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We analyze in detail the fluctuations and correlations of $patia) Fourier modes of nanoscale single-layer
islands on(111) fcc crystal surfaces. We analytically show that the Fourier modes of the fluctuations couple
due to the anisotropy of the crystal, changing the power spectrum of the fluctuations, and that the actual
eigenmodes of the fluctuations are the appropriate linear combinations of the Fourier modes. Using kinetic
Monte Carlo simulations with bond-counting parameters that best match realistic energy barriers for hopping
rates, we deduce absolute line tensions as a function of azimuthal orientation from the analyses of the fluc-
tuation of each individual mode. The autocorrelation functions of these modes give the scaling of the corre-
lation times with wavelength, providing us with the rate-limiting kinetics driving the fluctuations, here step-
edge diffusion. The results for the energetic parameters are in reasonable agreement with available
experimental data for Pb11) surfaces, and we compare the correlation times of island-edge fluctuations to
relaxation times of quenched Pb crystallites.
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I. INTRODUCTION The little experimental data on such systems involve runs

Nanoscale islands consisting of2ta( atoms have cap- of worrisome duration or use probes that provide scanned
tured great interest over recent years for a variety of reason&ather than instantaneous images. To generate fullycharacter-
From a practical standpoint, they provide a precursor to thézed data, we turned to kinetic Monte CaflMC) simula-
formation of quantum dots, which, if assembled in a con-tions to mimic the equilibrium fluctuations of islands. These
trolled way, can serve as the basic ingredients of nanoscakimulations are the input of our analytic theory which, start-
electronic and mechanical devices. Many crystallites or naing from the excess free energy corresponding to the capil-
nomounds are best viewed as “wedding-cake”-like stacks ofary wave fluctuations of the island edge, provides the eigen-
such islands.They are the intermediary between a flat sur-modes of these fluctuations. Since the two-dimensi(2ia)
face and a small three-dimensional structure. In contrast teVulff plot relating the equilibrium island shape and the line
steps, which require vicinal surfaéefat often must be well tension in the azimuthal directions on the surface provides
characterized over mesoscopic regions, islands can be stugnly relative line tensions for various orientations, a key
ied in smaller-scale regions that are flat only locally. problem is always the determination of the chemical poten-
~ Of particular interest to us are the shape and the fluctuaja| \ of the island edge, which then produces an absolute
tions of the perimeter of these islands. The shape provideg|ation. This potential can be determined with surprisingly
information abo_ut the line tension or step free energy pepoond (~10%) accuracy from the spectrum of the modes of
ijength, from Wh".Ch qn% can compute the step stlffr:efss th,, e system. We compare these eigenmodes and the simple

escribes the “inertial” properties of steps. The *dipole” - .o "\ odes of the fluctuations and reach therhaps
mode of these fluctuations are known to underlie the dlf“fu—Sur rising conclusion that the anisotronv onlv affects the
sion of such islands, a concept now used routinely inI P 9 I h mod Py only
simulations®* However, shorter-wavelength modes are alsgonger wavelength modes. . .
of great interest, since they can be correlated with similar Another aim of the paper IS to examine the correlatl_on
fluctuations of steps and provide a way to assess, again, ttof the fluctuations of the Fourier modes and thereby to find

stiffness of the step and also the kinetic or atomistic diffusiort® rate-limiting process driving the fluctuations in a fairly
coefficient associated with the mechanism that dominates tH&alistic model. For our KMC simulations we sought a sys-
atomistic processes underlying the fluctuations. Until retem for which one could compute hop rates with good accu-
cently, attention was limited to structures for which crystalracy and for which there was quantitative experimental data
anisotropy could seemingly be ignored. with which to compare. Accordingly, we have chosen
Here we pay particular attention to the role of the inevi-Pb(111) so as to be able to compare with intriguing recent
table anisotropy of crystal surfaces, which around room temexperiments by Thirmest al.® This analysis gives the scal-
perature or even above it is typically sufficiently strong thating of the correlation time with the wavelength, that is the
it should apparently be taken into account in order to cordynamic exponentz, and provides us with characteristic
rectly characterize the morphology of the varioea)  times measured not only in MC steps, but in real time. Thus,
equilibrium structures appearing on surfaces and their dywe can compare directly with experiments and extrapolate to
namics. In this paper we focus on the line tension and stiff-different structures from the simple one considered here.
ness and their orientation dependence; we give an analytiSee Fig. ).
method to calculating these physical parameters from the Utilizing direct surface imaging techniques, especially
fluctuation of nanoscale islands. scanning tunneling microscog$TM), several attempts have
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©.9,9,9,2.9,9.09 0 000000 (The roughness exponent is believed to be 1/2 in our gases.
? ° The correlation times are theoretically identical to the relax-
ation times (or, in some cases, decay timesf surface
features,’ 18 such as decay and near-equilibrium build-up of
bulges (of either sign along the step edge that also have
(wavelengthL. Three-dimensional features like mesoscopic
(or smallej wires on surfaces as well as the surface corru-
gations in earlier studies by Mullif8;?° are typically de-
scribed by 1+1 dimensional models but may involve differ-
ent, more complicated mechanisms driving their fluctuation
FIG. 1. (Color online Geometry of the MC simulation. The Or decay. We will compare and discuss these various relax-
approximate mean raditR of the island and the radiug; of the ~ ation times in the paper.
container are illustrated. The paper is organized as follows: In the next section we
give an analytic solution to the decoupling of the Fourier

