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Analysis of terrace-width distributions using the generalized Wigner surmise:
Calibration using Monte Carlo and transfer-matrix calculations
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Measurement of terrace-width distributiofidVD’s) of vicinal surfaces is used routinely to find the dimen-
sionless strength of the elastic repulsion between steps. For sufficiently strong repulsions, the TWD can be
described by a Gaussian about the mean step spacing, but controversy has arisen on the correct prefactor in the
relation of the TWD variance té. Instead of the various Gaussian approximations, we have advocated for
several years that the TWD be fit with the generalized Wigner distribution, essentially a gamma distribution in
the normalized squared TWs. The basis for this idea stems from a mapping of the step model to the Sutherland
model of fermions in one dimension. While several applications to experiment have been successful, definitive
comparison of the various approximations requires high-quality numerical data. We report transfer matrix and
extensive Monte Carlo simulations of terrace-step-kink models to support our contentions. Our work includes
investigation of finite-size effects and of the breakdown of the continuum picture for valdetaager than in
typical experiments.
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[. INTRODUCTION tives produce the same proportionality, but with different

proportionality constants. Subsequently, we recognized that

The last decade has witnessgaantitativemeasurement the TWD might better be described using the generalized

of the widthst of terraces on vicinal surfaces. The resulting Wigner surmise rather than a Gaussian. In actual experimen-
data for the terrace width distributidiWD) provides argu-  tal system4A is typically between 0 and 10, sometimes in the
ably the best way to gauge the strength of the elastic repukteens’® (While occasional values up to nearly 4000 have

sion between steps, specifically the coefficiniwhich has  peq, reportetifor A, our belief is that values above about 20
urltsdof(fjenergly times Ien_glh)ll‘_;_he elastic repuls_loﬁl\/ €%.In " indicate anomalous behavipiExact theoretical results for
standar fina yses. tWO. simplifications .are Touf'”e.y m_(a]je. the TWD (with A=0) are available only foA=0 andA

The elastic repulsion is taken to act jUS} in thelirection, =2.78 Hence, resolution of the controversy about the opti-
perpendicularly to the mean step directipin “Maryland  mal viewpoint of TWDs requires high-quality numerical
notation”]. This formulation should be a good approximation simulation.

when the step meandering is relatively modest, with varia- |n this paper we report the results of simulations over
tion scale iny that is “slow” (large compared tof. The  several years to produce data adequate to confront the con-
preceding formulation of the repulsion as a functionfof troversy convincingly. Our primary method has been to do
implicitly uses this ansat22) Individual steps can be well long Monte Carlo calculations for large lattices using the

characterized in terms of their Stiﬁneﬁés which is inverse'y Simp|eSt reasonable modellfOI’ Step fluctuations. Th|S work is
proportional to their diffusivity. This requires thafy) fora  complemented by calculations using transfer-matrix meth-
invokes the step continuum approximation, in which a con/nade by the various theoretical approximations; we analyze
tinuum approximation is made along tﬁlejirection.l There- the results in a way that highlights the differences between

after, A appears only in the form of dimensionless interac- the predictions. This work is a _conS|d§?nble advance over
tion strength earlier preliminary remarks on this problenm previous pa-

pers we discussed relevant analytic results for the various
approximations? applications of the generalized Wigner
distribution to experimental daf£:*'and how these studies

~ . fit in general research on random matrix thebryn this
where g is the step stiffness. g y

. . . paper we limit our discussion to aspects bearing on our
T.O char'acterllze a TWD obtglned from eXpe“m?F‘t O NUtheme of using numerical studies of standard models to test
merical simulation, it is typically deemed sufficient to

PR , 5 e the relative merits of the various approximations for the
specify just its variance or some similar measure of the TWD.
width of the single peak. At least whehis not small, this In the following section, we offer a succinct review of the
procedure is adequate since the TWD's shape can be aghysics of the various approaches and the key formal results.
equately approximated by a Gaussian. Justification of thiReaders familiar with earliefand more expand@cexposi-
form can readily be derived from a mean-field-lik@ruber-  tions of most of this material can use the equations and two
Mullins) approactf;® which indicates that the variance varies newly compiled tables to refresh their recollections. In Sec.
inversely withAY2 Two recent theories from other perspec- Ill, we describe the models used for the computations and

A=AB(kgT) 2, (1)
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TABLE |. Tabulation of the prefactorky that relate the variance to the inverse root of the dimensionless interaction stefftEq.

(3)], or to Ay [SO (0/2)?] if the “eff?” entry is Y. The square brackets for the Wigner listing recall that E%). differs from Eq.(2)
underlying the other entries.

