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Analysis of terrace-width distributions using the generalized Wigner surmise:
Calibration using Monte Carlo and transfer-matrix calculations

Hailu Gebremariam, Saul D. Cohen,* Howard L. Richards,† and T. L. Einstein‡
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Measurement of terrace-width distributions~TWD’s! of vicinal surfaces is used routinely to find the dimen-

sionless strengthÃ of the elastic repulsion between steps. For sufficiently strong repulsions, the TWD can be
described by a Gaussian about the mean step spacing, but controversy has arisen on the correct prefactor in the

relation of the TWD variance toÃ. Instead of the various Gaussian approximations, we have advocated for
several years that the TWD be fit with the generalized Wigner distribution, essentially a gamma distribution in
the normalized squared TWs. The basis for this idea stems from a mapping of the step model to the Sutherland
model of fermions in one dimension. While several applications to experiment have been successful, definitive
comparison of the various approximations requires high-quality numerical data. We report transfer matrix and
extensive Monte Carlo simulations of terrace-step-kink models to support our contentions. Our work includes

investigation of finite-size effects and of the breakdown of the continuum picture for values ofÃ larger than in
typical experiments.

DOI: 10.1103/PhysRevB.69.125404 PACS number~s!: 68.35.Md, 05.40.2a, 68.37.Ef, 68.35.Bs
t
ng

pu

n
ria

l

n

-

u
to
e

a
th

s
c-

nt
that
zed
en-

he
ve
0

r

ti-
al

er
con-
do
he
k is
th-
ce
yze
en
ver

ous
r

s

our
test
he

e
ults.

two
ec.
nd
I. INTRODUCTION

The last decade has witnessedquantitativemeasuremen
of the widths, of terraces on vicinal surfaces. The resulti
data for the terrace width distribution~TWD! provides argu-
ably the best way to gauge the strength of the elastic re
sion between steps, specifically the coefficientA ~which has
units of energy times length! of the elastic repulsionA/,2. In
standard analyses two simplifications are routinely made:~1!

The elastic repulsion is taken to act just in thex̂ direction,
perpendicularly to the mean step directionŷ @in ‘‘Maryland
notation’’#. This formulation should be a good approximatio
when the step meandering is relatively modest, with va
tion scale inŷ that is ‘‘slow’’ ~large! compared to,. The
preceding formulation of the repulsion as a function of,
implicitly uses this ansatz.~2! Individual steps can be wel
characterized in terms of their stiffnessb̃, which is inversely
proportional to their diffusivity. This requires thatx(y) for a
step be single valued and thatx8(y) be small. Typically, one
invokes the step continuum approximation, in which a co
tinuum approximation is made along theŷ direction.1 There-
after,A appears only in the form of adimensionless interac
tion strength

Ã[Ab̃~kBT!22, ~1!

whereb̃ is the step stiffness.
To characterize a TWD obtained from experiment or n

merical simulation, it is typically deemed sufficient
specify just its variances2 or some similar measure of th
width of the single peak. At least whenÃ is not small, this
procedure is adequate since the TWD’s shape can be
equately approximated by a Gaussian. Justification of
form can readily be derived from a mean-field-like~Gruber-
Mullins! approach,2,3 which indicates that the variance varie
inversely withÃ1/2. Two recent theories from other perspe
0163-1829/2004/69~12!/125404~11!/$22.50 69 1254
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tives produce the same proportionality, but with differe
proportionality constants. Subsequently, we recognized
the TWD might better be described using the generali
Wigner surmise rather than a Gaussian. In actual experim
tal systemsÃ is typically between 0 and 10, sometimes in t
teens.4,5 ~While occasional values up to nearly 4000 ha
been reported6 for Ã, our belief is that values above about 2
indicate anomalous behavior.! Exact theoretical results fo
the TWD ~with Ã>0) are available only forÃ50 and Ã
52.7,8 Hence, resolution of the controversy about the op
mal viewpoint of TWDs requires high-quality numeric
simulation.

In this paper we report the results of simulations ov
several years to produce data adequate to confront the
troversy convincingly. Our primary method has been to
long Monte Carlo calculations for large lattices using t
simplest reasonable model for step fluctuations. This wor
complemented by calculations using transfer-matrix me
ods. Our primary focus is on the predictions of the varian
made by the various theoretical approximations; we anal
the results in a way that highlights the differences betwe
the predictions. This work is a considerable advance o
earlier preliminary remarks on this problem.9 In previous pa-
pers we discussed relevant analytic results for the vari
approximations,10 applications of the generalized Wigne
distribution to experimental data,5,9,11 and how these studie
fit in general research on random matrix theory.12 In this
paper we limit our discussion to aspects bearing on
theme of using numerical studies of standard models to
the relative merits of the various approximations for t
TWD.

In the following section, we offer a succinct review of th
physics of the various approaches and the key formal res
Readers familiar with earlier~and more expanded! exposi-
tions of most of this material can use the equations and
newly compiled tables to refresh their recollections. In S
III, we describe the models used for the computations a
©2004 The American Physical Society04-1
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TABLE I. Tabulation of the prefactorsKX that relate the variance to the inverse root of the dimensionless interaction strengthÃ @cf. Eq.

~3!#, or to Ãeff @so (%/2)2] if the ‘‘eff?’’ entry is Y. The square brackets for the Wigner listing recall that Eq.~5! differs from Eq. ~2!
underlying the other entries.

