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The so-called generalized Wigner distribution has earlier been shown to be an excellent approximation for
the terrace width distribution �TWD� of vicinal surfaces characterized by step-step interactions that are per-
pendicular to the average step direction and fall off as the inverse square of the step spacing. In this paper, we
show that the generalized Wigner distribution can be derived from a plausible, phenomenological model in
which two steps interact with each other directly and with other steps through a position-dependent pressure.
We also discuss generalizations to more general step-step interactions and show that the predictions are in good
agreement with TWDs derived from numerical transfer-matrix calculations and Monte Carlo simulations. This
phenomenological approach allows the step-step interaction to be extracted from experimental TWDs.
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I. INTRODUCTION

Vicinal surfaces consist of terraces divided by steps which
interact with each other via a variety of mechanisms, includ-
ing elastic, dipolar, and indirect electronic interactions. Since
these interactions directly determine the distribution of ter-
race widths, the use of terrace width distributions �TWDs� to
determine the step-step interactions is an important goal.
Theoretical attempts towards this goal have produced differ-
ing results depending upon specific approximations �1–7�.

In many cases, the potential energy V due to the interac-
tion between neighboring steps can be written in terms of the
distance L between the steps as

V�L� =
A

L2 . �1�

This model of interacting steps can be mapped directly onto
the Calogero-Sutherland model �8,9� of interacting spinless
fermions �or hard-core bosons� in one spatial dimension �Fig.
1�; in this picture, the direction along the steps �the y direc-
tion in “Maryland notation”� is interpreted as time, and the
steps themselves are interpreted as the world-lines of the
spinless fermions. The static properties of this system �such
as the TWD� depend on A only through the dimensionless
interaction strength

Ã �
�̃A

�kBT�2 , �2�

where �̃ is the step stiffness, kB is Boltzmann’s constant, and
T is the absolute temperature. The TWD can be calculated

exactly �8,9� when Ã=−1/4, 0, or 2.

An argument �10� from random matrix theory originally
due to Wigner suggests that these three exact TWDs can be
approximated by

P�s� = a�s� exp�− b�s2� , �3�

where s�L / �L�, the constraint �s�=1 gives b� �see Eq. �32��,
a� is a normalization constant, and the relationship between

Ã and � is �8,9�

Ã =
�

2
��

2
− 1	 . �4�

These “Wigner distributions� have proven quite successful
and have been widely used �11–13� in nuclear physics �in
which case s is the spacing between energy levels�, random
matrix theory, quantum transport, and universal conductance
fluctuations. There have been a number of attempts �14–20�
to interpolate between these three special cases.

The so-called generalized Wigner distribution �21� is de-
fined by the simple assumption that Eq. �3� and Eq. �4� re-

main valid for all values of Ã. �This is only reasonable for

positive or weakly negative values of Ã �22�.� The general-
ized Wigner distribution appears to be in better agreement
with computer simulations of vicinal surfaces �23� than its
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FIG. 1. Steps on a vicinal surface can be mapped to the world-
lines of spinless fermions or hard-core bosons in one spatial dimen-
sion �the x direction�. The “time” axis corresponds to the y axis on
the vicinal surface.
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competitors, and is in reasonable agreement with many ex-
perimental TWDs �25�. Furthermore, it has been proved that
for rational values of �, P�s��s� as s→0 �26–28�. However,

for arbitrary values of Ã there is no clear relation between
random matrix theory and the Calogero-Sutherland model.
This paper provides a formal and physically intuitive justifi-

cation for Eq. �3� for arbitrary values of Ã; the resulting
formalism allows us to consider more general step-step in-
teractions than Eq. �1�. Some of these results have been men-
tioned briefly elsewhere �23� but are explained here in detail.