Model Approximation Reference X  eff? Kxnny Kx(al
Gruber-Mullins Single active step 2 GM N 1/\/48=0.144 J15/87%=0.139
Grenobl Neglect entropic interacti 1415 EO0 N 532 o L
renoble eglect entropic interactionn , = — ——=0.
g p 2/37°=0.260 7)o 27— )
. L . 1 (%= 1—cos¢
Grenoble, modified Average entropic interactionn 14,1510 EA Y 2/37%2=0.260 p= miO.ZM
0
Saclay Roughening theof}¥GL (Ref. 18] 16,20,21 R Y 2#2=0.203
Wigner [gamma-like, not Gaussian distribution 7,10 W [Y] [1/4]

the calculational procedures we followed. Section IV, whichrepulsion increasegbecause large energetic repulsions di-
presents our results, is the heart of the paper. It begins witminish the chance of neighboring steps approaching each
our numerical evidence favoring the use of the Wigner eX'OtheI)’ becoming neg||g|b|e at very |arg’?é (hence the nota-
pression rather than a Gaussian to describe the TWD anghn X=EO0). If both steps bounding a terrace fluctuate
proceeding to examine finite-size effects, the breakdown ofdependently, then the variance of the TWD should be the
the continuum picture, and temperature effects. The concludsym of the variances of the fluctuations of each step, i.e.,
ing section briefly recapitulates our findings and their impli-tyice the variance obtained in the Gruber-Mullins picture.
cations. This factor is reduced modestly by corrections due to the
(antcorrelation$® of neighboring steps. If entropic repul-
Il. REVIEW OF FORMAL BACKGROUND sions are included in an average wagnotedX=EA) (Ref.
10) rather than discarded, the range applicability of the
asymptotic form fora? is greatly extended. Explicitlyd is
replaced in Eq(3) by an effective interaction streng.
obtained from the cubic term of the expansion of the pro-

jected free energy of a vicinal surface as a function of mis-
orientation slopé?’

A. Gaussian approximations to TWD’s

It is convenient to divide¢ by its average value, thus
constructing the dimensionless parameser€/(€). Then
the TWD P(s) is not just normalized but has unit mean.
Moreover, for steps with jusf/£? repulsions,P(s) is ex-
pected to be insensitive &), so that the rescaled TWD’s
for different misorientations of the same surface are then

expected to coincid® It was long conventional to describe A 1 = ~ . Al
TWD’s by Gaussian distributions: = Eﬁ(\/#ﬁr 1+1)>~1+A 1’2+7+ e (8

1 (s—1)? _
P(s)~Pg(s)= exg ———5 |- (2} Then Eq.(3) is modified toa?~KgaA+2, with values for
og\2m 20¢ e
Kea the same a& g (cf. Table ).

Use of a Gaussian distribution can be justified in several From a capillary-wave treatment in theas well asy
ways, assuming the elastic repulsion between the steps trections®®and with correlation functions drawn from the
strong enough to confine the motion of each step to a paraelebrated VGL(Villain-Grempel-Lapujoulad®) theory of
bolic well near its mean position. The venerable Gruber+fougheningtherefore denoted=R) on vicinals, the Saclay
Mullins (GM) treatment, which allows only one step of the group®?>?!obtained the A, modification” of Eq. (3).

vicinal surface to meander, finds that Note finally that the TWD is narrower, and 96y is
) ~ 1 smaller(cf. Table ), when all steps, rather than just nearest
oo =KyA 7, (3 neighborsNN), are taken to hava/¢? repulsions. Since the

where the subscripX anticipates that different proportional- entropic interactioripso factojust involves NN steps, the

ity constants, tabulated in Table I, will result from different difference is larger for the Grenoble approximations than for

approximation schemes, each of which is given a mnemonigrUber'Mu”inS’. but still rglatively ur_1important. In experi-
label X ' ments, one typically obtains the variance by measuring the

y . _ : o - =1
In rederiving Gaussian TWD's from different perspec- Width of the TWD, which is proportional tdy.g*. Thus, a

tives, two groups ascertain that the variance in Bjjusing  seemingly large 10% variation iA translates to a few per-

KGM underestimate$for gi\/en A) the true variance: The cent variation in the width, well within eXperimental error.
Grenoble groupf!® start with the insight that thentropic ~ Conversely, this hinders the accuracy with whighcan be
repulsion becomes relatively less important as the energetiestimated from experiment.
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In short, since the various approaches leading to Gaussiarhys, whenA is large, we find in essence thisty=1/4 in
TWD's make different fundamental approximations, the prethe modified Eq(3); Ky, agrees rather well with the modi-
dicted relationships between the TWD width aAddiffer  fied Grenoble resulKea (€sp.Keaan) -
notably; a good fit of a TWD by a Gaussian does not imply  To accentuate the difference between the various methods

an unambiguous estimation Bf of estimatingA, we shall find it useful belovicf. Fig. 2Ab) as
well as Fig. 3 to scrutinizec?0. From Eq.(7) we find that
B. Wigner approximation to TWD's: CGWD according to the CGWD, this quantity is a slowly varying,

Th ¢ its for TWD’ f ing th monotonically increasing function @f and so ofA, with an
. € exact results for S come from mapping the SIOa'asymptotic value of 1/2. In contrast, for schemes which obey
tial configurations of steps to the world lines of spinless fer-

_ A —1/2 2 ic i
mions in the Calogero-Sutherland mo@&f® When this 7 — KxAe » 0°€ IS just a constant Ry.

model is integrable, the fluctuating positions correspond to ~1oM Egs.(7) and (8) (ir?verted,. one can estimate the
the energy eigenvalues of random matrices for ensemblesvariance fromA, but experimentalists usually seek the re-

with orthogonal A= —1/4), unitary A=0), or symplectic ~verse. An excellent estimdfeof A, from the variance,

(A=2) symmetry.8 The TWD then corresponds to the joint Pased on series expansion of E@), is
probability density function of the eigenvalues.