been made to measure and calculate step energies. Fron{@des of the system into the actual eigenmodes and recalcu-
theoretical viewpoint the various methods that used the ex@te the free energy functional of the edge fluctuations. The
perimental data for calculations can be broken down into twc;es_,ults and concl_usmns can be understood without the_reader
main groups. The first is based on a lattice model whicH90ing through this algebra; only the result expressed in Eq.
relates the island shapeadius and curvatujeto the tem- (;0) is us'ed later. In Sec. Il we introduce the KMC S|mulg—
perature dependence of the free energy and stiffness of tion and in Sec. IV use the results to calculate the chemical
Ising model in the low-temperature expansion, usually inpo_tennal ar_1d line tension. _In Sec. V we calculate the corre-
high symmetry directions. By fitting the functional shape oflation functlon_s of '_che Fo_urler modes and dedyce the scaling
the free energy with varying temperature on the experimentd! the correlation time with length, the dynamic exponent
data determined by the equilibrium island sHagives the e compare with available experimental data for(1R4).

Ising kink energy, which in turn provides the step energies>ection VI concludes the paper.

and stiffnesses. However, limitations of the Ising model to

describe surface structure have recently been noted. [l. FOURIER MODES, EIGENMODES

The other method is based on a step continuum model . . —_
which makes use of stochastic differential equations to de- The relationship between the equilibrium crystal shape

scribe the fluctuations of straight stépr island edgesto and the surface tension or, in our 2D case, between the equi-

viewed as nearly circular closed-loop steps. Thus, the initial
calculations for island fluctuations assumed isotrBpthe

ibrium island shape and the line tension of its edge can be
stablished by the minimization of the free energy functional

ower spectrum of the Fourier modes of the ste quctuationOf the island edge. The orientation-dependent line tension
P P P ?(n) is defined as the work per unit length necessary to

were calculated and adapted with appropriate modlflcanonCreate theds line element with normah to the perimeter.

to nearly circular island shapéslf the anisotropy turns out . . .
to be strong, it cannot be handled as a perturbation; a com-l:he free energy is the integral of this work along the whole

plete anisotropic calculation without any such assumption?e”meter' The eq“"'b”“m island shape at a constant tem-
becomes necessary peratureT, number of particleN, and are&,, is determined

This challenge was recently taken up by Khateal, 13 by the minimization of the free energy functional with re-

who give an approximate form for the free energy functionalSPect to the shape with _the constraint that the island area is
and calculate the chemical potential integrating all the Fou_consfta'nt, thyplcally using the method of Lagrange
rier modes in the system by using the generalized equipartmump“ers’
tion theorem where the modes are buried in a sum. However, _

these modes are coupled, so any one mode migsigg due FIRR, 6] :jg B(n)ds- Xf do

to lack of experimental resolutigpin the sum can contribute Leq 2

to a deviation from the precise value of the chemical poten- 2m ) 2m R2

tial by itself and through its coupling to the other modes as = By6)(R+R)Ydo~ ?\f 3d‘9-
well. In contrast, our approach of analyzing individual 0 0

modes gives more insight into the extent to which this cou- (1)

pling should be taken into account, and provides the chemi- L .
cal potential in amathematically controlled way. Here the second line is in polar coordinates watthe polar

The autocorrelation function of fluctuations of step edge2n9le andr(0) the radius of the equilibrium shape. The dot
and correlation times have been analyzed theoretically iffénotes the differentiation with respect to the anglés the
Fourier space based on the Langevin formalt$df,and ex- Lagrange multiplier(which actually turns out to be the
perimentally in the context of straight-step fluctuations oncnemical potential and ¢ is the angle which characterizes
Si(112) (Ref. 19 and S{001) (Ref. 8 surfaces for relatively t_he vector normal to the shageee Fig. 2 ds ano_lda are the
long wavelengths. The rate-limiting kinetics driving these!lN€ €lement and surface element, respectively. Formally
fluctuations are determined by the dynamic exponent, whickninimizing theF=F[R,R, 6] functional, the Euler-Lagrange
also sets the universality class to which the system beltfhgs.equation gives a relation between the equilibrium island
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FIG. 2. (Color onling Schematic showing variables used to ana-  F|G. 3. (Color online Extension of Fig. 2, showing instanta-
lyze equilibrium island shape neous island shape, for analysis of fluctuations. For a particular
azimuthal direction,d, the deviation from the equilibrium island
shapeR(6) and the orientation dependent line tensiBty), shaper, its derivative with respect té, r, the unit vector normal to
and between the two angles involvedwhich depends on t_he instantaneous shapg, and the corresponding angle, are all
the polar angle and the equilibrium shapé2 time dependent.