Model Approximation Reference X eff? KX(NN) KX(all)

Gruber-Mullins Single active step 2 GM N 1/A4880.144 A15/8p480.139

Grenoble Neglect entropic interactionn 14,15 E0 N A2/3p280.260
1

p E
0

2p 12cosf

f~2p2f!
80.247

Grenoble, modified Average entropic interactionn 14,15,10 EA Y A2/3p280.260
1

p E0

2p 12cosf

f~2p2f!
80.247

Saclay Roughening theory@VGL ~Ref. 18!# 16,20,21 R Y 2/p280.203

Wigner @gamma-like, not Gaussian distribution# 7,10 W @Y# @1/4#
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the calculational procedures we followed. Section IV, wh
presents our results, is the heart of the paper. It begins
our numerical evidence favoring the use of the Wigner
pression rather than a Gaussian to describe the TWD
proceeding to examine finite-size effects, the breakdown
the continuum picture, and temperature effects. The conc
ing section briefly recapitulates our findings and their imp
cations.

II. REVIEW OF FORMAL BACKGROUND

A. Gaussian approximations to TWD’s

It is convenient to divide, by its average value, thu
constructing the dimensionless parameters[,/^,&. Then
the TWD P(s) is not just normalized but has unit mea
Moreover, for steps with justA/,2 repulsions,P(s) is ex-
pected to be insensitive tô,&, so that the rescaled TWD’
for different misorientations of the same surface are th
expected to coincide.13 It was long conventional to describ
TWD’s by Gaussian distributions:

P~s!'PG~s![
1

sGA2p
expF2

~s21!2

2sG
2 G . ~2!

Use of a Gaussian distribution can be justified in seve
ways, assuming the elastic repulsion between the step
strong enough to confine the motion of each step to a p
bolic well near its mean position. The venerable Grub
Mullins ~GM! treatment, which allows only one step of th
vicinal surface to meander, finds that2,3

s25KXÃ21/2, ~3!

where the subscriptX anticipates that different proportiona
ity constants, tabulated in Table I, will result from differe
approximation schemes, each of which is given a mnemo
label X.

In rederiving Gaussian TWD’s from different perspe
tives, two groups ascertain that the variance in Eq.~3! using
KGM underestimates~for given Ã) the true variance: The
Grenoble group14,15 start with the insight that theentropic
repulsion becomes relatively less important as the energ
12540
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repulsion increases~because large energetic repulsions
minish the chance of neighboring steps approaching e
other!, becoming negligible at very largeÃ ~hence the nota-
tion X5E0). If both steps bounding a terrace fluctua
independently, then the variance of the TWD should be
sum of the variances of the fluctuations of each step, i
twice the variance obtained in the Gruber-Mullins pictur
This factor is reduced modestly by corrections due to
~anti!correlations16 of neighboring steps. If entropic repu
sions are included in an average way~denotedX5EA) ~Ref.
10! rather than discarded, the range applicability of t
asymptotic form fors2 is greatly extended. Explicitly,Ã is
replaced in Eq.~3! by an effective interaction strengthÃeff
obtained from the cubic term of the expansion of the p
jected free energy of a vicinal surface as a function of m
orientation slope:17

Ãeff

Ã
[

1

4Ã
~A4Ã1111!2;11Ã21/21

Ã21

2
1•••. ~4!

Then Eq.~3! is modified tos2;KEAÃeff
21/2, with values for

KEA the same asKE0 ~cf. Table I!.
From a capillary-wave treatment in thex̂ as well asŷ

directions18,19 and with correlation functions drawn from th
celebrated VGL~Villain-Grempel-Lapujoulade18! theory of
roughening~therefore denotedX5R) on vicinals, the Saclay
group16,20,21obtained the ‘‘Ãeff modification’’ of Eq. ~3!.

Note finally that the TWD is narrower, and soKX is
smaller~cf. Table I!, when all steps, rather than just neare
neighbors~NN!, are taken to haveA/,2 repulsions. Since the
entropic interactionipso facto just involves NN steps, the
difference is larger for the Grenoble approximations than
Gruber-Mullins, but still relatively unimportant. In exper
ments, one typically obtains the variance by measuring
width of the TWD, which is proportional toÃ[eff]

21/4. Thus, a

seemingly large 10% variation inÃ translates to a few per
cent variation in the width, well within experimental erro
Conversely, this hinders the accuracy with whichÃ can be
estimated from experiment.
4-2
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In short, since the various approaches leading to Gaus
TWD’s make different fundamental approximations, the p
dicted relationships between the TWD width andÃ differ
notably; a good fit of a TWD by a Gaussian does not im
an unambiguous estimation ofÃ.

B. Wigner approximation to TWD’s: CGWD

The exact results for TWD’s come from mapping the sp
tial configurations of steps to the world lines of spinless f
mions in the Calogero-Sutherland model.22,23 When this
model is integrable, the fluctuating positions correspond
the energy eigenvalues of random matrices for ensemb
with orthogonal (Ã521/4), unitary (Ã50), or symplectic
(Ã52) symmetry.7,8 The TWD then corresponds to the join
probability density function of the eigenvalues.