For those three cases the TWD’s can be very well ap- ~ 1 o2 oq, 21 35,
proximated by the so-called Wigner surmfsé, A~ gl (07) "= T(0%) "+ 4+ o, ©

Pe(s)zaeseexp(—bgsz), (5)  with all four terms needed to provide a good approximation

o o over the full physical range oA. The Gaussian methods
where the constants, deriving from normalization oP(s)  described earlier essentially use just the first term of this

andb, associated with unit mean are expression and adjust the prefactor. Whenis not weak
5 (basically wherA is above 2—see Ref. 11 for detajl® ,(s)

2{1“ 9_+2 et Q_+2 approaches a Gaussian. Thus, in that limit, to determine the

a.— 2 and b.= 2 6) value of ¢ (and thencéA) underlying experimental data, a

e o+1\]2"2 @ o+1 reasonable alternative to fitting with E¢p) is to fit with a
T2 r T2 Gaussiar{albeit with poorery? than for a fit withP,(s)],

extract the variance, and then apply E§). Alternatively,
for the valueso=1, 2, and 4, respectively. one can take advantage of “canngd” statistical software
For arbitraryo there is no symmetry-based justification of Packages by straightforwardly recasting Es).as a standard
the Wigner distribution of Eq(5). Nonetheless, we have ar- 9amma distribution function in the random varialilgs®
gued that it provides a viable, arguably optimal interpolationwith an exponent ¢ +1)/2—1.2°
scheme between the two special valuep and also out to
the Grenoble expression for nearly infinite repulsidfiye

have also used it successfully to analyze experimental , . .
data®*1For brevity, we refer hereafter to this set of formy- ~ Before proceeding to the numerics, let us summarize what

las, Egs.(5) and (6), as the CGWD(continuum generalized we know. AtA=0 and 2, the exact solutions lead to vari-
Wigner distribution. Recently some of us have been able toances of about 0.180(Refs. 7, 8, and 13and—as some of
derivé® the CGWD by considering the two-particle Calog- us have recently showh—0.1041, respectivelyMore such
ero modet? (harmonically bound interacting spinless fermi- information is tabulated in Refs. 9 and 1The variances of
ons on a ling (rather than the infinite-particle Calogero- the CGWD are nearly identical: as listed in Table II, they are
Sutherland modét of fermions on a circle slightly too small for smallA and eventually become barely
The variancer,y of the CGWD can be expressed simply 1o |arge byA=2. At A=0 the Gaussian approximations are

in terms ofby, . From Eq.(6) it follows that fundamentally invalid. AtA=2 Table Il shows that the
Saclay and GM estimates are somewhat too low whereas the

o2 _e+1l 1~ 1 i+ 37 009 Grenoble estimate is far too high. For very lal§ethe ar-
W 2b, 20 8p? 160° 3840 gument underlying the modified Grenoble viewpoint be-
(7) comes compelling. The CGWD variance approaches it

nicely?® The Saclay estimate af? here is significantly too
for large values ob, as given in Eq(A8) of Ref. 11. Based small. Thus, we know before starting that the CGWD pro-
on the mapping of the step problem onto the Sutherlandides the best estimate At=2 and approaches the correct

Hamiltoniani® we recognize that limit for very large A.%*° Qualitatively it certainly captures

the global behavior of variance as a functionfofOur chief
~_e[e 4R concern is how accurately the CGWD estimate embodied in
A= ( 1)’ =0=2VAer. ®) Eq. (9) reproduces the “crossover” behavior.

C. Synopsis of prior theoretical results

212
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TABLE Il. Comparison of various continuum-limit analytic ap- v 1
o , : +2expy — e/kgT
proximations for the variancfusing tabulated resultéRef. 10] ’LERTSK: A~ elks )2_)1+4675/|<BTJr o
with the valuess? available at special values @ from exact Brsk [1—exp(—e/kgT)]

solutions. ForA=2 we have recently calculated thaf =1.041 (10
(Ref. 27. Por asymptotically largd, the Grenoble viewpoint is giffers insignificantly from unity at low temperatures. The
used for oy ; hovyever, the continuum picture does not descr'b.eratio increases monotonically, eventually becoming
adequately the discrete naturNe of physical systems and numencgl(kBT/f)z to leading order at temperatures well above those
models for(unphysically large A. at which the assumptions underlying the TSK and especially
the RTSK models become unphysical. Whies, decays

A —1/4 0 2 —® . N . ~ -
0 1 5 4 g1 monotonically with increasingl, Bgrrsk has a minimum

- around T=0.7 (as the diffusivity saturatgs however,
Oigned 75 — 1 —4lo -1% +04%  +1% Z%RTSK/(kBT)Z does still decay monotonically. In any case,
TZagan 02— 1 +68% 0% for the pair of temperatures used most oftgn in n~umer|cal
o&lo? -1 —3% —4% work, kgT/e=0.5 and 0.84, we note thaBgrsk/Brsk
géM(a")/Ui -1 [—27%)] —5.8% — 44% =1.70 and 3.32, respectively.

Il. MODELS AND NUMERICAL METHODS B. Monte Carlo approaches

We have studied the TSK model using standard Monte
Carlo methods? We check that the equilibration time from

For our numerical work we use models that digcretein  injtially straight steps is several times the autocorrelation
they as well as thex directions>*®?*?°For simplicity we  time as measured in equilibrium. Corresponding to
consider a vicinal simple cubic lattice with unit lattice con- attachment/detachment-limited transport, update attempts oc-
stant. Periodic boundary conditions are imposed in both dieur independently at randomly chosen single sit@®ng

rections. The length of the system in thedirection is de- ~ Stepn at coordinatey). Most of our results are based on the
noted byL, and the number of steps By, L,=N(¢). The conventional, straightforward Metropolis algor!tﬁﬁw.We
position ofnth step, relative to its mean position, is written @lS0 coded the “refusal-free’n-fold way algorithm3?33
Xn(Y). which is much more efficient at oW (Ref. 30 or largeA.