The organization of this paper is as follows. In Sec. II, we
show that the generalized Wigner distribution can be derived
from a phenomenological model, which reduces, under cer-
tain circumstances, to the two-particle Calogero model �8�.
This leads, by separation of variables, to a one-variable
Schrödinger equation that determines the TWD. We extend
this treatment to nontrivial examples in Sec. III. The signifi-
cant process of extracting step-step interactions from experi-
mental TWDs is discussed in Sec. IV. Finally, we conclude in
Sec. V with some possible extensions of this work.

II. PHYSICAL EXPLANATION OF THE GENERALIZED
WIGNER DISTRIBUTION

A. Deriving a Schrödinger equation from the generalized
Wigner distribution

Given a system of steps with interactions of the form
specified by Eq. �1� and a TWD given by the corresponding
generalized Wigner distribution �Eq. �3��, we can define a
real wave function such that �0

2�s�� P�s�,

�0�s� = a�
1/2s�/2 exp�− b�s2/2� . �5�

Differentiating twice, we find

d2

ds2�0�s� = 
�

2
��

2
− 1	s−2 − �� + 1�b� + b�

2s2��0�s�

= �Ãs−2 − �� + 1�b� + b�
2s2��0�s� , �6�

where we have used Eq. �4�. Equation �6� allows us, in
somewhat the same spirit as the Gruber-Mullins approxima-
tion �1�, to propose the following dimensionless Schrödinger
equation:

d2

ds2�n�s� = �Ũ�s� + Ṽ�s� − Ẽn���s� , �7�

where

Ṽ�s� = Ãs−2 �8�

is the explicit step-step interaction potential in dimensionless
form and

Ũ�s� = b�
2s2 �9�

is a dimensionless potential due to other steps not explicitly
considered. �This idea is explained in the next subsection.�
By inspection we see that �0�s� is the ground-state wave
function �it has only one antinode�, with an eigenvalue given
by

Ẽ0 = �� + 1�b�. �10�

In comparing different experimental TWDs with a range
of values of �L� but with presumably the same step-step in-
teraction V�L�, it is often useful to rewrite Eq. �7� in its
dimensional form

�kBT�2

�̃

d2

dL2�n�L� = �U�L� + V�L� − En��n�L� , �11�

where V�L� is given by Eq. �1�,

U�L� �
�kBT�2

�̃�L�2
Ũ� L

�L�
	 �12�

and

En �
�kBT�2

�̃�L�2
Ẽn. �13�

Throughout this paper, we will alternate freely and without
comment between dimensional and dimensionless represen-
tations.

Equation �7� can be solved for all the eigenfunctions and
eigenvectors �29�, so one can conveniently consider pertur-
bations from the purely inverse-square interaction given by
Eq. �1�. The eigenfunctions are

�n�s� = cns�/2 exp�− b�s2�1F1�− n,
� + 1

2
,b�s2	 , �14�

where n is any non-negative integer, cn is a normalization
constant, and 1F1�a ,b ,x� is Kummer’s confluent hypergeo-
metric function �30�. The corresponding eigenvalues are

Ẽn = �� + 1 + 4n�b�. �15�

B. Deriving the generalized Wigner distribution from a
Schrödinger equation

An undesirable element of the previous derivation was
that it implicitly required that one of the steps be held fixed,
which introduced an artificial �and unnecessary� difference

between steps. Furthermore, the quadratic nature of Ũ�s� was
not well explained. In this subsection, we explore these is-
sues.

The Calogero-Sutherland �8,9� model with an infinite
number of interacting spinless fermions would be an ideal
model of the vicinal surface, but as mentioned above, it is

only integrable for three values of Ã. A useful alternative is
to consider only two adjacent fermions explicitly and model
the effects of the other fermions phenomenologically through
the pressure they exert, yielding the Hamiltonian

H = −
1

2
� �2

�x1
2 +

�2

�x2
2	 + Ṽ�x2 − x1� − x1P1�x1� + x2P2�x2� .