2

R .
B =N——" 1 R
R2 + R2)1/2 A ==—, (5
¥ _oo ( ,) . 2) 2R2 4+ 2R~ RR
R R
=0 - arctan
v R 1 R?
N : BO) =5 —— . (6)
However, in this procedura is a prefactor and cannot be R°+2R°-RR

determined, leaving the relation relative. Equati{@nis the
seminal Wulff construction in polar coordinates.

In order to determine the chemical potential, the therma . ; .
fluctuations of the island edge can be utilized. In this case th prmations at the microscopic Ieyel are'due to the thermal
free energy of the island changes as its shape changes duerggvgment_of adatoms surrqundlng the !sland constantly at-
the fluctuations, and the free energy is certainly not at itéaCh'ng. to its e_dge and coming off from it . .
minimum but depends on the island’s instantaneous shape. To d!agonahze the free energy one rewrites the integrand
Then the free energy of this instantaneous shape is the intd Fourier form,
gral over the line elements of the shape with their corre- 1 *
sponding line tension, which changes with time as the orien- FlLrkt= 277)\% (A + MNBr)' (07 (D), @)
tation of the shape element changes, '

and provide the weightings of the fluctuations of the defor-
ations characterized by and?, respectively. These de-

where = [27r(9)exdik6]dé and similarly for A, and By.
P The Fourier modes are coupled due to the anisotropy, which
Flr.r.6:1] ng pnds is contained irA andB as we shall see shortly. Hene=0 is
o the expansion-contraction modes1, which we called the
- 24 (B4 )2)12 dipole mode in the Introduction, is related to the Brownian,
0 AR+ 17+ (R+))72d6. (3 diffusive motion of the islandn=2 is a quadrupolar distor-
] tion, i.e., an elongated shape with two maxima and two
Herer andr are time dependent and describe the deviationminima in perpendicular directions, and so on. The Fourier
of the instantaneous shape from the equilibrium one agomponents have Hermitian properties si#¢é) andB(6),
shown in Fig. 3. The angle is also time dependent since the factors associated with the equilibrium island shape, are
now it depends not only oR andR as in Eq.(2), but also on  real functions; henced ;=A’, B;=B;, andr_;=r;.
r andr. Considering only small deformations from the equi-  The free energy of E(7) can readily be cast into matrix
librium shape(as it is usually assumed in the capillary wave form,
theory) and also small slope deviations from the equilibrium

. = T
slopeR, so thatr, r <R, the Taylor expansiofboth in 8 and FLrit]=2mAri(A+MBN)r, 8)
in the square rogtin these small parameters leads to thewherer is a vector containing the Fourier components of the

functional instantaneous island shage,andB are Hermitian matrices,
. . - [Almn=Am-n [Blnn=Bm-n, andM =N are diagonal matrices
FIr.f.6:t] = )\j 1 (R-RD” (4)  With the wave numbers along the diagonal.
e 0 2R2+2R%-RR As in practice there are only a finite number of atoms on

the edge of the island, we discretize the problem. If the num-
This functional contains three quadratic terg6)r?,  ber of atoms on the edge iN2there are as many modes
Q(O)rr, andB(6)r2 The cross tern® drops out after taking in the system; as we will see in Sec. IV, to analyze the
the ensemble average; both the two other terms are detenight number of modes is crucial to the problem. Now,
mined by properties of the equilibrium island shape, if r contains ther, Fourier components from N+1
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through N, the Fourier transform is discrete ang,  case. Most obviously, in numerical experiments one can ob-
=3 \.aff exdi k jw/N], wherer/ is the deviation from the tain far greater control, with no worries about anomalous
equilibrium shape in th@=j /N direction. behavior due to unsuspected stray contaminants. Typically
The A, and theB, can be obtained similarly, andl andB one can generate much more data. In the present experiment,
are finite cyclic Hermitian matrices, meaning that their diag-We do not need to worry about the scan rate of the probe; our
onal elements are the same. They also reflect the symmetf§ttice configurations are instantaneous snapshots. Another
of the equilibrium shape as, e.g., in our case due to the si@dvantage of computer simulations will also become clear in
fold symmetry the principal diagonal is filled with,, the the next section: it allows us to analyze correlation times.

sixth to the right withA ¢, etc. ASM and N are the same Since our original motivation was to simulate the relax-

diagonal matrices the/BN product keeps the Hermitian 2uon of a Pb crystallite with eL11) facet, we place a nanos-

property ' cale island on a triangular lattice. We surround it by a non-
n thé isotropic casgwhen the equilibrium shape is cir- permeable circular container of radi&s to let the system