For those three cases the TWD’s can be very well
proximated by the so-called Wigner surmise,8,24

P%~s!5a%s%exp~2b%s2!, ~5!

where the constantsa% deriving from normalization ofP(s)
andb% associated with unit mean are

a%5

2FGS %12

2 D G%11

FGS %11

2 D G%12 and b%5F GS %12

2 D
GS %11

2 D G
2

~6!

for the values%51, 2, and 4, respectively.
For arbitrary% there is no symmetry-based justification

the Wigner distribution of Eq.~5!. Nonetheless, we have a
gued that it provides a viable, arguably optimal interpolat
scheme between the two special values of% and also out to
the Grenoble expression for nearly infinite repulsion;9,10 we
have also used it successfully to analyze experime
data.5,9,11For brevity, we refer hereafter to this set of form
las, Eqs.~5! and ~6!, as the CGWD~continuum generalized
Wigner distribution!. Recently some of us have been able
derive25 the CGWD by considering the two-particle Calo
ero model22 ~harmonically bound interacting spinless ferm
ons on a line! ~rather than the infinite-particle Calogero
Sutherland model23 of fermions on a circle!.

The variancesW of the CGWD can be expressed simp
in terms ofb% . From Eq.~6! it follows that

sW
2 5

%11

2b%
21'

1

2%
2

3

8%2
1

3

16%3
2

7

384%4
1O~%25!

~7!

for large values of%, as given in Eq.~A8! of Ref. 11. Based
on the mapping of the step problem onto the Sutherl
Hamiltonian,23 we recognize that

Ã5
%

2 S %

2
21D , ⇒%52AÃeff. ~8!
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Thus, whenÃ is large, we find in essence thatKW51/4 in
the modified Eq.~3!; KW agrees rather well with the modi
fied Grenoble resultKEA ~esp.KEA(all)).

To accentuate the difference between the various meth
of estimatingÃ, we shall find it useful below@cf. Fig. 2~b! as
well as Fig. 3# to scrutinizes2%. From Eq.~7! we find that
according to the CGWD, this quantity is a slowly varyin
monotonically increasing function of% and so ofÃ, with an
asymptotic value of 1/2. In contrast, for schemes which ob
s25KXÃeff

21/2, s2% is just a constant 2KX .
From Eqs.~7! and ~8! ~inverted!, one can estimate the

variance fromÃ, but experimentalists usually seek the r
verse. An excellent estimate11 of ÃW from the variance,
based on series expansion of Eq.~7!, is

Ã'
1

16F ~s2!2227~s2!211
27

4
1

35

6
s2G , ~9!

with all four terms needed to provide a good approximat
over the full physical range ofÃ. The Gaussian method
described earlier essentially use just the first term of t
expression and adjust the prefactor. WhenÃ is not weak
~basically whenÃ is above 2—see Ref. 11 for details!, P%(s)
approaches a Gaussian. Thus, in that limit, to determine
value of % ~and thenceÃ) underlying experimental data,
reasonable alternative to fitting with Eq.~5! is to fit with a
Gaussian@albeit with poorerx2 than for a fit withP%(s)],
extract the variance, and then apply Eq.~9!. Alternatively,
one can take advantage of ‘‘canned’’ statistical softwa
packages by straightforwardly recasting Eq.~5! as a standard
gamma distribution function in the random variableb%s2

with an exponent (%11)/221.26

C. Synopsis of prior theoretical results

Before proceeding to the numerics, let us summarize w
we know. At Ã50 and 2, the exact solutions lead to va
ances of about 0.1800~Refs. 7, 8, and 13! and—as some of
us have recently shown27—0.1041, respectively.~More such
information is tabulated in Refs. 9 and 10.! The variances of
the CGWD are nearly identical: as listed in Table II, they a
slightly too small for smallÃ and eventually become barel
too large byÃ52. At Ã50 the Gaussian approximations a
fundamentally invalid. AtÃ52 Table II shows that the
Saclay and GM estimates are somewhat too low whereas
Grenoble estimate is far too high. For very largeÃ, the ar-
gument underlying the modified Grenoble viewpoint b
comes compelling. The CGWD variance approaches
nicely.28 The Saclay estimate ofs2 here is significantly too
small. Thus, we know before starting that the CGWD p
vides the best estimate atÃ52 and approaches the corre
limit for very large Ã.9,10 Qualitatively it certainly captures
the global behavior of variance as a function ofÃ. Our chief
concern is how accurately the CGWD estimate embodied
Eq. ~9! reproduces the ‘‘crossover’’ behavior.
4-3
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III. MODELS AND NUMERICAL METHODS

A. TSK model and variants

For our numerical work we use models that arediscretein
the ŷ as well as thex̂ directions.3,16,21,29For simplicity we
consider a vicinal simple cubic lattice with unit lattice co
stant. Periodic boundary conditions are imposed in both
rections. The length of the system in theŷ direction is de-
noted byLy and the number of steps byN; Lx[N^,&. The
position ofnth step, relative to its mean position, is writte
xn(y).

For numerical simulations, the most elementary mo
that contains the necessary physics is the terrace-step
~TSK! model. In the TSK model the only thermal excitatio
is kinks of energye along the steps: the terraces have
adatoms or vacancies. Thenxn(y) must be a single-valued
function and the Hamiltonian contains termeuxn(y11)
2xn(y)u. The stiffness b̃TSK of an isolated step is
2kBTsinh2(e/2kBT).29 The noncrossing constraint require
xn11(y).xn(y). In addition to the resulting entropic repu
sion, there is an energetic term due to elastic repulsio
A/@xn11(y)2xn(y)#2. For our numerical simulations, we a
most always limit this repulsion to neighboring steps, a co
mon simplification in Monte Carlo;3,20 we did some test runs
to assess the change produced by also including sec
neighbor steps.

