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Abstract

On equilibrium vicinal surfaces with mass transport dominated by terrace-diffusion (TD), there can be crossover

from TD to diffusion step-to-step (DSS) behavior for fluctuation wavelength k large compared to the step separation ‘.
We show that the temporal correlation function for 180�-out-of-phase fluctuations can be written as a function of a
single dimensionless variable proportional to time=‘3 and present an excellent, simple approximation for this scaling
function. This formulation can be used to distinguish mass transport dominated by DSS versus evaporation–con-

densation (attachment–detachment) limited kinetics (for which the capillary-wave characteristic time s has the same k2

behavior as DSS).
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The temporal correlation function for equilib-

rium fluctuations of isolated steps has received a

great deal of analytical attention and has been

rather thoroughly described [1–4]. It is well es-

tablished that a capillary wave analysis can be used
to distinguish the three limiting cases by examining

the wave vector dependence of the time constant

characterizing the healing of fluctuations: s�1q / q2,
q3, or q4, for evaporation–condensation (EC),

terrace-diffusion (TD), or periphery-diffusion (PD)

limited transport, respectively. (Here q � 2p=k is
the wave vector of the step fluctuation.) On a

vicinal surface, other behaviors also become pos-

sible [1,5]. The crossover between these various
limits is a subject of active interest. For instance,

and of specific concern in this paper, Pimpinelli

et al. [5] argued very generally that TD-dominated

vicinal surfaces should crossover from TD into

diffusion-step-to-step (DSS) behavior at small q
(i.e. q‘ < 1, where ‘ is the mean step separation);
operationally, one of the q�s in s�1q is supplanted by

1=‘, leading to q2=‘ behavior. While TD behavior
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is easy to achieve in numerical simulations [7], it

has not to date (with the notable exception of

Cu(1 1 1) in HCl [8]) been seen in experiments

[9,10]. Moreover, to properly interpret the pre-

factor of q2 seen in such measurements, it is crucial
to know whether the underlying mechanism is EC
or DSS. Note that, for simplicity, we assume here

that diffusion along the step edge is negligible.

For ‘‘pure’’ cases in which s�1q ¼ Anqn, the
temporal autocorrelation function GnðtÞ (or, equiv-
alently, the mean-square width w2ðt=2Þ of the step
fluctuations [3,4]) has been shown in several papers

to satisfy the following equation, arising from a

capillary wave analysis:

GnðtÞ � h½xðt þ t0Þ � xðt0Þ�2it0

¼ ð2kBT =p~bbÞ
Z 1

0

dqq�2½1� expð�tAnqnÞ�

¼ ð2kBT =p~bbÞðtAnÞ1=nCð1� 1=nÞ: ð1Þ

We focus on the case n ¼ 3, which for an isolated
step corresponds to TD limited fluctuations; in this
case, A3 ¼ 2~bbX2ctDt=kBT , where ~bb is the step stiff-
ness, X the atomic area, ctDt the product of terrace
atom (or vacancy) concentration and diffusion

constant, and kBT the thermal energy. Eq. (1) be-
comes G3ðtÞ ¼ ð2kBT=p~bbÞCð2=3ÞA1=33 t1=3.
A more detailed treatment of the crossover be-

tween TD and DSS was given in Ref. [1]. In ad-

dition to decomposing fluctuations into capillary
modes along each step, one must consider the

relative phases of these modes on all the steps on

the vicinal surface. In principle, as in Ref. [6], one

can consider an arbitrary phase angle U between

adjacent steps, writing

xUðy; tÞ � M�1
X
m

e�imUxmðy; tÞ; ð2Þ

where m indexes the large number (in principle in-
finite) M of steps. Following Ref. [1] we just con-

sider symmetric (U ¼ 0, phase factor 1, called R in
[1]) and fully out-of-phase, antisymmetric (U ¼ p,
phase factor )1, called D in [1]) modes. As shown in
Ref. [1], the R decomposition has idiosyncratic
behavior with s�1q / q4 in the DSS regime, while the
D decomposition has the expected q2 behavior
which presumably characterizes arbitrary phase

angle. Hence, we focus here on the latter case. To

characterize behavior for arbitrary value of q‘, the
integer exponent n of q should be replaced by a
continuously variable exponent zq. For the case of
insignificant Ehrlich–Schwoebel asymmetry and

qd � 1, where d is the ‘‘kinetic’’ length [11] (so
setting aq � qd ¼ 0 in Eq. (54) of Ref. [1]),
zq ¼ 3� q‘= sinhðq‘Þ; ð3Þ
which is 3 for large values of q‘ and drops smoothly
but relatively abruptly to 2 for small q‘. However,
that paper did not pursue the consequences in real

space. Since measurements are now being made

[10,12] which need to distinguish between EC and

DSS behavior, it is timely to present some formal
results which should be helpful in analyzing data.