- _ _ reach its thermodynamic equilibrium, in order to measure its
culan, A(6)=0 andB(6)=1/2 for all 6. After the Fourier o0 iliprium fluctuation€324 Thus, this geometry corre-

transformation this give&\ =0 (zero matriy andB=(1/2)1  sponds to an island placed on top of a facet of a crystallite
(diagonal matrix. The anisotropy comes into play when the (with an infinite Ehrlich-Schwoebel barrjerNote that by
equilibrium shape is not circular, so that¢) andB(¢) are  adjusting the permeability one can tune the overall decay rate
not constants and their higher order Fourier components filbf the island, which in this paper we fix at zero.

the (off-)diagonals. These off-diagonals couple the Fourier Since the temperature of the systems of interest is low

modes. compared to the energy barriers of adatomic hopping, we
Due to Hermiticity the above matrix form is diagonaliz- have chosen to use the Bortz-Kalos-LebovitBKL)
able, continuous-time MC algorith as it is best suited to low
* temperature systems and as its rejection-free method allows
F[{h};t] = 2\ 2 Ahghy,, (9)  us to greatly improve the efficiency of the simulations com-
n

pared to traditional Metropolis algorithms. The typical tem-

and the eigenvalues, of the A+MBN matrix are all real. Pperatures are aroun@./4 or less for the two-dimensional
As we see beloyin Eq. (10)] these eigenvalues are related lattice gas of adatoms on the surface. UsingriHeld way
to the Strengths of then eigenmodes' which at every time method to keep track of the available MC moves, we could
instant are just the transforms of thgft) Fourier modes of improve the efficiency even further. Because of the small
the instantaneous island shape. Again due to Hermiticitypumber of energy barriers, thefold way approach(five-
there is a unitary matrix) which transforms Eq(8) into Eq.  fold) is superior to the binary tree implementation of the
(9) and gives the linear relationship betweenand h, r  BKL algorithn?® in this case.
=Uh, where the vectoh contains theh, as its elements. Since we are not interested in all the details of this surface

This decomposition of the free energy into eigenmodes in the simulations, but only try to capture the main mecha-
Eq. (9) facilitates the calculation of the Lagrange multiplier nisms, we do not take into account tA&C stacking struc-
\. In equilibrium, according to the equipartition theorem, theture of the fcc lattice of Pd11). Hence, the top layer con-
ensemble average of each mode, representing a degree Siftutes a triangular lattice with perfect sixfold symmetry.

freedom, must have the same Boltzmann energy, Furthermore, we assume that adatoms can only hop to
. nearest-neighbor sites, and that the energy barrier the adatom

—_l must overcome is determined by the occupation of the eight

277)\An<|hn|2)=%kBT. (10) sites surrounding, as nearest neighbors, the two sites in-

volved in the hopping process.
A, and can be determined from the equilibrium island shape The energy barriers for hopping rates are mainly based on
and the fluctuating island perimeter, respectively. HEfe the semiempirical embedded atom met{&EAM)?’ using
must be a constant in, the modes, as the temperature andErcolessi's glue potentigd&for the Pl§111) surface to derive
the chemical potential,, are fixed macroscopic parametersthe bond-counting energy barriésactually used in the
of the island. From this equation one can determine the sam@mulations(see Table ). We use variants of simple bond
\, in principle, from any mode. Thus, either experimentally counting. In what we term the break-three scheme, we count
observing island fluctuations or using Monte Carlo simula-only bonds that have been broken with the three sites “be-
tions one can determirt,, which in turn provides\. This\ hind” the move. If we also include bond breaking with the
was the missing parameter to determine absolute line tertwo sites to the left and the right of the mowdenoted side
sions, and plugging it back into Eq2), we get the line siteg, we have a break-five scheme. The three sites in front

tension in all azimuthal directions. of the move do not affect the energy barrier in our simula-
tions. The break-three and break-five schemes both satisfy
IIl. KINETIC MONTE CARLO detailed balance in a straightforward fashion. They both

should give the same results for static parameters, since they
The scarcity of extensive experimental data leads us tare both nearest-neighbor schemes. Comparison runs using
use Monte Carlo methods to simulate the behavior of thehis feature provided one te@mong manyof our program.
system. However, use of numerical rather than experimentalowever, the kinetics obviously differ because the energy
data for testing of formal ideas has many advantages in anyarriers tend to be higher for the break-five scheme, slowing
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TABLE I. Tabulation of some of the energy barriers used in N I L R |
KMC simulations of Pkl11). The energies in columns 2 and 3 were ° I
computed by Haftel using SEAMRef. 27 with glue potentials 0.5F -
(Ref. 28. In the last column are the energies used in the simula- -
tions.[The edge-diffusion energy barrier in the break-three scheme 0.4 -