The above-noted noncrossing constraint forbids ove
of edge elements from adjacent steps but does allow cor
to touch. In addition to standard edge exclusion, we se
rately consider the case of ‘‘corner exclusion’’: configur
tions with xn61(y11)5xn(y) forbidden. Obviously, this
distinction is most significant for weakÃ and for
small ^,&.

In performing the transfer matrix calculations discussed
Sec. III C, we use the restricted terrace-step-kink mo
~RTSK!, a variant of the TSK model with the additional co
straint uxn11(y)2xn(y)u<1. In the RTSK model, the ste
stiffness b̃ is (kBT/2)@21exp(e/kBT)#.29 Since the fluctua-
tions are limited in the RTSK model, the ratiob̃RTSK/b̃TSK
must perforce be above one. Explicitly,

TABLE II. Comparison of various continuum-limit analytic ap
proximations for the variance@using tabulated results~Ref. 10!#

with the valuess
*
2 available at special values ofÃ from exact

solutions. ForÃ52 we have recently calculated thats
*
2 81.041

~Ref. 27!. For asymptotically largeÃ, the Grenoble viewpoint is
used fors

*
2 ; however, the continuum picture does not descr

adequately the discrete nature of physical systems and nume

models for~unphysically! large Ã.

Ã 21/4 0 2 →`

% 1 2 4 →2Ã1/2

sWigner
2 /s

*
2 21 24 1

2 % 21% 10.4% 11%

sEA(all)
2 /s

*
2 21 168% 0%

sR
2/s

*
2 21 23% 24%

sGM(all)
2 /s

*
2 21 @227%# 25.8% 244%
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b̃RTSK

b̃TSK

5
112exp~2e/kBT!

@12exp~2e/kBT!#2
→114e2e/kBT1•••

~10!

differs insignificantly from unity at low temperatures. Th
ratio increases monotonically, eventually becomi
3(kBT/e)2 to leading order at temperatures well above tho
at which the assumptions underlying the TSK and especi
the RTSK models become unphysical. Whileb̃TSK decays
monotonically with increasingT, b̃RTSK has a minimum
around T50.7 ~as the diffusivity saturates!; however,
b̃RTSK/(kBT)2 does still decay monotonically. In any cas
for the pair of temperatures used most often in numer
work, kBT/e50.5 and 0.84, we note thatb̃RTSK/b̃TSK
51.70 and 3.32, respectively.

B. Monte Carlo approaches

We have studied the TSK model using standard Mo
Carlo methods.30 We check that the equilibration time from
initially straight steps is several times the autocorrelat
time as measured in equilibrium. Corresponding
attachment/detachment-limited transport, update attempts
cur independently at randomly chosen single sites~along
stepn at coordinatey). Most of our results are based on th
conventional, straightforward Metropolis algorithm.31 We
also coded the ‘‘refusal-free’’n-fold way algorithm,32,33

which is much more efficient at lowT ~Ref. 30! or largeÃ.
The main disadvantage of then-fold way is that the tabula-
tion of energy classes becomes too cumbersome for la
^,&. While helpful in our preliminary runs, the number o
classes needed for multistep step interactions overwhel
the advantages in our production runs.

In our simulations, the temperature was generally set
that kBT/e50.5, even though the actual value is about 0
for the copper vicinals we have studied most extensively5,11

in order that the dynamics be reasonably rapid. In pursu
convincing numerical data, we performed three levels
simulations. First we carried out a~rather extensive! set of
preliminary runs withN510 and^,&56.9

Next, we used systems withN540 and^,&512, so that
Lx5480, a preliminary discussion of which appear
earlier.9 To insure thatLy , the size of the system along th
mean step direction, is much larger thanycoll , the character-
istic distance between close approaches at this tempera
we generally setLy5250: For the TSK model,ycoll

5^,&2b̃/4kBT5(^,&/2)2sinh2(e/2kBT),29 which is about 50
at kBT/e50.5 and^,&512. We doubled̂,& from the initial
runs to assure that discreteness effects11 played a negligible
role for physical values ofÃ. In some cases of unphysicall
large Ã ~above 50!, it was necessary to usê,&518. This
issue is discussed further in Sec. IV C.

Third, in our most extensive calculations, we used^,&
510 and, in most cases,Ly52000 andN5100. ~For Ã
550, we found it safest to increase toLy53000 andN
5200.! We used a standard high-quality random-numb
generator@Ran3~Ref. 34!# and averaged over 100 runs usin

cal
4-4
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different initial seeds. In these runs the variance reached
steady-state value after about 3000 Monte Carlo st
~MCS!; we started ‘‘taking data’’ after 10 000 MCS, record
ing results every 10 MCS until reaching 30 000 MCS.