For numerical simulations, the most elementary modellThe main disadvantage of tefold way is that the tabula-
that contains the necessary physics is the terrace-step-kirfilon of energy classes becomes too cumbersome for large
(TSK) model. In the TSK model the only thermal excitation (¢). While helpful in our preliminary runs, the number of
is kinks of energye along the steps: the terraces have noclasses needed for multistep step interactions overwhelmed
adatoms or vacancies. Theq(y) must be a single-valued the advantages in our production runs.
function and the Hamiltonian contains terejx,(y+1) In our simulations, the temperature was generally set so
—xq(y)|. The stifiness Brsx of an isolated step is thatkgT/e=0.5, even though the actual value is about 0.2
2kg Tsint(e/2ksT). 2% The noncrossing constraint requires for the copper vicinals we have studied most extensively,
X+ 1(Y)>X,(y). In addition to the resulting entropic repul- N order that the dynamics be reasonably rapid. In pursuing
sion, there is an energetic term due to elastic repulsion£0nVincing numerical data, we performed three levels of
A/[X, - 1(Y) = x,(y)]2. For our numerical simulations, we al- Simulations. First we carried out (aathegr extensiveset of
most always limit this repulsion to neighboring steps, a comPreliminary runs witiN=10 and(¢)=6.
mon simplification in Monte Carld2°we did some test runs  Next, we used systems witi=40 and(() =12, so that
to assess the change produced by also including secoon:."'%o’ a preliminary discussion of which appeared
neighbor steps. earlier’ To insure thay_y, the size of the system along the

The above-noted noncrossing constraint forbids overlapn€an step direction, is much larger thag,, the character-
of edge elements from adjacent steps but does allow corelSfic distance between close approaches at this temperature,
to touch. In addition to standard edge exclusion, we sepa¥e generally setL,=250: For the TSK modelyc
rately consider the case of “corner exclusion”: configura- =(£)?B/4kgT= ((£)/2)?sint?(e/2kgT),?® which is about 50
tions with X,.1(y+1)=x,(y) forbidden. Obviously, this atkgT/e=0.5 and(¢)=12. We doubled¢) from the initial
distinction is most significant for weakA and for runs to assure that discreteness efféquayed a negligible
small{{). role for physical values oh. In some cases of unphysically

In performing the transfer matrix calculations discussed inarge A (above 50, it was necessary to uge)=18. This
Sec. IlIC, we use the restricted terrace-step-kink modejssye is discussed further in Sec. IV C.

(RTSK), a variant of the TSK model with the additional con-  Third, in our most extensive calculations, we uged

straint|x1+1(y)—xn(y)|$1. In the RTSK model, the step _ 1 and, in most cased,,=2000 andN=100. (For A
stiffness B is (KgT/2)[ 2+ exp(elksT)].° Since the fluctua- =50, we found it safest to increase tq=3000 andN
tions are limited in the RTSK model, the ratikrsk/Brsk =200) We used a standard high-quality random-number
must perforce be above one. Explicitly, generatofRan3(Ref. 34] and averaged over 100 runs using

A. TSK model and variants
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different initial seeds. In these runs the variance reached its
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v T
oN=3

steady-state value after about 3000 Monte Carlo steps a) aN=4
(MCS); we started “taking data” after 10 000 MCS, record- 015 [ oN=5 .
ing results every 10 MCS until reaching 30000 MCS. i » exponential
o _°°O°°°o < power-law )
C. Transfer matrix approach with RTSK < °°°°
el o
Since the finite-size limitation oh, hampers, at least in % 0.05 [moaa, °°o°° |
the earlier stages, our exploration of Iawor largeA (even £ 0000y a, co ©0000066,,
with the n-fold way), we have also used the transfer-matrix i 000 L2200, “oay °°°°°°°°_
(TM) method® to study TWD's* This methodipso facto T[T oe, Pemag,
has infiniteL,; L, is limited by the size of matrices that "<::>>ff°oo°°%=unuuuuuunnuuuuu'
available computers can handle, on use of symmetries 0 0% - e 2000900000000,]
sparse-matrix methods to limit the computational power ““«:::::::::::’
needed, and on the viability of simplifying approximations to —0.10 L . L L
enhance such reductions. Invarialily, must be smaller than 00 03 k;T'?a e 20
in the Monte Carlo runs. In order to achieve the benefits of a
sparse matrix, we restrict our transfer-matrix studies to the .0 : T . , . T
RTSK model. We note that the numerical transfer-matrix - b) oN=3
technique was applied independently in Ref. 21 to the TWD ss L :ufg ]
problem. ’ - :
To construct the TM, we first enumerate all valid combi- €900, ::’;&Z‘:ﬁ::::‘
nations ofN step positions in a periodic system of widtk, 50 [ °°oo° .
giving the set of basis statély. We calculate the enerdy; < con %00, 0o
within each basis statg) (from step-step interactiongnd faf: s L f%a, °°°°Ooooooooooo¢,o°m
the energyE;; from interactions between basis stalidsand g Tooee on“nu .
[j) (from kinks). Then we can construct for each advance in E <«1: ><:<>%% REL LT
y a symmetric TMT from the various Boltzmann weights: a0 0000000, SoeRReraaanam
i « g I $90000060000004
“4:::::>>>>”'>>>>>>>
Tijzex;{— Eij+ EI;E]) / keT]|. (1) 35 - DR L PR RRPR
We reduce the dimensionality @fby using the invariance of Y- e = T

the Hamiltonian under reflection, translation, and cyclic per-
mutation of the steps.