�16�

Here Pi is the pressure exerted on fermion i, which we allow
to be position-dependent because the limited correlation
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length in the x direction leads to an effectively finite system
size �31�. Accordingly, we place the V fermions immediately
to the left of fermion 1 in a “box” with a fixed left wall at
x=−V; the right wall is at x1, the position of fermion 1. The
volume �length� of this box is V1=V+x1. The pressure P1
can be expanded as follows:

P1�x1� = P + x1�� �P1

�x1
	�

x1=0
+ O�x1

2� �17�

=P + x1�� �P1

�V1
	�

V1=V
+ O�x1

2� �18�

=P − x1�V��−1 + O�x1
2� , �19�

where P�P1�0� and the compressibility � is given by

� � −
1

V�� �P1

�V1
	−1�

V1=V
. �20�

Likewise, we place the V fermions immediately to the right
of fermion 2 in a “box” of volume �length� V2=V−x2, yield-
ing

P2�x2� = P + x2�V��−1 + O�x2
2� . �21�

Combining Eqs. �16�, �19�, and �21�, we obtain

H = −
1

2
� �2

�x1
2 +

�2

�x2
2	 + Ṽ�x2 − x1� + �x2 − x1�P + �x1

2 + x2
2�

��V��−1 + O�x2
3 − x1

3� . �22�

Finally, we can make the following change of variables:

xcm =
x1 + x2

2
, �23�

s = x2 − x1 � 0. �24�

This allows us to rewrite the Hamiltonian as follows:

H = − �1

4

�2

�xcm
2 +

�2

�s2	 + Ṽ�s� + �Ps + �V��−1s2�

+ 4�V��−1xcm
2 + O�sx� . �25�

If terms of quadratic and higher order in Eqs. �19� and �21�
can be neglected, the Hamiltonian can be separated into a
part that depends only on s and a part that depends only on
xcm,

H = Hcm + Hs, �26�

where

Hcm = −
1

4

�2

�xcm
2 + 4�V��−1xcm

2 �27�

and

Hs = −
�2

�s2 + Ṽ�s� + Ũ�s� �28�

with

Ũ�s� = Ps + �V��−1s2. �29�

None of the argument so far requires the assumption that

Ṽ�s� is given by Eq. �8�. In the next section, we will examine
how well this phenomenological formalism works when ap-

plied to other forms of Ṽ�s�.
If �V��−1	P, we can neglect the term Ps in Ũ�s�. The

resulting Hamiltonian H can easily be seen to be the Hamil-
tonian of the two-fermion Calogero model �8�,

H = − � �2

�x1
2 +

�2

�x2
2	 + Ṽ�x2 − x1� + �x1

2 + x2
2�
2, �30�

where we identify from Eq. �9�


2 = �V��−1. �31�

More importantly, with the identification


 = b� � ��� + 2

2
	

��� + 1

2
	�

2

, �32�

which again comes from the constraint �s�=1, we see that

�Hs − Ẽn��n�s� = 0 �33�

is just Eq. �7� and again leads to the generalized Wigner
distribution.

Finally, it should be pointed out that the one-particle
“Calogero model,” with a Hamiltonian given by

H = −
d2

dx2 + x2
2, �34�

is really what in essence is used in the many Gaussian ap-
proximations �1–7�. These approximations, however, pro-

duce conflicting functional relationships between 
 and Ã.

This is hardly surprising, since Ṽ does not appear explicitly
in Eq. �34�. By using a two-particle Calogero model, we are
able to state unambiguously the relationship between 
 and

Ã.

III. NONTRIVIAL EXTENSIONS

Here and in the remainder of the text, for our numerical
work we use models that are discrete in both the y direction
and the x direction �2,5,7,32�, in contrast to the continuum
step mode, which corresponds to the description given
above. Specifically, in Monte Carlo simulations we use the
terrace-step-kink �TSK� model, in which the kinks can be
any integral number of lattice units long. Our transfer-matrix
calculations use the restricted TSK model, in which the kinks
can only be of one lattice unit. In both models there are exact
expressions for the stiffness of an isolated step as a function
of temperature �32�. The interaction between steps is given
by a specified function V�L�, as with the continuum step
model. Further details of our numerical work can be found in
Refs. �23,24�.
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Equation �7� can be extended to step-step interactions of
forms other than Eq. �8�. In this section we will present a few
arbitrary but physically motivated step-step interactions and
show that the phenomenological method of the preceding
section still yields TWDs in excellent agreement with nu-
merical simulations of the TSK model.