is closer to the corner rounding barrier of SEAM than to the actual - o2 o
straight-edge diffusion barrier of SEANsee text, the latter has a = 3 :‘sfiw . ca 2. .’j.“%_
much lower barrier: 108 meV; unfortunately, the bond-counting I o'vﬁmwwﬁ’ff ?WMW%%%
method does not distinguish between these fwo. 02k i
Energy Energy Break-three 0.1k ]
Process (meV) (K) energy(K) o
B A L 1 L 1 ol | L 1 L
Surfacg dlff.usmn 70 812 812 Q60 0 0 5 20 0 %0
Edge diffusion 237 2749 2319 n
Break 1 bond 192 2227 2319 _ ) _
Break 2 bonds 359 4164 3826 FIG. 4. _(Co'lor online Eigenmodegopen square)sand'Fourler
modes(solid circles at T=250 K, R=20a;, R.=408;. E,, is mea-
Break 3 bonds 467 5417 5333 sured in atomic spacing units.
Attachment 812
Out 70000

very long, consistent with other repof&3° Ensemble aver-
ages are taken from 100 to 3000 different runs starting from
the kinetics significantly. Since the energy barriers in thethe same initial configuration, but with different random-
break-three case are closer to the calculated barriers, weumber seeds. In each run, after equilibration, we get statis-
choose to use this scheme in our simulations. tically independent fluctuations at time intervals again deter-

In Table | we list a few energy barriers calculated by themined by the relaxation time of the longest wavelength
above-mentioned SEAM and the corresponding break-threanode. We take such independent “snapshots” of the islands 5
scheme barriers. Surface diffusion is when an adatom has rto 200 times in each run, so that we typically have 10 000 to
other adatoms in the surrounding eight sites in SEAM calcu70 000 islands over which to average.
lations; in the break-three scheme this barrier also applies to
all cases in which any of the side sites or the sites in front are
occupied. This is the reason why the attachment barrier is the |v. CHEMICAL POTENTIAL, LINE TENSION, LINE
same as the surface diffusion barrier. Edge diffusion is the STIFENESS
case in which a side site is occupied, as is its nearest neigh- ) . . )
bor “behind.” The energy barrier associated with this process As described in detail in Sec. I, the energetic parameters
is 237 meV whereas if there is a nearest in the front as welPf the island edge are determined by the island shape and its
so that the adatom rolls along three others on one side trfedge fluctuation. The Wulff construction provides the rela-
third in the front seems to assist the hop a great ¢dbast t|pnsh_|p between the relative line tension in f[he_azmjuthal
according to the SEAM datas the barrier is 108 meV. The directions on the_ crystal_surface and the equllllbnum island
break-three scheme has the same barrier for these two prébape, and the information from the fluctuatiaffis,*) of
cesses and also for any other in which only one bond i$ach mode in Eq(10) gives the chemical potential that
broken. The break-two-bonds barrier corresponds to a hoftakes the Wulff construction absolute in Eg).
with two occupied sites in the back, break-three bonds is From our KMC simulations we determirig, of Eq. (10);
when all three sites are occupied in the back. The very higlt is depicted in Fig. 4 forT=250 K and R=20a; island
“out” energy barrier assures that adatoms cannot escape thdius. Since the perimeter is about &20ve use 120 points
container; i.e., the permeability is zero. to describe the circumference out of the 360 available.

The basic parameters of the surface investigated and the We calculateE, both using the transformation to the
KMC simulations are the following: The nearest-neighbor€igenmodes taking into account the anisotropy, and also pre-
spacinga; on the Pi111) surface is 3.50 A. The typical tending the islands were isotropic. In this latter case the
island diameter R is 40a; to 80a;, while the container di- hn=r, are simply the Fourier modes, and,=(1/2)n*
ameterR; ranges from 12.5% to 300% larger than the island. The Fourier modes and the eigenmodes are nearly indis-
We examined temperatures 250 K, 300 K, 350 K, and 400 Ktinguishable(cf. Fig. 4 except for long wavelengthsmall
In each MC snapshot of the island, we measure the islan@ave numben). The “fluctuations” in the Fourier modes for
radius from the instantaneous center of masslitequian-  longer wavelengths are the only signature of the anisotropy.
gular” directions wherd=360 if not indicated otherwise. ~ This effect is smoothed out by transforming to the eigen-

We start the simulations from a nearly circular shapedmodes.(Only the longesfn=2] wavelength mode seems to
configuration and let it relax to equilibrium, starting the MC stand out after the transformation. We are still puzzled that
measurement of the fluctuation and shape after the longetiie longest wavelength is so special and does not couple to
wavelength mode has passed its correlation time. Especiallyne shorter wavelength modes. We give a more detailed ac-
at the lower temperatures, the typical equilibration times areount of the analysis of the coupling elsewh&heThe
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chemical potential can be determined from either the Fourier
modes or the eigenmodes using their plateau regibes
tween n=4 and n=40); however, since only the longest-
wavelength modesif any) are measurable due to the poor
temporal resolution of present-day experimental apparatus
(see the results for correlation times in the next segtithe
transformed modes serve better for determining chemical po-
tentials. Findingg, thus from these intermediate wave num-
bers, givesE,=0.27%2 and through Eq(10) and Eq.(2)
B=34.1 meV/A for the line tension for the high-symmetry
direction. This value reasonably approximates the experi-
mentally obtained ones for PH1) at T=393 K, Bia
=27.9 meV/A andp;5=26.5 meV/A for A- and B-type
steps, respectively, considering the crude approximation of
bond-counting mentioned earl#r.In our simulations the
two directions corresponding to the two different types of
steps are intrinsically equivalent because we assume sixfold