C. Transfer matrix approach with RTSK

Since the finite-size limitation onLy hampers, at least in
the earlier stages, our exploration of lowT or largeÃ ~even
with the n-fold way!, we have also used the transfer-mat
~TM! method35 to study TWD’s.11 This methodipso facto
has infiniteLy ; Lx is limited by the size of matrices tha
available computers can handle, on use of symmetrie
sparse-matrix methods to limit the computational pow
needed, and on the viability of simplifying approximations
enhance such reductions. Invariably,Lx must be smaller than
in the Monte Carlo runs. In order to achieve the benefits o
sparse matrix, we restrict our transfer-matrix studies to
RTSK model. We note that the numerical transfer-mat
technique was applied independently in Ref. 21 to the TW
problem.

To construct the TM, we first enumerate all valid comb
nations ofN step positions in a periodic system of widthLx ,
giving the set of basis statesu i &. We calculate the energyEi
within each basis stateu i & ~from step-step interactions! and
the energyEi j from interactions between basis statesu i & and
u j & ~from kinks!. Then we can construct for each advance
ŷ a symmetric TMT from the various Boltzmann weights:

T i j 5expF2S Ei j 1
Ei1Ej

2 D Y kBTG . ~11!

We reduce the dimensionality ofT by using the invariance o
the Hamiltonian under reflection, translation, and cyclic p
mutation of the steps.

As Ly→`, Z1/Ly, whereZ is the partition function, ap-
proaches the~nondegenerate! largest eigenvalue ofT,
L0.36–39The corresponding eigenvector,uL0&,

40 can be used
to find the TWD by~cf. also Ref. 21!

P~s!5(
i

u^ i uL0&u2Pi~s!, ~12!

wherePi(s) is the distribution of terrace widths within bas
state u i &. While carrying out the computation expressed
Eq. ~12!, it is simple to find the second moment ofP(s) and
thence to estimateÃ, e.g., using Eq.~9!. Alternatively, one
can fit a Wigner distribution to the computed~discrete! P(s).
While non-negligible, the differences between these two
proaches is rather insignificant, comparable to the effect
temperature discussed below.

Obtaining quantitative information about the thermod
namic limit from TM analysis requires an extrapolation
N→` from small values ofN. For thermodynamic quantitie
derived from the one or two largest eigenvalues of the T
there is extensive literature on finite-size scaling,41 although
even in these cases many subtleties can confound the
trapolation. Here we must extracts2 from the information
contained in the eigenvectoruL0&. We have carried ou
12540
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power-law and exponential extrapolations; in either case,
have three equations~from the data forn53, 4, and 5! in
three unknowns~constant term, prefactor, and power exp
nent or exponential prefactor!. The results are shown in Fig
1. According to the discussion in Ref. 21, the power-la
procedure is more appropriate. The exponential extrapola
can then be used as a rough gauge of the uncertainty.

IV. RESULTS AND DISCUSSION

A. Main result: Overall superiority of CGWD

The main result of this paper is displayed in Fig. 2~a!. The
various predictions of the variance are plotted vsÃ. A loga-
rithmic scale is used for the horizontal axis so as not to g
undue visual emphasis to larger values ofÃ nor to blur the

FIG. 1. The temperature dependence of the RTSK model for~a!

noninteracting steps (Ã50) and~b! a moderate nearest-step inte

action (Ã54), for ^,&55. Theestimatedvalue ofÃ comes from a
least-squares fit of the Wigner distribution to the TWD given by t
numerical TM method. In addition to TM results for three, four, a
five steps, extrapolations based on assumed power-law and e
nential convergence are shown.
4-5
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region of rapid variation for small~but nonvanishing! Ã, for
which an exact calibration point exists. The Wigner resul
essentially given by Eq.~9!. The physical values ofÃ range
from near 0 up to the mid teens. More than ordinaryA/,2

elastic repulsions are presumably involved in the rare ca
in which larger values are observed. There are relatively
reports of small but nonzero values ofÃ. We suspect tha
one reason is that any of the Gaussian approximations m
festly fail in this regime, so that before the recognition of t
utility of the Wigner distribution, one could not deal quan
tatively with smallÃ.42

To heighten the contrast, we replot in Fig. 2~b! the curves
of Fig. 2~a! using as the ordinate the variance multiplied
% ~i.e., 2Ãeff

1/2); with such rescaling, the Saclay and the mo
fied Grenoble predictions appear as horizontal lines. Cle
in this plot the numerical data increases systematically w
Ã, much like the CGWD.

As shown in Fig. 3, we find similar results using th
transfer-matrix method to study the RTSK model for^,&
55. While three decades ofÃ are displayed, the middle on

FIG. 2. ~a! Plot of the variances2 as a function ofÃ on a
logarithmic scale, plotted for the CGWD@‘‘Wigner distribution’’ or
W] ~light solid curve! and for the modified Grenoble or EA~short-
long dashed for NN step interactions only; short-short-long das
for all steps interacting!, Saclay or R~short-short-long-long dashe
curve!, and Gruber-Mullins~short dashed for NN step interaction
only; long dashed for all steps interacting! Gaussian approxima
tions. Monte Carlo data are shown asd ’s, with statistical errors less
than the size of the symbols.~b! Replotting with the variance mul
tiplied by % to highlight differences between the various appro
mations, using the same coding as in the upper panel. The ordin
of the horizontal lines are twice the corresponding values ofKX in
Table I.
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is of greatest interest. The points forN55 are consistently
slightly higher than those forN54 and in close proximity to
the CGWD curve, much like the Monte Carlo data in F
2~b!. The convergence appears rapid, seemingly to va
modestly above the CGWD, as might be expected since o
nearest-neighbor repulsions are considered.~See below for
the remaining curve.!