As a first example, we consider interactions of the form

Ṽ�s� = Ã3s−3, �35�

which would be a plausible subdominant term in a Taylor
expansion of the step-step interaction in s−1. Figure 2 shows
TWDs obtained by Monte Carlo simulations of steps inter-

acting with this potential for three different values of Ã3.
Since the Wigner distribution worked so well with nearest-
neighbor interactions of the form given by Eq. �8�, we again

take Ũ�s��s2. The solutions of the Schrödinger equation are
in excellent agreement with the Monte Carlo data.

Interestingly, when all steps interact �via the potential
given by Eq. �8��, the variance of a TWD with a fixed value

of Ã will be smaller than the variance of a TWD with the

same value of Ã and just nearest-neighbor steps interacting.
Numerical evidence supports this intuition, and in fact it ap-
pears that the Wigner distribution describes TWDs from
nearest-neighbor interactions better than TWDs from all
steps interacting �see Fig. 3�. On the other hand, the phenom-
enological approach which leads to the generalized Wigner
distribution depends only on the interaction between nearest-
neighbor steps, which is identical in both cases.

The difference appears to come from terms in Eq. �25�
that are neglected in Eq. �30�. Since the variance is decreased
by interactions with more steps, it is clear that increasing the
number of interacting steps will not increase the linear term
P in Eq. �25�—that would increase the variance. Instead, it
appears that increasing the number of interacting steps in-
creases the quadratic terms in Eqs. �19� and �21�. This would
decrease the variance and correspond to the intuitive notion
that the steps “interact more strongly” while still observing
the constraint �s�=1. Unfortunately, it also destroys the sepa-
rability of the Schrödinger equation.

A variety of circumstances, such as the presence of adsor-
bates �33� or electronic surface states �34,35�, can give rise to
short-ranged attractive forces between steps, oscillating step-
step interaction potentials, and other complicated interac-
tions. Under such circumstances, one typically finds terraces
of two more or less well-defined widths; interactions with
steps beyond nearest neighbors can segregate these widths,
leading to “step bunching” �36�. This situation is somewhat
analogous to liquid-gas coexistence, and as with liquid-gas

coexistence the compressibility diverges. As a result, Ũ�s� is
linear in s �Eq. �29��.

Vicinal surfaces with both elastic and surface-state medi-
ated electronic interactions may be characterized by poten-
tials of the form �34,35�

V�L� = AL−2 + BL−3/2 cos�2kFL + �� , �36�

where A is determined by the elastic interactions, B is deter-
mined by the coupling to the surface state, kF is the Fermi
energy, and � is a phase shift. The oscillations of this poten-
tial can give rise to a coexistence as described above, to-
gether with a diverging compressibility and a linear U�L�. As
a dramatic—albeit rather unphysical—example, in Fig. 4 we
compare transfer-matrix TWDs derived from the corrugated
interaction potential

Ṽ�s� = 4 cos�2s� �37�

�a special case of Eq. �36�� with corresponding solutions of
Eq. �7�. Since the TWDs now have multiple peaks, clearly
neither the generalized Wigner distribution nor a Gaussian
distribution is appropriate. Again, considering that there are
no free parameters, the phenomenological TWD is in excel-
lent agreement with the transfer-matrix TWD. The slight dis-

FIG. 2. �Color online� TWDs for systems of steps with step-step

interactions of the form Ṽ�s�= Ã3s−3. Diamonds, circles, and squares

mark TWDs from Monte Carlo simulations with Ã3=0.5, 2, and 6,
respectively. Solid lines are solutions of Eq. �7� for the same values

of Ã3 and with Ũ�s��s2.