As Ly—c, ZMy, whereZ is the partition function, ap-
proaches the(nondegeneraje largest eigenvalue ofT,
Ao.267*9The corresponding eigenvectd,,),*° can be used
to find the TWD by(cf. also Ref. 21

FIG. 1. The temperature dependence of the RTSK modekjor
noninteracting stepsA=0) and(b) a moderate nearest-step inter-
action (A=4), for (¢)=5. Theestimatedvalue ofA comes from a
least-squares fit of the Wigner distribution to the TWD given by the
numerical TM method. In addition to TM results for three, four, and
five steps, extrapolations based on assumed power-law and expo-

P(s)=2> Ki|Ag)I?Pi(s), (12)  nential convergence are shown.
I

whereP;(s) is the distribution of terrace widths within basis power-law and exponential extrapolations; in either case, we
state|i). While carrying out the computation expressed inhave three equationdgrom the data fom=3, 4, and 5 in

Eq. (12), it is simple to find the second moment®{s) and  three unknowngconstant term, prefactor, and power expo-
thence to estimatd, e.g., using Eq(9). Alternatively, one  nent or exponential prefacforThe results are shown in Fig.
can fit a Wigner distribution to the computédiscret¢ P(s). 1. According to the discussion in Ref. 21, the power-law
While non-negligible, the differences between these two apProcedure is more appropriate. The exponential extrapolation
proaches is rather insignificant, comparable to the effects ofan then be used as a rough gauge of the uncertainty.
temperature discussed below.

Obtaining quantitative information about the thermody-
namic limit from TM analysis requires an extrapolation to
N— o from small values oN. For thermodynamic quantities
derived from the one or two largest eigenvalues of the TM, . . L N
there is extensive literature on finite-size scalfthgjthough The main result of this paper is displayed in Figa)2The
even in these cases many subtleties can confound the exarious predictions of the variance are plottedArsA loga-
trapolation. Here we must extraot® from the information  rithmic scale is used for the horizontal axis so as not to give
contained in the eigenvectdr\y). We have carried out undue visual emphasis to larger valuesfofior to blur the

IV. RESULTS AND DISCUSSION

A. Main result: Overall superiority of CGWD
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4 6 8 1012 15 0.55 — T — T
E 1 o= -
o L ]
5 0.50 [ T
Q i .
2 [ ]
] B, - -
T 0.45 |
g o 0491 o]
i *
~ 0.40 F
a) A :
4 6 8 1012 15 .
— 0.35 = L .......Io L .......I1 L .......2
2 048 10 10 10 10
u ~
5 0.46 A
8 044 FIG. 3. Plot of the producir?¢ vs A on a logarithmic scale, as
_§ 0.42 in Fig. 2(b), also atkgT/e=1/2. The symbols are obtained from
s TM computations for the RTSK model wittf)=5. The X’s are
> 0.40 for four steps N=4) while the +’s are for N=5, with nearest-
< neighbor(NN) step-step interactions. The *'s include next nearest
in addition to NN interactions. The thin solid curve is the Wigner
b) distribution. The thick solid and dashed horizontal lines give the

EA(NN) and R approximations.
FIG. 2. (a) Plot of the variances? as a function ofA on a
logarithmic scale, plotted for the CGWDPWigner distribution” or ~ is of greatest interest. The points f=5 are consistently
W] (light solid curvg and for the modified Grenoble or E&hort-  slightly higher than those fdi=4 and in close proximity to
long dashed for NN step interactions only; short-short-long dashe¢he CGWD curve, much like the Monte Carlo data in Fig.
for all steps interacting Saclay or R(short-short-long-long dashed 2(h). The convergence appears rapid, seemingly to values
curve, and Gruber-Mullingshort dashed for NN step interactions modestly above the CGWD, as might be expected since only

only; long dashed for all steps interactinGaussian approxima- nearest-neighbor repulsions are considef&ge below for
tions. Monte Carlo data are shown®@ss, with statistical errors less e remaining curve.

than the size of the symbolg) Replotting with the variance mul-
tiplied by ¢ to highlight differences between the various approxi-

mations, using the same coding as in the upper panel. The ordinates B. Convergence in lattice width
of the horizontal lines are twice the corresponding valuek pfn For selected cases, we performed extensive tests of the
Table I. convergence of our estimate of the variance with increasing

. . o L lattice width and number of steps, as described at the end of
region of rapid variation for smalbut nonvanishingA, for  Sec. Ill B. Figure 4 summarizes our findings for the special
which an exact calibration point exists. The Wigner result is
essentially given by Eq9). The physical values ok range
from near 0 up to the mid teens. More than ordinArf?
elastic repulsions are presumably involved in the rare cases
in which larger values are observed. There are relatively few
reports of small but nonzero values Af We suspect that
one reason is that any of the Gaussian approximations mani-
festly fail in this regime, so that before the recognition of the
utility of the Wigner distribution, one could not deal quanti-
tatively with smallA.%?