B. Convergence in lattice width

For selected cases, we performed extensive tests of
convergence of our estimate of the variance with increas
lattice width and number of steps, as described at the en
Sec. III B. Figure 4 summarizes our findings for the spec

d

tes

FIG. 3. Plot of the products2% vs Ã on a logarithmic scale, as
in Fig. 2~b!, also atkBT/e51/2. The symbols are obtained from
TM computations for the RTSK model witĥ,&55. The3 ’s are
for four steps (N54) while the1 ’s are for N55, with nearest-
neighbor~NN! step-step interactions. The *’s include next near
in addition to NN interactions. The thin solid curve is the Wign
distribution. The thick solid and dashed horizontal lines give
EA~NN! and R approximations.

FIG. 4. Finite-size dependence of the variance for the exa

solvable caseÃ52, with kBT/e51/2 and^,&510. Each intersec-
tion of the grid lines on the graphed surface represents a sele
pair of N andLy . Error bars are of order 1023, too small to depict.
4-6
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case ofÃ52, for which we know the variance exactly. I
Table III are the results of the associated extrapolations inLy
for fixed N and inN for fixed Ly . The extrapolations inLy ,
using s25s`

2 2B/Ly
a , are reasonably well behaved. Th

value of a ranges between 0.7 and 0.9, compared with
expectation from Le Goffet al.21 that it be 1. Likewise, the
extrapolated value is in decent agreement with the varia
calculated for the exact solution for an infinite number
continuum steps. In contrast, the extrapolations inN are
more variable, with sizable variations ina and in the ex-
trapolated values. This thwarted our attempt to extrapolat
terms of a single length variable (Ly

21cN2)1/2, wherec is an
adjustable parameter.

The values reported in the preceding section, in particu
in Fig. 2~a!, are based on extrapolations to infiniteLy for
several different values ofLy , assuming thats`

2 2sLy

2

5B/Ly
a . For example, forÃ52 andN510, we found in this

nonlinear least-square fit thata50.91 . . . andB52.3 . . . .
The resulting value ofs`

2 was within 0.001 of the value
predicted by Eq.~7!. ~If instead we assumed this value fro
the outset, we could do a linear fit ofsW

2 2sLy

2 vs B/Ly
a to

find a50.90 . . . andB52.2 . . . .!
We note the recent interest in the finite-size dependenc

interfaces in thin films, as discussed authoritatively in R
43. There, however, only one interface is present, the film
three dimensional, and the primary focus is on the film thi
ness, somewhat analogous to^,&.

C. Deviation from continuum at very large Ã

All the discussed approximations rely on a continuu
capillary-wave-type approximation of steps, so thatÃ is the
only significant parameter in determining the TWD. Wh
the discrete nature of a real vicinal surface is conside
e.g., in numerical simulations, temperature enters as a s
rate variable. This behavior was noted implicitly in an ea

TABLE III. Finite-size extrapolation of variance data plotted

Fig. 4 for Ã52 and ^,&510. @For reference,sW
2 50.1045 and

sexact
2 50.105 ~Ref. 27!#. The top part shows fits to theLy depen-

dence, forLy5200, 300, 400, 500, 600, 800, assumings25s`
2

2B/Ly
a for variousN. In the bottom part, the results of similar fit

for fixed Ly and varying N are listed. The error bars are th
‘‘asymptotic’’ standard error.

N s`
2 B a

10 0.10460.004 1.03 0.7260.18
20 0.10660.005 1.11 0.7460.29
30 0.10460.001 2.30 0.9160.01
40 0.10660.002 2.46 0.9060.18
60 0.10660.002 1.82 0.8560.17

Ly s`
2 B8 a8

500 0.097460.0002 0.191 1.6160.24
600 0.12460.183 0.036 0.0960.60
800 0.101560.0009 0.033 0.7660.22
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study of noninteracting steps3 and was a major focus of ver
recent work by Le Goffet al.21

1. ‘‘Toothlike’’ configurations

In Fig. 3, the turning down of the TM-derived variances
Ã greater than about 40 signals the beginning of a strik
change in the scaling behavior.~In a similar plot atkBT/e
50.84 in Ref. 25, the peak occurs atÃ'60.! The step con-
tinuum picture begins to falter, and the low-energy exci
tions are no longer capillary waves. Instead, for strong st
step repulsions, discrete ‘‘toothlike’’ single-move excitatio
dominate. If just nearest steps interact, the associated ex
tion energy isA times

D~^,&![
1

~^,&11!2
1

1

~^,&21!2
22

1

^,&2
'

6

^,&4
. ~13!

~Similarly, the contribution from the repulsion betweennth
neighbors has the same form as in expression~13!, but with
n^,& replacing^,&.! For largeÃ it is no longer true that the
only dependence onA is through Ã, and the variance no
longer varies roughly as%21 ~or, equivalently, asÃeff

21/2).
Specifically, for asymptotically large repulsions we expe
that

s2}exp@2AD~^,&!/kBT#5exp@2ÃD~^,&!kBT/b̃#.
~14!