FIG. 3. Comparison of �2� from the generalized Wigner distri-
bution �solid curve� and transfer-matrix calculations for nearest-
neighbor-only �NN� interactions �dashed curve� and interactions out
to next-nearest neighbors �NNN� �dotted curve�. The transfer-matrix

calculations were performed with five steps, �L�=5, Ṽ�s� given by
Eq. �8�, and kBT=0.84�, where � is the energy of a single kink. It
appears that the nearest-neighbor-only interactions are in better
agreement with the generalized Wigner distribution, although this
judgment is hampered by the small system size and the breakdown,

at large Ã, of the continuum step model. The dashed and dotted
lines indicate limits of �2� for NN and NNN interactions, respec-
tively, as derived from Gaussian approximations of the continuum

step model in the limit of large Ã �3,4�.
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agreement is probably due to finite-size effects in the
transfer-matrix calculation �which involved only five steps
with �L�=5�.

IV. SOLVING FOR THE STEP-STEP INTERACTION

The chief practical interest in terrace width distributions
comes from a desire to use experimental data to determine

the interaction potential V�L�, or equivalently Ṽ�s�. In this
section, we discuss three progressively more sophisticated
methods. The first two are appealing in their simplicity, but
they suffer from serious flaws, and therefore should be
avoided. By building on them, we introduce the third
method, which is more computationally intensive than the
preceding two, but which has the flexibility necessary to be
applied to real experimental data. For more details, see Ref.
�37�.

A. Naive direct numerical approach

In Sec. II, we derived a Schrödinger equation that in-

cluded Ṽ�s� in an obvious way, and in Sec. III we have seen
that similar Schrödinger equations yield TWDs for more
complicated interactions that are in excellent agreement with
numerical simulations of the TSK model. It is tempting to
follow an analogous path when dealing with experimental
data, using the following procedure.

�i� Connect the experimental data points with a smooth
interpolating function P�s�, such as a cubic spline.

�ii� Calculate ��s���P�s�.
�iii� Find d2� /ds2.

�iv� The total potential is Ṽ�s�+ Ũ�s�−E
����s��−1�d2��s� /ds2�.

�v� At large s, Ṽ�s� is negligible, so the total is given by

Ũ�s�−E, which should be constant plus either a quadratic
function of s or a linear function of s.

�vi� Subtract Ũ�s�−E from the potential to recover the

step-step interaction Ṽ�s�.

This method has two serious problems. Experimental
TWDs will contain measurements indicating P�s�=0, which
lead to division by zero in determining the total potential.
Furthermore, typical statistical fluctuations make the numeri-
cal estimates of d2� /ds2 from experimental data extremely
unreliable.

B. Fitting the TWD to a preconceived form of P„s…

One may eliminate both of these problems by first per-
forming a least-squares fit of the TWD to some positive defi-
nite and twice-differentiable function. For example, one
might use

P�s� = c0s��1 + c1s + c2s2�exp�− bs2� , �38�

where c0 is a normalization constant and c1, c2, �, and b all
are parameters to be fitted. The fitted P�s� can then be ana-
lyzed as above.

The shortcomings of this second approach are more
subtle. Equation �38�, for example, will always yield a po-
tential that diverges as s−2 as s approaches zero. In fact, we
have fitted Eq. �38� to the Monte Carlo data shown in Fig. 2.

Instead of correctly reproducing the potential Ṽ�s�= Ã3s−3,
the analysis of the fitted P�s� produced an interaction that is

well approximated by Ṽ�s�� Ã2s−2. The intersection of this
derived potential with the known, true potential is for a value
of L near �L�, which is not surprising—the TWD contains
more information about the interaction where P�s� is large.

C. Recommended: Fitting the interaction V„L… to a
preconceived form

The method we do recommend is more computationally
demanding, but it suffers from none of the above defects.