PHYSICAL REVIEW B 71, 035422(2005

0.5 T T T T T
04 ; -
,.u%u ;
0.3 ET R .
i e N
02 ;W/’. \\'\—vr;
0.1F _
0 1 1 . L L
-90 -60 -30 0 30 60 90
n

FIG. 5. Fourier modes foN=90 points(open squargsand N

symmetry as the available values for energy barriers that we180 points(solid circles on the perimeter aT=250 K, andR

use in our KMC do not distinguish between theand B
directions, as mentioned in Sec. IIl.

=20a;, R;=40a;. E,, is measured in atomic spacing units.

At higher temperatures the Fourier modes deviate les§tiffnesses in the azimuthal directions on 1d1) surface
from the eigenmodes for longer wavelengths, as expectetbee Fig. 6. The equilibrium shape is more and more “fac-
since the equilibrium shape is more nearly circular and lessted” in the six main directions as we can expect, the stiff-

affected by the underlying anisotropy.

ness is about 3 times bigger in the direction of the “facet”

In earlier work®22in which experimental data were used than in the direction of the corner far=350 K, whereas this
as an input of similar calculations, there is a sum over thdactor is about 20 fof =250 K, so that it spikes out much

modes, but because those modes are buried in a sum in theore, but still has only a smaller effect on the spectrum as
generalized equipartition theorem, one cannot see whethghown before.

they are the modes which satisfy, at least to a certain extent,
the equipartition theorem. In those experimental data the cor-
relation times of the modes are not known and the effect of
the finite temporal resolution of the experiment may also
interfere with the fluctuations which should in principle be
determined from “snapshots,” i.e., fast scanned images—fa¥¥
at least compared to the correlation times of the modes use
in such calculations. We shall elaborate on this in the next
section.

For the same temperature we do the same measurement .
above, but monitore8l=180 points on the perimeter instead
of N=360. The Fourier modes are depicted in Fig. 5. There
are approximately 120 atoms on the perimeter, but since we
cannot divide the 180 perimeter points into 120 equiangular
ones to do a Fourier transform, we ule=90 or N=180
perimeter points as an approximation and observe how the

plateau changes from what we saw in Fig. 4. The comparisor _

V. AUTOCORRELATIONS, CORRELATION TIMES,
KINETICS

Inspecting the autocorrelation functions in Fourier space,
e find that the longest wavelengths have surprisingly long

of these two plots from MC simulations might help analyze -
experimental data with limited spatial resolution as well, as it
shows how the Fourier modes behave in case of undersamr
pling (N=90) and oversampling(N=180. The under-
sampled modes give higher values ffy than expected for
modesn|> 25, as if those modes took over the energy of the
modes that are missing from spectrufmamely 45<|n|
<90). In oversampling there is not enough energy for all
modes in the sampling, so they go below the expected value
of E,.. This is the simple reason for the peculiar shape of the
two curves in Fig. 5. The value &, can still be determined
quite accurately by using the value at which the two curves

0

FIG. 6. (Color online Polar plot of the equilibrium island shape

start to separate &t|= 10, providing basically the same re- R(6) (outer dot$, the relative line tensiop(¢) (inner dot$ and the

sult for E, as before.
From the equilibrium island shape using the Wulff con- at

relative line stiffnessB(y) (the innermost curvein arbitrary units

T=350 K, R=20a;, R;=40a;. (Note the difference betweed

struction, we have determined the relative line tensions anend .)
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correlation timegin CPU time. Thus, for our fairly largeat N
least for the computgsystems, it is hard to reach full equili-
bration needed to make the desired MC measurements. Most
surprising is that the relaxation time of the longest-
wavelength modes is 10 to 100 times longer than the relax-
ation time of the islands to their equilibrium shape. Hence,
estimating the thermalization time from just the shape relax-
ation may be very misleading, possibly giving problematic
results not characteristic of equilibrium. Such behavior may
include illusory strong-mode coupling, or stronger fluctua-
tions in autocorrelation functions even in case of good sta- = = = = =
tistics. 0 2 4 6 8 10
The temporal correlations can be characterized by t (10° MCS)