(Explicit, albeit preliminary, Monte Carlo studies

of the crossover [13] have also been reported.) In

this short communication, we point out scaling

behavior that the correlation function should ex-

hibit in DSS and present an exact expression and

analytic approximants for the scaling function.

We rewrite Eq. (1) in terms of xU¼p rather than x
and then insert Eq. (3) into it in a manner that

maintains proper units, finding

GðpÞ3 2ðtÞ ¼ ð2kBT =p~bbÞ
Z 1

0

dq q�2

� ½1� expf�tA3q3=ðq‘Þq‘= sinhðq‘Þg�: ð4Þ

It is not hard to carry out numerically the integral

in Eq. (4). At early times it goes like t1=3, then
crosses over to t1=2 (over a range of somewhat over
a decade in t). To obtain an expression that is more
tractable analytically and easier to interpret, we

replace A3q3 in the argument of the exponential in
Eq. (1) by ðA3=‘Þq2 for q < 1=‘, where 1 is expected
to be of order unity. We then have 1 a pair of def-

inite integrals, yielding results in terms of the error

function and the incomplete gamma function [14]:Z 1=‘

0

dq
q2

1

�
� exp

�
� tAq2

‘

��

¼ � 1� expð�tA12=‘3Þ
1=‘

þ ptA
‘

� �1=2
Erf 1

tA
‘3

� �1=2" #
;

ð5aÞ

1 Note that Cð1=2; x2Þ ¼
ffiffiffi
p
p
½1� ErfðxÞ�.
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Z 1

1=‘

dq
q2
½1� expð�tAq3Þ�

¼ 1� expð�tA13=‘3Þ
1=‘

þ ðtAÞ1=3C 2

3
; tA

1
‘


 �3� �
:

ð5bÞ

Note that for 16 1, dividing the argument of the
exponential by q‘ (due to the replacement of q by
1=‘) increases its magnitude, thereby increasing the
magnitude of the resulting integral relative to

G3ðtÞ. In other words, G3ðtÞ underestimates the
evolution of fluctuation correlations given by

GðpÞ3 2ðtÞ, as we shall see again below.
Eq. (4) can be rewritten as a scaling relation

involving a function g of the ‘‘temporal’’ dimen-
sionless ratio tA3=‘3, containing an integration
over the ‘‘spatial’’ dimensionless combination 2

s � q‘:

GðpÞ3 2ðtÞ
2kBT ‘=p~bb

¼ g
tA3
‘3

� �
;

gðzÞ �
Z 1

0

ds s�2½1� expð�zs3�s cschðsÞÞ�: ð6Þ

(The dimensionless temporal variable z should not

be confused with the exponent zq.) In Fig. 1 is a
plot of gðzÞ as well as its logarithmic derivative,
d lnðgðzÞÞ=d lnðzÞ. The crossover from z1=3 to z1=2

evidently occurs between z � 10�2 and 100. Simi-
larly, the pair of integrals in Eq. (4) can be recast

in terms of scaling functions g< and g>:

g<ðzÞ � �½1� expð�zÞ� þ ðpzÞ1=2Erfðz1=2Þ; ð7aÞ

g>ðzÞ � ½1� expð�zÞ� þ z1=3Cð2=3; zÞ: ð7bÞ
To leading order in z, g<ðzÞ � z and g>ðzÞ �
Cð2=3Þz1=3. In the other extreme of asymptotic z,
g<ðzÞ ! ðpzÞ1=2 and g>ðzÞ ! 1. These functions

are plotted in Fig. 2 along with gðzÞ. Then

GðpÞ3 2ðtÞ=½‘ð2kBT=p~bbÞ� ffi ½g<ð12tA3=‘3Þ
þ g>ð13tA3=‘3Þ�=1: ð8Þ

Hence, the problem reduces to finding the value of

1 which optimizes by some criterion the cor-

respondence of the trial function ½g<ð12zÞþ
g>ð13zÞ�=1 to gðzÞ. The choice adopted here is to
optimize the replication of the logarithmic deriv-

ative of gðzÞ. In Fig. 3 is a contour plot of ratio of
the logarithmic derivative of the trial function

to that of gðzÞ: 1�1½d lnðg<ð12zÞ þ g>ð13zÞÞ=dz�=
½d lnðgðzÞÞ=dz�. By this criterion the optimal value
of 1 lies between 0.95 and 1.00. Sacrificing a small
amount of accuracy for simplicity, we set 1 ¼ 1,
so that the ½1� expð�zÞ� terms cancel, giving

GþðtÞ ¼
2kBT ‘

p~bb

ptA3
‘3

� �1=2
Erf

tA3
‘3

� �1=2( )"

þ tA3
‘3

� �1=3
C

2

3
;
tA3
‘3

� �#
ð9Þ

for our advocated approximation for the DSS-TD

crossover function GðpÞ3 2ðtÞ.