To heighten the contrast, we replot in FigbPthe curves
of Fig. 2(a) using as the ordinate the variance multiplied by
o (i.e., 2AY%); with such rescaling, the Saclay and the modi-
fied Grenoble predictions appear as horizontal lines. Clearly
in this plot the numerical data increases systematically with

A, much like the CGWD. . o . FIG. 4. Finite-size dependence of the variance for the exactly
As Shown_ in Fig. 3, we find similar results using the g apje casé =2, with kyT/e=1/2 and(¢)=10. Each intersec-
transfer-matrix method to study the RTSK model f@)  tion of the grid lines on the graphed surface represents a selected

=5. While three decades & are displayed, the middle one pair of N -andL, . Error bars are of order 18, too small to depict.
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TABLE lIl. Finite-size extrapolation of variance data plotted in study of noninteracting stef)and was a major focus of very
Fig. 4 for A=2 and (¢)=10. [For reference,s3,=0.1045 and recent work by Le Gofet al*
020c=0.105 (Ref. 27]. The top part shows fits to thie, depen-
dence, forL,=200, 300, 400, 500, 600, 800, assuming= o2 1. “Toothlike” configurations
— B/L; for variousN. In the bottom part, the results of similar fits

for fixed L, and varyingN are listed. The error bars are the In Fig. 3, the turning down of the TM-derived variances at

“asymptotic” standard error. A greater than about 40 signals the beginning of a striking
change in the scaling behavidin a similar plot atkgT/e

N o B a =0.84 in Ref. 25, the peak occurs/at60.) The step con-

10 0.104- 0.004 103 072018 tinuum picture begins to falter, and the low-energy excita-

20 0,106 0.005 111 0.740.29 tions are no longer capillary waves. Instead, for strong step-

: : : : : step repulsions, discrete “toothlike” single-move excitations

30 0.104-0.001 230 0.910.01 dominate. If just nearest steps interact, the associated excita-

40 0.106+0.002 2.46 0.960.18 tion energy isA times

60 0.106+0.002 1.82 0.850.17

2 ’ ’

Ly O, B o 1 1 1 6

500 0.0974-0.0002 0.191 1.610.24 A({€))= 5+ 52 ——~—. (13

600 0.124-0.183 0.036 0.020.60 (6O+1° (OH=D° () (€)

800 0.1015:-0.0009 0.033 0.760.22

(Similarly, the contribution from the repulsion betweatin
neighbors has the same form as in expresgi@®), but with

n(¢) replacing(¢).) For largeA it is no longer true that the
only dependence oA is throughA, and the variance no
longer varies roughly ag ~* (or, equivalently, as"&gﬁl’ .
Specifically, for asymptotically large repulsions we expect

case ofA=2, for which we know the variance exactly. In
Table Il are the results of the associated extrapolatiorts;, in
for fixed N and inN for fixed L, . The extrapolations i,
using 02=ai—B/L§, are reasonably well behaved. The
value of « ranges between 0.7 and 0.9, compared with théhat

expectation from Le Gofét al?! that it be 1. Likewise, the B N
extrapolated value is in decent agreement with the variance o?xexy —AA((€))/kgT]1=exd —AA({€))kgT/B].
calculated for the exact solution for an infinite humber of (14

continuum steps. In contrast, the extrapolationsNirare i ) .
more variable, with sizable variations i and in the ex- With TM calculations for(¢)=5 we have verified that Eq.
trapolated values. This thwarted our attempt to extrapolate ifl4) holds to at least three-significant-figure accuracy over a
terms of a single length variabldh;iJrcNZ)l’z, wherecis an  decade ofA. (We note that the excitation can involve mul-
adjustable parameter. tiple in-phase “teeth” without increasing the net interstep
The values reported in the preceding section, in particulafépulsion. The degree to which these multistep excitations
in Fig. 2(a), are based on extrapolations to infinitg for ~ contribute depends oefkgT, further emphasizing the break-
several different values ot,, assuming thatofc—of down of scaling just withA. Furthermore, these arguments
> can be extended to cases with noninteger value$(df
though one must be more careful in dealing with finite-size
issues).
The value ofA at which the continuum picture starts to
fail naturally depends strongly off), since that provides a

= B/L)‘j‘ . For example, foA=2 andN= 10, we found in this
nonlinear least-square fit that=0.91... andB=2.3....
The resulting value ofr2 was within 0.001 of the value
predicted by Eq(7). (If instead we assumed this value from

the outset, we could do a linear fit ofy,— o? vs B/LY to > St . > <
y Y measure of the relative discreteness of the integer deviations

find «=0.90... andB=2.2...) . ~
We note the recent interest in the finite-size dependence (%f the steps. We can estimate crudely the valueAgfor

interfaces in thin films, as discussed authoritatively in RefWh'Ch discreteness alters the scaling behaviooaf In the