�i� Parametrize V�L�, and make a crude initial estimate of
the values of the parameters. At least some information on
the form of the interaction is often available—whether it is
influenced by a surface electronic state, for example. In prin-
ciple, U�L� contains a term linear in L and a term quadratic
in L, as in Eq. �29�; in practice, one can often use either a
purely quadratic form of U�L� �as was done to derive the
generalized Wigner distribution� or a purely linear form of
U�L� �if the compressibility diverges�.

�ii� Solve Eq. �11� numerically for the specified param-
eters to find �0�L�.

�iii� Find

�2 = �
L

��0
2�L� − Pexp�L��2 �39�

for this set of parameters, where Pexp�L� is the experimental
TWD.

�iv� Iterate procedural steps �ii� and �iii� in a minimiza-
tion routine to find parameters for which �0

2�L� best fits the
experimental TWD.

In Fig. 6, we apply this approach to the Monte Carlo

TWD shown in Fig. 5. We parametrize Ṽ�s� by

FIG. 4. �Color online� A transfer-matrix calculation ��� of the
TWD for a system of five steps with a mean step separation of five
lattice units and the oscillating step-step potential given by Eq. �37�.
The curve is the solution of the corresponding Schrödinger equation
and contains no free parameters.
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Ṽ�s� = Ã1s−1 + Ã2s−2 + Ã3s−3 + Ã4s−4; �40�

this form amounts to a generalization of the two-parameter
fit discussed in Ref. �38�, where the only allowed term in

Ṽ�s� was Ã2s−2. The values of the fitted parameters are given
in Table I; they clearly are quite different from those of the

true potential. The resulting Ṽ�s� is shown in Fig. 6, where it
is compared with the actual potential used to generate the
Monte Carlo data. What is important, however, is that the
fitted and true potentials are close over the range in s corre-
sponding to significantly nonzero P�s�—in this case, 0.5
�s�1.5. The phenomenological TWD �Fig. 5� derived from
these fitted parameters is in good agreement with the Monte
Carlo TWD and is very difficult to distinguish from the
TWD derived from the true potential via Eq. �33�. This result

underscores the sensitivity of the process of extracting Ṽ�s�
and the necessity of very good statistics in experimental

TWDs �38� and a good idea of the functional form of Ṽ�s�.
For this reason, we strongly recommend making a simul-

taneous fit of V�L� to experimental TWDs from several dif-
ferent misorientations, and preferably from several different
temperatures. We are currently applying this approach to Cu
surfaces vicinal to the �001� plane �37�. We have selected 10
experimental TWDs to be fitted, with mean step separations
ranging from 5.44a to 9.53a, where the lattice constant a
=0.255 nm, and with temperatures ranging from
285 K to 360 K. Our preliminary studies �39� show that
even with experimental data of good quality, the extraction
of real potentials is not a trivial matter.

Using all 10 experimental TWDs, we were able to obtain
good agreement between fitted TWDs and experimental
TWDs; two examples are shown in Fig. 7. The correspond-
ing interaction potential is shown in Fig. 8; clearly, it devi-
ates markedly from Eq. �1�. The irregularities in V�L� make
it plausible that a coexistence exists between two step
widths, which would result in a diverging compressibility.
This is supported by the fact that the experimental TWDs are
better fitted with U�L��L than with U�L��L2; furthermore,
the linear form of U�L� would lead to “fatter” tails, as were
observed in Ref. �25�.

Although these results show internal consistency, the fit-
ted interaction potential is markedly different from potentials
derived from simulations of surface relaxation using an em-
pirical many-body potential �40–43�, which are in reasonable
agreement with Eq. �1�. We believe that our interaction po-
tentials are “overfitted” to the experimental data, with the
irregularities of the V�L� being too strongly influenced by
statistical noise in our experimental data. This is not really
surprising, because V�L� depends quite sensitively on P�L�.

TABLE I. Parameters in Eq. �40� determined by a least-squares
fit of the phenomenological TWD to the Monte Carlo TWD �see
Fig. 5�.

