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We use a Fokker-Planck equation to justify the generalization of the Wigner surmise for the energy-
level spacing in quantum systems to the simple expression for the equilibrium terrace-width distribution of
steps—with arbitrary-strength repulsions—on a vicinal surface, taking advantage of analogies to one-
dimensional models of interacting, spinless fermions. This approach leads to an analytic description of the
evolution toward equilibrium of steps from several experimentally relevant initial distributions: step
bunches, perfect cleaved crystals, and prequench equilibrated distributions at different temperatures.
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Vicinal crystals [1], i.e., crystals misoriented from a
high-symmetry plane, are of great technological impor-
tance as templates for low-imperfection growth (with con-
trolled step ‘‘defects’’) and for self-assembly of metal
nanowires. Understanding the properties of steps provides
a fruitful way to gain insight into nanostructures on sur-
faces. In particular, stepped surfaces differ considerably
from perfect staircases, with thermal fluctuations playing a
crucial role. The probability of finding neighboring steps at
a specified separation, i.e., the terrace-width distribu-
tion (TWD), is denoted P�s�, where s is the step spacing
w divided by its average value hwi; hwi is the only char-
acteristic length in the ‘‘downstairs’’ direction (x̂).
[Thus, hsi � 1, and a perfect cleaved crystal has P�s� �
��s� 1�.] Because steps extend unboundedly in the ŷ
direction (i.e., no islands on the terraces), they can be
mapped onto the space-time trajectories of particles on a
line. Because they cannot cross, these particles can be
treated as spinless fermions with an entropic repulsion of
the form 1=w2, where w is the terrace width. There gen-
erally also are elastic interactions with the same form,
A=w2, where in principle A is roughly proportional to the
squared surface stress of the terraces, but in practice it must
be extracted from experimental data, especially the TWD.
It is useful to deal with a dimensionless interaction
strength, ~A � A ~�=�kBT�

2, where ~� is the step stiffness.
Generalizing the so-called Wigner surmise [2], some of

us have proposed that the TWDs have the simple form

P%�s� � a%s
% exp��b%s

2�; (1)

where the constants b% � ���
%�2

2 �=��%�1
2 ��

2 and a% �

2b�%�1�=2
% =��%�1

2 � assure unit mean and normalization, re-
spectively. The argument for Eq. (1) takes advantage of
results for the Calogero-Sutherland (CS) Hamiltonian [3]
describing fermions in one dimension with inverse-square
repulsions; we then find the identification
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Historically, Eq. (1) came from efforts to describe the
distribution of the energy separations of nuclear levels,
obtained from the eigenvalues of Hamiltonians repre-
sented by random matrices [4] with orthogonal, unitary,
or symplectic symmetry. Wigner’s arguments based
on these three symmetries lead to Eq. (1) for % � 1, 2, or
4, respectively. Although not exact (as originally sur-
mised), Eq. (1) provides a superb approximation [5] for
these cases. There is a rather miraculous and funda-
mentally mysterious connection between the above distri-
bution of energy spacings and the distribution of spatial
separations of spinless fermions in one dimension with
mutual repulsions / w�2 [3]. While ~A � 0 (% � 2) nota-
bly corresponds to a ‘‘free fermion,’’ there is nothing
intrinsically exceptional about ~A � 2 (% � 4); further-
more, negative values of ~A (especially � 1

4, % � 1) are
unphysical.

Conventional TWD analyses [1] have been based on the
‘‘mean-field’’ Gruber-Mullins approximation [6]: a single
step meanders between two straight neighboring steps
fixed at the average step separation. In fermion lan-
guage, the step is the world line of a quantum particle
confined to the segment �0; 2hwi� by an infinite potential.
For a repulsion so strong that the potential of the active
step can be approximated by a parabolic well, the TWD is a
Gaussian with width / ~A�1=4. More refined analyses [7–9]
also yield Gaussian TWDs but with different proportion-
ality constants between width and ~A�1=4.