With TM calculations for^,&55 we have verified that Eq
~14! holds to at least three-significant-figure accuracy ove
decade ofÃ. ~We note that the excitation can involve mu
tiple in-phase ‘‘teeth’’ without increasing the net interste
repulsion. The degree to which these multistep excitati
contribute depends one/kBT, further emphasizing the break
down of scaling just withÃ. Furthermore, these argumen
can be extended to cases with noninteger values of^,&,
though one must be more careful in dealing with finite-s
issues.!

The value ofÃ at which the continuum picture starts t
fail naturally depends strongly on̂,&, since that provides a
measure of the relative discreteness of the integer deviat
of the steps. We can estimate crudely the value ofÃ for
which discreteness alters the scaling behavior ofs2: In the
Gruber-Mullins approach, the root-mean-square displa
ment of a step iŝ ,&/(48Ã)1/4. The crossover then shoul
occur when this rms distance is of order unity, i.e.,Ã
;^,&4/48. A TM study ~at kBT/e50.84) with N54 shows
that the peak in a plot ofs2% vs Ã occurs atÃ'50 for

^,&56 but at Ã'200 for ^,&510. These two values ar
roughly consistent with this prediction, though the depe
dence on^,& seems less than quartic~but decidedly more
than quadratic!. Since the crossover occurs for unphysica
strongÃ, we do not explore it in exhaustive detail. Suffice
to say that the present results are consistent with the a
ment in Ref. 11 that discreteness is relatively insignifica
4-7
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over the physical range ofÃ so long as^,& is at least 4
~although for largeÃ it would be safer to havê,&>5).

To investigate further this unphysical limit, we generat
configurations for very large values ofÃ up to 1000. Even
there, the discussions typically extended over several la
spacings in theŷ direction. WithN520, no obvious signa-
tures of ‘‘long-wavelength phonons’’ were evident, thou
we did not pursue a detailed analysis of the structure fac

2. Roughening transition to facet at large A˜

A major difference between discrete and continuum m
els is that the former admit a roughening transition~while the
latter is always rough!. To estimate for what value ofÃ this
transition should occur, we now seek the connection betw
the Calogero-Sutherland Hamiltonian used in our work a
the exactly solvable VGL Hamiltonian underlying the wo
of the Saclay group. In the VGL model18 the step-step repul
sion vanishes for,>^,&, takes the valuewn for ,5^,&
21, and is infinite for smaller separations.

A straightforward way to make the correspondence
tween the two models is to adopt the Gruber-Mullins vie
point, expand the potential due to neighboring steps at1^,&
and 2^,&, and use Eq.~13! to show wn'AD(^,&)
'6A/^,&4. We likewise equate the VGL discrete-Gaussi
parameterW0 and our absolute solid-on-solid kink energye
and take the low-temperature limit of the stiffness~in either
the TSK or RTSK model!. Then the VGL condition18 for the
roughening transition (wn /TR)exp(W0 /TR)52 translates to

ÃR5^,&4/6. ~15!

Given the severity of the approximations invoked, the fa
tor of 6 is unlikely to be precisely correct, but presumab
ÃR should scale likê ,&4. The implications are that forÃ
,ÃR we are at temperatures above the roughening temp
ture ~as is implicit in the idea of a vicinal surface!. For Ã

.ÃR a facet can develop, altering fundamentally the lon
range correlations. Note that already for^,&53, ÃR is about
14, above the typical maximum physicalÃ; for ^,&54, ÃR

is well above the physical range ofÃ.
In this regard, it is worth recalling that in Ref. 11 some

us showed that̂ ,&54 is the threshold for the differenc
between continuum and discrete to become negligible. T
experimental vicinal surfaces should never be faceted in
regime in which it is sensible to apply the analysis in th
paper.

D. Temperature dependence of the TWD

In Fig. 1 we also see a residual temperature dependen
the RTSK model. As for the TSK model, the stiffnessb̃RTSK
is known for the RTSK model with an isolated step; usi
b̃RTSK @and Eq.~1!#, we vary A to maintain a constantÃ
while varying the temperature. As discussed in Sec. III C,
TWD is derived from the numerical TM for each temper
ture and then fitted to the CGWDP%(s) of Eq. ~5!.
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The resulting estimates ofÃ all have the following ge-
neric features: they are approximately temperature indep
dent at low temperatures and decrease approximately m
tonically ~eventually to an asymptotic value at hig
temperatures when the assumptions underlying the RT
model become decidedly unphysical!. The details depend on
the numberN of steps involved in the TM calculation; th
smaller theN, the more the finite-size estimate exceeds
expected input value ofÃ. Included extrapolationsN→`,
based on assumed power-law and exponential convergen
give a better estimate of the input. The absolute size of
error in the estimate seems to increase with increasingÃ.

The deviation of the estimated value ofÃ from the
known, input value does not require a large difference in
corresponding TWD’s, as shown in Fig. 5 forÃ54. Even for
these extreme temperatures,44 the TWD is relatively insensi-
tive.

