crystallite steps. The geometries included are: Free �
an isolated step or island edge, Sym-cfn � steps symmetrically
confined by the nearby steps as in a step bunch, and Asy-cfn �
steps confined by an asymmetric potential, especially a facet
edge. The KPZ class is included for comparison. In the under-
lying Langevin equation (cf. Ref. [20]), l or n indicates whether
the equation is linear or nonlinear (has a KPZ term). C or N
indicates whether the deterministic part and the noise are con-
servative or nonconservative; M denotes mixed, with the former
conservative but the noise not. The superscript (2 or 4) indicates
the power of r in the linear conservative term, while the sub-
script gives the dimensionality of the independent variable.

Geom. AD � 2� z SED � 2� z

Free lM2
1�EW� 1

2
1
2 2 lC4

1
1
2

1
4 4

Sym-cfn lM2
2 0 0 2 lC4

2 0 0 4

Asy-cfn KYP [22] 1
3

2
5

5
3 nC4

1
1
3

2
11

11
3

KPZ nN2
1

1
2

2
3

3
2 nM4

2
2
3

2
5

10
3
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T; from all data sets, the��2-weighted average exponent is
2� � 0:149� 0:032 for facet edges and 2� �
0:262� 0:021 for isolated steps. With over 99.9% signifi-
cance (Student’s t test) these values come from different
parent populations. Each of the two results is within 1
standard deviation, �, of the respective predicted values.

To determine the roughness exponent �, system-size
dependence must be evaluated. For the confined steps
[Fig. 3(a)], we assume L	 R (the facet radius), so we
expect w2 	 R2�. (For the unconfined steps, the system
size is larger than the limitations imposed by the finite
measurement time, as discussed previously [5].)
Figure 3(a) reveals the effects of the facet size, since the
three upper sets of data at 350 K were taken on larger
crystallites (radius >100 nm). More quantitatively, in
Fig. 4 we plot the characteristic length w2 ~�=kBT vs facet
radius at 300 K and 350 K, using ~� � 0:339 eV=nm and
0:327 eV=nm [25], respectively. Fits to the data yield
exponents within the predicted range of � � 1=3 (solid)
to � � 1=2 (dash). Although there are insufficient data to
distinguish between these two values [26], the results
clearly show the effect of R on the fluctuations, providing
further evidence that effects of crystal confinement govern
the behavior of G�t�.

The facet-edge fluctuations manifest a different univer-
sality class of dynamic scaling from that of an isolated step
on a surface. Unlike previous predictions for step expo-
nents [2,3,7,27], this difference is not attributed to the type
of kinetics. Instead, the effect is predicted to result from the
coupling of the step chemical potential to the fluctuations.
For facet-edge fluctuations the step confinement is due to
an increase in local step chemical potential ��x� when the
step is displaced from equilibrium. The functional behav-
ior of ��x� results from a competition between the step-
repulsions from the vicinal region and the 2d pressure of
the adatom density on the facet, which in turn is defined by
the constraints governing the crystallite shape [9,12]. For a
step symmetrically confined on a vicinal surface, the con-
finement corresponds to a force that is quadratic in dis-

placement [28]. However, for the facet-edge step, the
asymmetry in the ��x� corresponds to an asymmetric
confining force that includes a cubic term in displacement
[29]. These conditions of the confined facet-edge step lead
to nonlinear terms in the equation of motion, as discussed
above.

To elucidate the physics of asymmetric confinement in a
conserved-volume system with SED-limited kinetics, we
have performed standard Monte Carlo (MC) simulations of
a smiple TSK model on a square lattice in which a single
active step is placed a distance d lattice constants from a
second fixed straight step, both steps have projected length
Ly [18]. For convenience we set kBT at the energy � of a
unit length of step and assume only entropic interactions
between the two steps. The active step evolves by
Kawasaki dynamics, with trial moves by ‘‘atoms’’ at the
step to neighboring sites along the step. Most of our runs
were done with Ly � 100, with 	108 MC steps per site;
consistent with the high value of z for SED dynamics, runs
with Ly � 200 are hard to converge. As shown in Fig. 5,
after random-walk (� � 1=4) evolution at the very outset
(first few points),G�t� quickly crosses over to isolated-step
(� � 1=8) behavior. For d � 4, once the step meanders
enough to be affected by the fixed step,G�t� crosses over to
asymmetric conserved-volume confinement (� � 1=11),
then eventually begins to cross over to flat late-time be-
havior of symmetrically confined steps. For d � 2, con-
finement is so great that G�t� progresses quickly from
initial- to late-time evolution, with no clear intermediate
regime. For d � 500, much larger than the mean squared
width of the step w2, the fixed step never significantly
influences the active one. Similar behavior is already
seen for d � 6. That the experimental value of 2� �
0:15� 0:03 is somewhat below 2=11 weakly suggests
(one-sigma level) that some physical effect may be acting
to reduce the growth exponent. The possibility of extreme
damping of fluctuations due to small step spacings, as for

FIG. 4 (color online). Product of squared saturation width and
reduced stiffness as a function of facet radius (facet edge only).
Circles and squares are room temperature and 350 K, respec-
tively. Solid and dashed lines are a fit to the 350 K data with
� � 1=3 and � � 1=2, respectively.

FIG. 5 (color online). Log-log plot of G�t� from MC simula-
tion using the toy model described in the text and sketched in the
inset, for spacings d between the active and the single fixed step
ranging from 2 to 500. The solid straight lines have the two
predicted slopes 2=11 and 1=4. We see that � increases smoothly
with increasing d, i.e., with decreasing asymmetric entropic
interaction.
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d � 2 in Fig. 5, is unlikely since our Pb measurements
correspond to d=w values 	5–10, well above the strong-
confinement regime. Thorough analysis of a more detailed
model would be needed for quantification.

Study of spatial correlations (in a log-log plot of h�x�y�
y0� � x�y0��

2iy0
	 y2�, not shown) likewise suggests that

� increases from 1=3 at d � 4 to 1=2 at d � 500, albeit
with linear scaling over less than a decade in y [18].

We have experimentally, for the first time, observed
evidence for a nonlinear term in equilibrium fluctua-
tions. The result agrees with predictions for the case of
geometrically confined fluctuations. Our measured value is
significantly smaller than the unconfined exponent of � �
1=8, and is within 1� of the predicted value of � � 1=11
for a universality class of dynamical scaling with � � 1=3
and z � 11=3. Although KPZ behavior has been earlier
linked to the behavior of facet edges [30], this is the first
time to our knowledge that a KPZ-type equation of motion
has accounted for equilibrium fluctuations. Change in the
fluctuations and equation of motion for steps in a perturbed
environment [31] may introduce new opportunities in con-
trolling the fabrication of nanostructures, or in new aspects
of their dynamic properties.
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