With % as the adjustable parameter, Eq. (1) provides a
better accounting of the TWD, both in numerical simula-
tions and in actual experiments, than any of the preexisting
Gaussian models [10]. However, it has not appeared in the
literature on random matrix theory (RMT) [4] for general
%, and the only formal justification is based on a model
single-particle Hamiltonian [11]. In this Letter, we show
that Eq. (1) arises as the stationary solution of a Fokker-
Planck equation (FPE) derived from a classic model of
interacting particles in one dimension. Furthermore, and
arguably more importantly, we thereby obtain a description
1-1 © 2005 The American Physical Society
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of how experimentally relevant nonequilibrium TWDs
relax toward P%�s�.

Our work contrasts with efforts over decades to find
distributions that describe how equilibrium fluctuations
(in the spacings of eigenenergies) change as symmetry is
gradually broken or as two subspaces of different symme-
try are mixed [12,13]. However, our time variable does
chronicle evolution through an abstract parameter space.
Nonetheless, we shall see that comparisons are possible
with the physical approach to equilibrium. We discuss
ways to connect our FPE time with physical time.

We begin with the analogy drawn by Dyson between
RMT and a Coulomb gas model [14]: N classical particles
on a line, interacting with a logarithmic potential, and
confined by an overall harmonic potential. The Coulomb
gas model helps understanding the fluctuation properties of
the spectrum of complex conserved systems. This model
can be generalized to the dynamic Brownian motion
model, in which the N particles are subject, besides the
mutual repulsions, to dissipative forces [12]. The particle
positions xi then obey Langevin equations,

_x i � ��xi �
X
i�j

%̂
xi � xj

�
����
�
p
�; (3)
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where � is a delta-correlated white noise and %̂�/ %� is the
‘‘charge’’ of each particle. The probability of finding the
particles at the positions fxng at time t is the solution of the
multidimensional FPE
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�
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�
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xi � xj
P�fxng; t�

�
: (4)

In the 1D case, ��1 would essentially be the variance of the
stationary distribution. Narayan and Shastry [15] showed
that the CS model is equivalent to Dyson’s Brownian
motion model, in the sense that the solution of the FPE
(4) may be written as P�fxng; t� �  �fxng; t� 0�fxng; t�,
where  �fxng; t� is the solution of a Schrödinger equation
with imaginary time, derived from the CS Hamiltonian.
The Langevin force of Eq. (3)

F�xm� � ��xm �
X
k>m

%̂
xk � xm

�
X
m>q

%̂
xm � xq

; (5)

so that
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�
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Since we seek the distribution of widths w, we construct
a one-‘‘particle’’ theory [6] where the dynamical variable
is the nearest-neighbor distance wm � xm�1 � xm. To de-
couple the force on wm from the other particles, we as-
sume—in a Gruber-Mullins spirit—that the denominators
�xk � xm�1��xk � xm� in Eq. (6) are replaced by their mean
values, the average being taken in the stationary state:

h�xk � xm�1��xk � xm�ist � hw
2ist�k�m� 1��k�m�:

Each of the two sums in Eq. (6) then simplifies greatly,
taking the form ��xm�1 � xm�=hw

2ist�
P
p>0��p� 1�p��1,

where the sum is unity for N ! 1. In summary, the
interaction of a particle pair with all other particles acts
on average as a harmonic potential, increasing the ‘‘spring
constant’’ of the external one. We arrive at a one-particle
Langevin equation for the terrace width w:

_w � �2
��
�
2
�

%̂

hw2ist

�
w�

%̂
w

�
�

������
2�
p

�; (7)

called a Rayleigh process [16–19] if
������
2�
p

� %̂.
Our goal is to convert Eq. (7) into a Fokker-Planck

equation for which Eq. (1) is a steady-state solution. We
change to dimensionless variables s � w=hwist and ~t �
�t=hwi2st. Treating � as a self-consistency parameter and
recognizing %̂ � %=�, we set � � 2=�hw2ist. Then the
coefficient in parentheses in Eq. (7) becomes �1� %�=
�hw2ist; the coefficient can be rewritten [20] as
2b%=�hwi2st. Thus, we have the sought-after FPE:
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�
: (8)

Before solving Eq. (8) we make a few remarks. First,
Eq. (8) may be interpreted as a mean-field version of
Eq. (4). Also, defining U�s� � b%s