_ _ 2 2B
Gt) =(r(to = r(to +nI5 =t (1) FIG. 7. (Color online Correlation functionG,,(t) of the Fourier
Since we measure correlations in equilibriutg,must be  modes forn=2,3....,10 from top to bottomT=400 K, R=20a,
greater than the thermalization time of the system. Héje R .=40a;.
is the fluctuation from the equilibrium shape, as before, and
depends on the anglé, and time. The growth exponeéh8 |argest contribution to the fluctuations and relaxes the most
characterizes the temporal behavior of the fluctuations. Thgjowly. From the wavelength dependence of the correlation

average is taken over angles and an ensemble as well.  time, we also determine the dynamic exponent and the rate
The typical behavior of the correlation function is that the |imiting kinetics.
exponentd remains at 1 for very short timé3typical of the In the KMC simulations forT=400 K andR=20a,, the

ballistic behavior of diffusion at very short times, and then|gngest-wavelength mode=2, is 12@; or 420 A long.
crosses over to a value which characterizes the rate-limitingrom Fig. 7, its relaxation time is,=5.5X 10’ MCS (Monte

kinetics driving the fluctuations of the island edge; eventu-Carlo steps To give a crude estimate fop in real time, we
ally it crosses over to zero as the correlation function satuconsider the hopping rate
rates due to the finite size of the system.

Pure rate-limiting kinetics have been thoroughly v=vp expl - BEy] (15
investigated:+32-34n these well-defined caseg,can take 1o pe the product of the attempt frequency, which we identify
the values 1/4 for attachment-detachment kinetics, 1/6 fojyith the Debye frequency of Pbiy=1.83x 10'2 Hz 35 and
surface diffusion, and 1/8 for step-edge diffusion, where thghe Boltzmann factor of the energy barrier of a particular
last mechanism gives a very “slow” dynamics. There can bgop. Hence, a MCS in this Monte Carlo simulation is equiva-
crossover regimes between these pure cases, leading to V@nt to a 14y, time increment in real time; thus, the relax-
ues of 8 between the quoted values, and certain geometriegtion time in this particular case i5=0.030 ms.
can also effect the value @ One should also see crossovers  As expected, these correlation times change dramatically
as length scales vaty:**3¢ with temperature as the underlying physical phenomena are

To investigate the length-scale dependence of the correlgctivated. ForR=20a; at T=350 K, 7,=2.0x 108 MCS or
tion function, it is more appropriate to use the correlationg 11 ms, which means four times longer relaxation compared

function in Fourier space, to 400 K, while for 300 K7=7.1x 10° MCS or 0.39 ms,
Gh(t) = (rp(t) — ra(to + )% (12)  Which represents slowing by another factor of 4.
We note here that we did two sets of KMC simulations.
=C,(1 - exd~|t|/m), (13)  The simulations described in this paper satisfy detailed bal-

ance and sample the canonical distribution, while in the other
where theC, are two times the amplitudes of the fluctuationsset we choose the energy barriers to be those calculated by
of the modes analyzed in the preceding section, andrthe SEAM, which explicitly violate detailed balance and energy
are their correlation times. The wave-number dependence @fonservation. Interestingly, the latter simulations tend to give
7, Is known to have an intimate relationship with the expo-closer agreement with experimentally measured correlation
nent inG(t), namely time data. We do a comparison of the results of these two
2 sets of simulatiorf§ and upcoming experimental d&talse-
T, ~ N7, (14)
where.
wherez is the dynamic exponent, and the scaling relationship The scaling of the relaxation time wittwavelength can
betweenz and 8 here isz=(1/2)/ 8.6 The correlation time be seen in Fig. 8. In the plotted wave-number range, overall,
increases with increasing wavelength, with the scaling expos, basically behaves like=4, suggesting that the mechanism
nent z. For larger exponeng, the correlation times grow driving the fluctuations is step-edge diffusion which is in
more rapidly, so that for longer wavelengths the correlationsgreement with previous observatichis!
and the dynamics in general can slow down very “quickly.” Comparison of these length scales and their correspond-
Here we pay particular attention to the longest wavelengtling relaxation times with existing experimental observations
and its corresponding correlation timg, which makes the might give interesting physical insight. For example, in the
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. . . . ments. HavingL. and the energy barrieE, at a certain
3 temperature, one can also make at least rough estimates of
] the effective lengths at other temperatures using this scaling
argument. This picture is certainly a result of simplification,
since there is a whole set of energy barriers in such a com-
plex physical system as a crystal surface, and the various
atomistic mechanisms governed by different barriers freeze
out or get activated at different temperatures, depending on
10°F . their corresponding energy barriéfs.

F ] Comparison or extrapolation to other materials is possible
if the energy-barrier set is similar to that of @h1). Then
2 3 4 5 the Debye frequency sets the time scale while the energy

n barriers set the temperature scale, as one can readily deduce

it from Eq. (15). On the other hand, if the energy-barrier set

a log-log scale. The MC datéolack circles showz=4 which cor- is completely different, as for example for 3ijt gives rise

responds to step-edge diffusion. The dashed lines represént, to a different rate-li_miting mechanism namely attachment-
and 2 (from top to bottor) dynamic exponentsT=400 K, R  detachment for a wide range of temperatures, and such ex-