Ã1 Ã2 Ã3 Ã4

true 0 0 2 0

fit 6.862 1.1035 0.40164 0.05215

FIG. 5. �Color online� Monte Carlo ��� and phenomenological

�solid curve� TWDs for steps interacting with a potential Ṽ�s�
=2s−3. The dashed curve shows a least-squares fit using a potential
of the form given in Eq. �40�.

FIG. 6. �Color online� The solid curve shows the step-step in-
teraction actually used �solid curve� to generate the Monte Carlo
TWD shown in Fig. 5. The dashed curve shows the step-step inter-
action of the form given by Eq. �40� with the parameters given in
Table I, which were determined by a least-squares fit of the phe-
nomenological TWD to the Monte Carlo TWD. To facilitate a better
comparison, the fitted potential has been shifted by a constant en-
ergy so that it coincides with the true potential at s=1.

FIG. 7. Two experimental TWDs for Cu surfaces vicinal to the
�001� plane. The circles are experimental data courtesy of Giesen,
and the diamonds are experimental data courtesy of van Gastel.
Both experiments were at 295 K. The corresponding fits were made
by solving Eq. �33� with the potential shown in Fig. 8 and U�L�
�L.
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A similar problem �44,45� occurs in determining embed-
ding functions for the embedded atom model from experi-
mental data; if too many parameters are fitted, the resulting
embedding functions of course can fit the supplied experi-
mental data, but they give worse agreement with experimen-
tal data not included in the fitting process. The recommended
remedy �44,45� is to divide the available data into two
groups, one of which is used to perform the fits, and the
other of which is used to test the robustness of the fits.

Presumably, the same remedy will work in our case. How-
ever, a more complete treatment of the problem, including
estimates of the uncertainties of fitted functions, is deferred
to a later paper �37�.

V. CONCLUSIONS

We have seen that the generalized Wigner distribution can
be derived from a Schrödinger equation somewhat in the
spirit of the Gruber-Mullins approximation, and that straight-
forward extensions of this method work for general step-step
interactions.

In Sec. II, we saw that the generalized Wigner distribution
can be derived exactly from the two-fermion Calogero model
�8�. This, in turn, can be justified from a phenomenological
model in which the force on two adjacent fermions is derived
from the position-dependent pressure exerted by other fermi-

ons confined in a box, the size of which is presumably re-
lated to the correlation length in the x direction. It is worth
noting that the “entropic repulsion” is handled implicitly by
the uncertainty principle in the quantum mapping, so we
need to explicitly consider only the energetic interactions.

Nothing in this phenomenological picture requires the
step-step interaction to be given by Eq. �8�, and in Sec. III
we demonstrate numerically that for very general step-step
interactions the phenomenological picture yields TWDs in
excellent agreement with numerical simulations of the TSK
model. This success is particularly impressive when a coex-
istence between two well-defined step widths occurs, as can
happen when steps bunch �36�. Under this circumstance the
compressibility diverges, which causes the tail of the TWD
to decay exponentially with L rather than exponentially with
L2, as it does in the case of the generalized Wigner distribu-
tion. This phenomenon could explain the curious slowly de-
caying tails of TWDs mentioned in Ref. �25�.

Since exact solutions are available for both equations in

the important case in which Ṽ�s� is given by Eq. �8�, it is
possible to find not only the TWD but also, using the meth-
ods of Ref. �32�, an improved estimate of step wandering.
This will be undertaken in a separate paper.

Finally, although we have addressed this work primarily
to its surface science applications, it may be of interest to
research in random matrix theory as well. The Calogero-

Sutherland model with Ã=−1/4, 0, or 2 corresponds to ran-
dom matrices with specific symmetries, and attempts to in-
terpolate between them have simply varied the fraction of
matrices belonging to each symmetry in the ensemble of
random matrices. It is far from clear, however, what relation
the Calogero-Sutherland model with more general values of

Ã or our treatment of it has to such mixed ensembles.
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