To check further the robustness of the idea that the TW
depends only onÃ and not its separate components, we d
trial sets of runs atkBT/e50.3, 0.5, and 0.8 forÃ 5 0 and 2
~i.e.,%52 and 4, respectively!. For bothÃ’s, the value of the
deduced% at kBT/e51/2 was largest and closest to the inp
value. It is remarkable that there the variation with tempe
ture is not monotonic. Experimentalists know45 that simple
equilibrium behavior can be observed only over a narr
thermal window: at too cool conditions, slow diffusion pr
cludes establishment of equilibrium conditions, whereas
too warm temperatures, the excitation spectrum beco
much more complicated than in the elementary models
voked by theory. Evidently there is a comparable window
sorts in numerical simulations. At lower temperatures, in
dition to the equilibration difficulty, the characteristic leng
along ŷ—which is proportional tô ,&2b̃29—grows dramati-
cally ~e.g., by a factor of nearly 5 in cooling from 0.5 to 0.3!,
creating finite-size-induced deviations as depicted in Fig

FIG. 5. The temperature dependence of the RTSK model

N55 interacting steps (Ã54). The TWD’s forT@(e/kB)#50.05,
1, and 20 differ very little from each other and from the Wign
distribution.
4-8
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ANALYSIS OF TERRACE-WIDTH DISTRIBUTIONS PHYSICAL REVIEW B69, 125404 ~2004!
At high temperatures, the excitation spectrum can grow m
complicated than assumed in the small-deviation expans
implicit in standard analysis.

E. Nearest-neighbor vs long-range repulsions

In the preceding section we have mentioned several ti
the issue of whether all steps or just neighboring ones su
a repulsive interaction proportional to the inverse square
their separation. As noted, the Wigner distribution and
Saclay~R! approach intrinsically take all steps to intera
whereas the Gruber-Mullins~GM! and Grenoble~E0 and
EA! approaches can be done either way. For the nume
methods, it is much easier to assume just nearest-neig
interactions. Obviously, forA50 there can be no difference
It is widely taken for granted that the difference is not s
nificant. For example, Ihleet al.15 point out that the width of
the TWD, which is what is typically measured and is ess
tially the root of the variance, changes at most by a f
percent, so by less than typical experimental errors. On
other hand, sinceÃ depends essentially on the square of
variance~i.e., on the 4th power of the width!, the variation
can seem more noteworthy. This comment provides a
minder of the difficulty of pinpointing the magnitude of th
step repulsion from analysis of TWD’s.

In this section we address briefly the effects of includi
more distant steps in our numerical simulations. Includ
elastic repulsions with all steps should sharpen the TW
thereby decreasing the variance, for givenÃ. As noted, the
difference should vanish atA50 and increase monotonicall
to nearly 5% when the Grenoble picture applies~cf. Table I!.
In Fig. 2~b! there is another horizontal line at 0.52, above
plotting window. It is thus remarkable and curious that the
is such fine agreement between the Monte Carlo results
CGWD curve when the above arguments would lead to
pectations that the Monte Carlo values of the variance
given Ã would be somewhat larger than those of CGWD,
that if one deduced a value ofÃ from the resulting variance
the result would be somewhat smaller than initially.

In Fig. 2~b! we also include some Monte Carlo results f
long-range repulsions, extending out toN/2 steps. We find as
expected that the difference is small for smallÃ but grows
by Ã'7 to a difference comparable to that between the
and all modified Grenoble approximations. We have
scrutinized the behavior at largerÃ, which involve long
equilibration times.

Given the limited size of the systems used in our T
studies, the best we can do is allow second neighbor as
as nearest-neighbor repulsions. In Fig. 3 we see similar
havior, but with an asymptotic difference somewhat less t
that between the two modified Grenoble cases and deve
ing more gradually~with increasingÃ) than in the Monte
Carlo simulations.

V. CONCLUSION

The numerical studies presented here~esp. in Sec. IV A!
show that the CGWD of Eq.~2! is not just an excellen
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interpolation between the established points atÃ50 andÃ
52, but also a fine extrapolation expression over the ra
of physicalÃ and beyond; moreover, it might be viewed
an interpolation betweenÃ52 and the result of the physi
cally compelling Grenoble viewpoint nearÃ5`. While the
shape of the TWD does approach a Gaussian in the phy
regime of moderately strongÃ, the CGWD @via Eq. ~9!#

provides arguably the best way to extractÃ from the vari-
ance of the TWD and certainly the least ambiguous. Of
Gaussian methods the Saclay~R! scheme is better for mod
erateÃ whereas the Grenoble@EA~all!# scheme is better for
strongerÃ. The continuum description is a good approxim
tion for terraces at least four atomic spacings wide.
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APPENDIX: CORNER REPULSION

In preliminary tests of the free fermion case,Ã50, we
found in fitting with Eq. ~5! the TWD produced with the
conventional TSK model that the best estimate of% was
1.81, whereas with a TSK model with corner exclusio
~TSK-CE model, described in Sec. III A! the best-fit value
was the expected%52. Thus, the corner effects, which e
fectively increase the step repulsion when entropic effe

FIG. 6. Plots of estimatedÃ vs kBT/e for ^,&55 and N55

with an ‘‘input’’ value of Ã54. The four sets of data are for corne
repulsion included or omitted and for the two different extrapolat

methods to deduceÃ from TM computations.
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are important, seem to compensate the effects of discr
ness.

To check the systematic effects of corner repulsion,
performed transfer-matrix calculations forÃ54, the results
of which are shown in Fig. 6. Working witĥ,&55 andN
55, we examined the temperature dependence of the
duced value ofÃ. The open circles are the same data as
diamonds in Fig. 1~b!. As expected, the effect of corner re
pulsions increases with increasing temperature, as entr
effects gain relative importance, but evidently their effect
negligible even at this rather modest value ofÃ. We also
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