43. There, however, only one interface is present, the film isGruber-MuIIms approach, the root-mean-square displace-

three dimensional, and the primary focus is on the film thick-ment of a step ig¢)/(48A)%. The crossover then should
ness, somewhat analogous(i9. occur when this rms distance is of order unity, i.8,
~{£)*48. A TM study (at kg T/e=0.84) withN=4 shows
that the peak in a plot o620 vs A occurs atA~50 for
(£)y=6 but atA~200 for (¢)=10. These two values are
All the discussed approximations rely on a continuum,roughly consistent with this prediction, though the depen-
capillary-wave-type approximation of steps, so thais the ~ dence on(€) seems less than quartibut decidedly more
only significant parameter in determining the TWD. Whenthan quadratic Since the crossover occurs for unphysically
the discrete nature of a real vicinal surface is consideredstrongA, we do not explore it in exhaustive detail. Suffice it
e.g., in numerical simulations, temperature enters as a sept say that the present results are consistent with the argu-
rate variable. This behavior was noted implicitly in an earlyment in Ref. 11 that discreteness is relatively insignificant

C. Deviation from continuum at very large A
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over the physical range ok so long as(¢) is at least 4
(although for largéA it would be safer to havé()=5).

To investigate further this unphysical limit, we generated %% Wigner 7
configurations for very large values &f up to 1000. Even oT=1/20 .
there, the discussions typically extended over several lattice o020 xT=1 -
spacings in the direction. WithN=20, no obvious signa- ©T=20 :

tures of “long-wavelength phonons” were evident, though 3
we did not pursue a detailed analysis of the structure factor-

o
-
o

o
-
o

2. Roughening transition to facet at large A

A major difference between discrete and continuum mod-
els is that the former admit a roughening transitioile the 0:05

latter is always rough To estimate for what value &% this

transition should occur, we now seek the connection betweer  o.00

the Calogero-Sutherland Hamiltonian used in our work and L

the exactly solvable VGL Hamiltonian underlying the work

of the Saclay group. In the VGL modétthe step-step repul- FIG. 5. The tempeiature dependence of the RTSK model for

sion vanishes for=(¢), takes the valuav, for ¢=(¢)  N=5 interacting stepsA=4). The TWD's for T[(e/kg)]=0.05,

—1, and is infinite for smaller separations. 1_, ar_wd 20 differ very little from each other and from the Wigner

A straightforward way to make the correspondence bedistribution.

tween the two models is to adopt the Gruber-Mullins view-

point, expand the potential due to neighboring steps @t) The resulting estimates d& all have the following ge-

and —(¢), and use Eq.(13) to show w,~AA((€)) neric features: they are approximately temperature indepen-

~B6A/(t)*. We likewise equate the VGL discrete-Gaussiandent at low temperatures and decrease approximately mono-

parameteMV, and our absolute solid-on-solid kink energy tonically (eventually to an asymptotic value at high

and take the low-temperature limit of the stiffnégs either  temperatures when the assumptions underlying the RTSK

the TSK or RTSK model Then the VGL conditioff for the  model become decidedly unphysicalhe details depend on

roughening transitionw, / Tr)expW,/Tg)=2 translates to  the numbem of steps involved in the TM calculation; the
smaller theN, the more the finite-size estimate exceeds the

Ar=(€)"I6. (15  expected input value oA. Included extrapolationsl— o,
based on assumed power-law and exponential convergences,
Given the severity of the approximations invoked, the fac-give a better estimate of the input. The absolute size of the
tor of 6 is unlikely to be precisely correct, but presumably oo i the estimate seems to increase with increading
ARNShouId scale likg ¢)*. The implications are that foA The deviation of the estimated value @ from the
<Ag We are at temperatures above the roughening temper&nown, input value does not require a large difference in the
ture (as is implicit in the idea of a vicinal surfaceFor A corresponding TWD's, as shown in Fig. 5 far=4. Even for
>Ag a facet can develop, altering fundamentally the long-these extreme temperatuféshe TWD is relatively insensi-

range correlations. Note that already {6)=3, Ag is about  tive: _
14, above the typical maximum physicaj for (0y=4 A To check further the robustness of the idea that the TWD
[} — Ty R

is well above the physical range Bt depends only oA and not its separate components, we did

In this regard, it is worth recalling that in Ref. 11 some of trial sets of runs akgT/e=0.3, 0.5, and 0.8 foA = 0 and 2
us showed tha{¢)=4 is the threshold for the difference (i.e.,0=2 and 4, respectivelyFor bothA’s, the value of the
between continuum and discrete to become negligible. Thusleducedp atkgT/e=1/2 was largest and closest to the input
experimental vicinal surfaces should never be faceted in thealue. It is remarkable that there the variation with tempera-
regime in which it is sensible to apply the analysis in thisture is not monotonic. Experimentalists krfbvihat simple
paper. equilibrium behavior can be observed only over a narrow
thermal window: at too cool conditions, slow diffusion pre-
cludes establishment of equilibrium conditions, whereas at
) ; too warm temperatures, the excitation spectrum becomes

In Fig. 1 we also see a residual temperature dependence jfjuch more complicated than in the elementary models in-
the RTSK model. As for the TSK model, the stiffne8srsx ~ voked by theory. Evidently there is a comparable window of
is known for the RTSK model with an isolated step; usingsorts in numerical simulations. At lower temperatures, in ad-
Brrsk [and Eq.(1)], we vary A to maintain a constand dition to the equilibration difficulty, the characteristic length
while varying the temperature. As discussed in Sec. Ill C, thealongy—uwhich is proportional td ¢)?3?°—grows dramati-
TWD is derived from the numerical TM for each tempera- cally (e.g., by a factor of nearly 5 in cooling from 0.5 to .3
ture and then fitted to the CGWB,(s) of Eq. (5). creating finite-size-induced deviations as depicted in Fig. 4.