2 � % lns and using
the transformation ��s;~t� � P�s;~t� exp�U�s�=2�, we can
transform the Fokker-Planck equation into a self-adjoint
equation (or Schrödinger equation with imaginary time),

@��s;~t�
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�

�
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%�s

2 � 1� �
%
2 �
%
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s2

�
��

@2�
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that reproduces the effective one-body approximation [11]
of the CS model. Second, if we multiply Eq. (7) by 2s,
and let v � s2, we obtain a stochastic differential equation
for v in what in quantitative finance is called the Heston
model [21]; the equivalent of Eq. (8) describes the evolu-
tion of the distribution function for the stochastic variance
v in a second stochastic equation for stock returns. Third,
there is no explicit rate parameter in Eq. (8); the scale
of evolution is determined by the definition of ~t, so the
characteristic time � is hwi2st=�. Thus, any dynamic in-
formation must enter through �, which we postulated
in Eq. (3) and calibrated using standard fluctuation-
dissipation arguments.

To solve Eq. (8) we must specify the initial distribution
in s0. Stratonovich [16] proceeds by separation of varia-
1-2



FIG. 1 (color online). Comparison of the TWD variance pre-
dicted using Eq. (13) (dashed upper curve) and the variance
(solid upper curve) computed using the conventional Metropolis
Monte Carlo calculations for a terrace-step-kink model for free
fermions ( ~A � 0, % � 2). The left and right insets show the
initial and a typical late-time configuration, respectively. Both
curves approach equilibrium, �2

W 
 0:18 [5,9]. The lower pair of
curves show the predicted (dashed line) and computed (solid
line) variances for ~A 
 2:762, % 
 4:47, with a different scale
factor between ~t and MC time, indicative of a smaller character-
istic time. Both lower curves approach �2

W 
 0:095. The dotted
(green) curve is the same early-time data as the lower solid
(green) curve but plotted using the A � 0 scale factor. See text
for discussion.
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bles, finding the spatial eigenfunctions in terms of
Laguerre polynomials. After some manipulation, we then
find [22] the distribution in s at rescaled time ~t, given an
initial sharp distribution ��s� s0�, to be

P�s;~tjs0� � 2~b%
s��1

�s�0
I��2~b%s�s0�exp��~b%�s

2� �s2
0��; (10)

where � � �%� 1�=2, ~b% � b%=�1� e
�~t�, �s0 �

s0 exp��~t=2� [likewise �s � s exp��~t=2� in Eq. (12)], and
I� is the modified Bessel function of the first kind.

Using I��x� 	
x!0
�x=2��=���� 1�, we find

P�s;~t� 	
a%s

%

�1� e�~t��%�1�=2
exp��s2b%=�1� e�

~t��; (11)

confirming that at long enough times ~t any dependence on
s0 disappears and that Eq. (10) ultimately approaches
Eq. (1). Three initial distributions are of special physical
interest: ‘‘perfect’’ vicinals, step bunches, and equilibrium
TWDs before thermal quenches or up quenches.

Perfectly cleaved crystals.—If the initial distribution is a
delta function at the mean spacing, i.e., ��s0 � 1�, then the
(normalized) solution Eq. (10) reduces to [23]

P�s;~t��2~b%s��1e�~t=2I��2~b% �s�exp��~b%�s2�e�~t��: (12)

In experiments, P�s� is generally characterized just by its
variance �2 � �2 ��2

1, which can be calculated from its
first and second moments, �1 and �2, respectively:

�1 �
��%�2

2 �1F1�
%�2

2 ; %�1
2 ; ~b%e

�~t�

��%�1
2 �

~b1=2
% exp�~b%e

�~t�
;

�2 �
%� 1

2~b%
� e�~t;

(13)

with 1F1 (sometimes written M) the Kummer confluent
hypergeometric function [24]. To the extent that �1 � 1
[25] (and in any case for qualitative purposes), we get [20]

�2�~t� � �2
W�1� e

�~t�: (14)

For numerical comparisons, we chose the simplest
model, the terrace-step-kink model [10] with A � 0 (just
entropic interactions), setting kBT to half the kink energy,
with 4 steps, 200 spacings wide, and hwi � 6. Since the
motion of individual atoms across a terrace is not tracked,
we use the Metropolis algorithm, with a single rate for
moves. To compare simulations with the FPE prediction,
we manually set the time scale of the simulation to
‘‘match’’ that of the dimensionless ~t: 103 Monte Carlo
steps per site (MCS) correspond to 1.4 units of ~t. As shown
in Fig. 1, the agreement is remarkably good.