=20a;, R.=40a;. trapolation is not possible, but a whole set of simulations
should be done for the group of materials with this type of

experiment by Thirmeet al,5 a small Pb crystallite, whose barrier.
top facet has a perimeter slightly larger than 1200 nm, re-
laxes at 383 K to its equilibriumior at least metastable
shape in 1-2 days after being quenched from a higher tem- In this paper we deduce energetic and kinetic parameters
perature. Since the crystallite is 30 times larger than thef a particular metal surface below its roughening tempera-
longest wavelengths in our KMC simulations, the relaxationture. We use kinetic Monte Carlo simulations to mimic the
time 7,10 Of the longest wavelength mode of the perimeterfluctuations of large nanoscale islands on these smooth sur-
of the topmost island on the crystallite is &1(° times  faces in order to determine equilibrium island shapes, aniso-
longer if the rate-limiting kinetics is step-edge diffusion tropic line tensions in the azimuthal directions of the surface,
(though, of course, attachment-detachment and terrace diffand the correlation times of the Fourier modes of the fluc-
sion could be present but not rate limitingpecifically, the tuations.
value of 7gax IS 24.3 s based on our KMC data at We derive an analytic expression for the chemical poten-
=400 K. From these data it seems that the island fluctuatiotial of the island edge from the equilibrium island shape and
is much faster than the decay of the three-dimensi@@@2)  the associated capillary wave fluctuations around it. This
structure; thus there is no direct relationship between thehemical potential sets the scale for the anisotropic line ten-
fluctuation and the decay. sion (the azimuthal dependence)afhich is usually known
The above arguments lead to a general view of the evoenly up to a multiplicative constant. To account for the an-
lution of surface structures. For Pb in the temperature rangisotropy of the line tension, this procedure contains a trans-
350 K—-400 K, one observes the slow development and reformation from the Fourier modes of the island edge fluctua-
laxation of fluctuations at them scale in experiments. As- tions to the true eigenmodes. However, detailed analysis of
suming that the rate-limiting kinetics retain the sam4  the Fourier and eigenmodes of the fluctuations reveals that
range for even longer wavelengths, structures of ® the difference in their spectrurfFig. 4) is unexpectedly
size—step edges, islands, etc.—take days to years to changmall.
due to the large dynamic exponent,so in effect they look The obtained line tensions—one of the most important
frozen under laboratory conditions. This is the reason whyphysical parameters of steps on surfaces—are in the correct
these monolayer structures do not show any large-scaleange compared to known experimental results, even in this
changes while on a shorter scale they can be very active. Themplistic model, with its rather small set of hopping-energy
structural changes in the 3D crystallites are even slower, thelyarriers in the KMC simulation.
are even more stable. We have analyzed the effect of spatial sampling, which
Lowering the temperature makes the length scales—aghows that the long wavelength modes are hardly affected by
which evolution or relaxation can be observed—the undersamplingoversampling—too low (too high reso-
exponentially shorter, which is readily understandable if ondution of imaging, which means that there are feweore
looks at the converse of the above arguments. The lengtkample points on the step edge in the image than actual at-
scales with time liké ~ 74 (for z=4) whereasr scales like  oms in the experiment—whereas moderately short and short
1/vin Eq.(15). Thus, the length scales with temperature likemodes change significantly.
| ~exd Ey/4ksT]. This basically means that given the tem-  The analyses of the correlation times of the Fourier modes
perature and the time scale of observation, one can calculaghow that nanoscale objects fluctuate on the mgstéime
an effective length scald,. on which the structures on a range at moderately high temperatufd®0 K) on Pb sur-
surface are in equilibrium with their surroundings and ac-faces. Since the atomic processes are activated, this time
tively changing on the time scale of, e.g., STM measurescale changes dramatically with temperature.

FIG. 8. (Color onling Correlation timer,, vs wave numben on

VI. CONCLUSIONS
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In closing, we comment on the equilibration time of stepculties of interpretation. The “speed” of the fluctuations can
structures in Monte Carlo simulations. The full equilibration be tuned by changing the temperature, but one also must take
of these structures is signalled by the correlation time of thénto account that lowering the temperature decreases the size
longest wavelength mode, which can be very 1a{igeCPU  of the fluctuations, rendering the measurement harder.
time) for the system sizes and temperatures studied in this Finally, the extrapolation of our results for nano-objects to
paper. To do correct MC measurements in equilibrium, ongnespscale features makes possible comparisons of correla-
must pass this time; otherwise, results for “equilibrium quantjon times of modes of certain wavelengths, as well as of
tities” can be very misleading, as is well known from non- yecay or of relaxation of larger structures to their equilibrium
equilibrium statistical mechanics. If one does not look atty. s This comparison reveals that the relaxation of 3D

corrglation time? of Fourier !T?Ode.& very careful analysis isstructures of the same lengths are slower than that of the
required to avoid such equilibration problefffsRecently, simple step or monatomic high islands, due to additional

several papers have appeared concerning correlation funﬁﬁechanisms and phenomena like a possible Ehrlich-

B s e e oo, Schwocbel Larer vy low cetachment rte and petiaps
elasticity that affect the 3D structure.

between them They might well suffer from these problems
since this equilibration time scales with system size as the
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