e o o B e B . WA o e

D. Temperature dependence of the TWD
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At high temperatures, the excitation spectrum can grow more 46— T 1 T T T T
.com.pl.ic.ated than assumeq in the small-deviation expansion '_'“!,E . Least Squares/CR ]
implicit in standard analysis. y 000 = . Continuum/CR 1
U °n o Least Squares/No CR
E. Nearest-neighbor vs long-range repulsions s Oo:ﬂﬂ o Continuum/No CR -

In the preceding section we have mentioned several time¢ < 42 | °0°an .
the issue of whether all steps or just neighboring ones suffei qu; i ° ﬂaﬂ
a repulsive interaction proportional to the inverse square of g R °o° "naﬂ ]
their separation. As noted, the Wigner distribution and the % 4.0 |- o n”ﬂunﬂ .
Saclay(R) approach intrinsically take all steps to interact, “ 00, °““ﬂanaanﬂﬂ;!
whereas the Gruber-MullingGM) and Grenoble(EO and i °°o%o i
EA) approaches can be done either way. For the numerica 38 °°00000000 y
methods, it is much easier to assume just nearest-neighbc i 1
interactions. Obviously, foA=0 there can be no difference. X
It is widely taken for granted that the difference is not sig- 36 5 ——— ois —— 1f0 —— 1i5 =
nificant. For example, lhlet al® point out that the width of k,T/e

the TWD, which is what is typically measured and is essen-

tially the root of the variance, changes at most by a few FIG. 6. Plots of estimated vs kgT/e for (€)=5 andN=5
percent, so by less than typical experimental errors. On th@ith an “input” value of A=4. The four sets of data are for corner
other hand, sincé depends essentially on the square of therepulsion included or omitted and for the two different extrapolation
variance(i.e., on the 4th power of the widththe variation = methods to deducA from TM computations.

can seem more noteworthy. This comment provides a re-

minder of tne difficulty of pinpointing the magnitude of the interpolation between the established point#at0 andA
step repulsion from analysis of TWD's. =2, but also a fine extrapolation expression over the range

In this section we address briefly the effects of including f phvsicalA and b g it miaht be vi d
more distant steps in our numerical simulations. IncludingO p ysicalA and beyond, moreover, It might be viewed as

elastic repulsions with all steps should sharpen the Twpan interpolation betweenA=2 and the result of the physi-
thereby decreasing the variance, for givenAs noted, the cally compelling Grenoble viewpoint ne&r=cc. While the
difference should vanish &= 0 and increase monotonically Shape of the TWD does approach a Gaussian in the physical
to nearly 5% when the Grenoble picture applies Table ). regime of moderately strond, the CGWD [via Eq. (9)]

In Fig. 2b) there is another horizontal line at 0.52, above theprovides arguably the best way to extractirom the vari-
plotting window. It is thus remarkable and curious that thereance of the TWD and certainly the least ambiguous. Of the

is such fine agreement between the Monte Carlo results andaussian methods the Sacldy) scheme is better for mod-

CGWD curve when the above arguments would lead 10 eXgrq1eR \whereas the Grenob[EA(all)] scheme is better for

pectations that the Monte Carlo values of the variance for ~ . S .
L~ strongerA. The continuum description is a good approxima-
given A would be somewhat larger than those of CGWD, s

- Ction for terraces at least four atomic spacings wide.
that if one deduced a value éf from the resulting variance,
the result would be somewhat smaller than initially.
In Fig. 2(b) we also include some Monte Carlo results for ACKNOWLEDGMENTS
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havior, but with an asympt(_)t_ic difference somewhat less than APPENDIX: CORNER REPULSION

that between the two modified Grenoble cases and develop-

ing more gradually(with increasingA) than in the Monte In preliminary tests of the free fermion cask=0, we
Carlo simulations. found in fitting with Eq.(5) the TWD produced with the

conventional TSK model that the best estimategofwas
1.81, whereas with a TSK model with corner exclusions
(TSK-CE model, described in Sec. ll)Ahe best-fit value
The numerical studies presented hésp. in Sec. IVA  was the expecteg =2. Thus, the corner effects, which ef-
show that the CGWD of Eq(2) is not just an excellent fectively increase the step repulsion when entropic effects

V. CONCLUSION
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are important, seem to compensate the effects of discretgﬁsmay the deduced values @& with and without corner

ness.

repulsion when the variance is computed directly from the

To check the systematic effects of corner repulsion, w&yeighted projection of the ground-state eigenvector, as in

performed transfer-matrix calculations far=4, the results
of which are shown in Fig. 6. Working witf})=5 andN

Eqg. (12). Again, we find that corner repulsion makes a neg-
ligible change, but find that how the variance is extracted

=5, we examined the temperature dependence of the detes make a difference of a few percent in deduced value of
duced value oAA. The open circles are the same data as th@, For this set of data, fitting®(s) gives an estimate oA
diamonds in Fig. (b). As expected, the effect of corner re- closer to the input value, but it is not certain whether the
pulsions increases with increasing temperature, as entropame would be true if we had used extrapolated data. Since
effects gain relative importance, but evidently their effect isthe difference is not substantial on the scale of experimental

negligible even at this rather modest value/f We also

errors, we did not investigate this matter further.
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