Keeping everything else the same, we next took A �
0:5, leading to ~A 
 2:762. To now get good agreement
between simulation and prediction, we find that 103 MCS
correspond to 4.5 units of ~t, indicative of a smaller char-
acteristic time � / ��1. There are indeed reasons to expect
� to increase with % [26].
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While our analytic work assumes a continuum for w, at
short times our model’s discrete nature becomes impor-
tant. Initially (i.e., at ~t� 1), step units are barely aware of
the neighboring steps; the activation energy for the ele-
mentary excitation is the energy of a kink-antikink pair. For
physical values of A and hwi � 4, the contribution of the
repulsion to this energy is negligible, so we expect (and
find in MC calculations) that �2�~t� 1� is independent of
%: the dotted line in Fig. 1, replotting the beginning of the
lower solid (green) curve with the same ~t scaling as for A �
0, initially coincides with the upper solid (red) curve.

To improve our understanding of � by investigating a
system with better-defined dynamics, we have undertaken
kinetic Monte Carlo simulations using a solid-on-solid
model that incorporates adatom attachment/detachment
(AD) events at the step along with terrace hops [27]. For
AD-limited kinetics, one expects that � is set by the detach-
ment rate of an atom from a kink site onto the terrace. In a
simple bond-counting scheme as implemented in our simu-
lations, such an event requires breaking 2 in-plane bonds
(each of energy En), as well as hopping once on the surface
(over diffusion barrier ED). Our results (discussed in detail
elsewhere [23]) show that the TWD variance behaves as a
generalization of Eq. (14), �2�t� � �2

WS�t=��, where � is
thermally activated, with the expected activation energy
2En � ED.

Step bunch.—Equation (11) is also obtained as the full
time-dependent solution when the initial distribution is a
delta function centered at a vanishing terrace size,
P�s0; 0� � ��s0�. Experimentally, this situation may be
even easier to realize, for instance by inducing the forma-
1-3
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tion of a bunch of steps (step bunching), and then watching
the steps spread out to their equilibrium arrangement. In
this case, the experimental TWD should be found to coin-
cide at all times with Eq. (11); �1 �

����������������
1� e�~t
p

increases
rapidly from its initial value to unity, and Eq. (14) holds.

Quenches.—Of greatest interest physically is what hap-
pens during a quench (or up quench), in which a system
which has attained equilibrium at the initial temperature is
suddenly subjected to a different temperature. In this prob-
lem a thermal jerk translates to a sudden change from %0 to
%. Integrating Eq. (10) weighted by P%0

�s0� yields, after
some manipulation [22],

P�s;~t��a%s
%e�~b%s2 �1�e�~t�%0�%=2

�1�e�~t�1�b%=b%0
��%0�1=2

 1F1

�
%0�1

2
;
%�1

2
;

~b%s2

1��b%0
=b%��e

~t�1�

�
: (15)

Equation (15) satisfies the following necessary conditions.
For %0 � %, it reduces to Eq. (1), since 1F1�a; a; z� �
exp�z�. For arbitrary %0 and %, it is initially P%0

�s� and
approaches P%�s� at long times [24]. For asymptotically
large %0, Eq. (15) reduces to Eq. (12). Analytic but more
complicated expressions [22] generalize Eq. (13).

We have also formulated [22] a FPE description of the
evolution of a train of steps with attractive effective inter-
actions of kinetic origin, as during step bunching. Two
simple models of step evolution lead to step bunching:
one produces an inverse Schwoebel effect; the second
includes two diffusing and reacting particle species [28].

Our formulation not only places the generalized Wigner
surmise on firmer theoretical footing, but it also allows the
exploration of the evolution of TWDs as a whole rather
than just positions of individual steps. The results invite
quantitative experimental studies to check the predictions
and numerical simulations to clarify the dependencies of
the characteristic time.
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