2 This sort of expression might well have been anticipated

since ‘ is the only characteristic length in the direction normal

to the steps.
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Fig. 1. Plot (solid curve) of the scaling function gðzÞ, where z is
the dimensionless time tA3=‘3 (solid curve, right vertical axis).
Also plotted as the dashed curve is the logarithmic derivative of

gðzÞ, indicating the effective exponent of gðzÞ (left vertical axis).
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Fig. 2. Comparison of scaling function gðzÞ, as in Fig. 1 and
g<ðzÞ (short dashes), g>ðzÞ (long dashes), and their sum gþðzÞ
(long and short dashes). Evidently gðzÞ is well approximated by
g<ðzÞ þ g>ðzÞ. The dotted curve is ðpzÞ1=2, the result of assuming
pure q2 behavior.
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In Fig. 2 we include a curve for gþðzÞ, the scaled
version of GþðtÞ:
gþðzÞ � g<ðzÞ þ g>ðzÞ

¼ ðpzÞ1=2Erfðz1=2Þ þ z1=3Cð2=3; zÞ: ð10Þ

This function exceeds gðzÞ (the scaled version of
GðpÞ3 2ðtÞ) by less than 9% near z ¼ 0:04, in the
middle of the crossover regime, and the deviation

falls rapidly as z enters a ‘‘pure’’ region: gþðzÞ is
less than 1% greater than gðzÞ for z > 2 or

z < 2� 10�4. Furthermore, approximating gðzÞ by
gþðzÞ is notably better than the simplest approxi-
mation of using Eq. (1) to estimate ð2kBT=p~bbÞ�
ðtAn=‘Þ1=2Cð1=2Þ, i.e. using just g2ðzÞ � ðpzÞ1=2 in-
stead of gþðzÞ [10]. In contrast to gþðzÞ, g2ðzÞ is
always less than gðzÞ. For large z, the difference
between g2ðzÞ and gðzÞ is insignificant, but as z
decreases, this difference becomes increasingly and

insufferably large: by z ¼ 0:5, g2ðzÞ is 1% smaller

than gðzÞ; by z ¼ 0:1 it is over 10% smaller; by

z ¼ 0:01 (the smallest value of z displayed in Fig. 2)
it is 36% too small, and it continues to fall. For
most applications to experiments, use of gþðzÞ in-
stead of gðzÞ should easily be satisfactory, but use

of g2ðzÞ is questionable unless one knows in ad-
vance that z is large.
In the case studied in Ref. [12], which motivated

this investigation, the maximum value of z is
5� 10�3. Since gð0:001Þ ¼ 0:133, assumption of
t1=2 behavior for all times and consequent use of g2
leads to an estimate of z as 0:1332=p, 5.6 times the
true value: assuming all other variables are known,

this use of g2 then produces an estimate of ctDt
that is 5.6 times the true value. This situation be-

comes progressively worse at smaller values of z.
At z ¼ 10�4 or 10�5, e.g., g2 overestimates by fac-
tors of 12.5 or 27.0, respectively. A more stringent
test is whether experimental data can be well fit

with Eq. (6), using measured values for stiffness

and step spacing; for the data in Ref. [12], such

was not the case, providing strong evidence that

DSS was not the mode of mass transport under-

lying the step fluctuations.

It was originally recognized [5] that, to distin-

guish conclusively EC from DSS, one should an-
alyze several values of mean step spacing of a

particular vicinal surface. However, use of the

scaling formulation in Eq. (6) and the analytic

approximation in Eq. (10) are new. To complete

the present analysis, an expression for zq should be
constructed that generalizes Eq. (3) to arbitrary

values of U. Then one should construct approxi-
mants to the generalization of Eq. (4) containing
an additional integral over U (cf. Ref. [6]), with a

sufficient number M of steps so that the U ¼ 0
mode plays a negligible role.

The approach presented here should be appli-

cable more generally in studying crossover be-

havior. 3 Moreover, observation of data collapse

Fig. 3. Contour plot of the ratio of the logarithmic derivative of

the trial approximant (½g<ð12zÞ þ g>ð13zÞ�=1) of the scaling
function gðzÞ to that of gðzÞ itself, plotted vs. the dimensionless
time z and the proportionality constant 1 marking the value of
q ¼ 1=‘ at which temporal scaling is taken to change abruptly
from q2 to q3 behavior. The contour lines correspond to labeled
values of this ratio; the darker the shading, the closer this ratio

is to unity, the ideal value. The darkest region lies between

0.995 and 1.005. Although 1 ¼ 1 is slightly higher than optimal,
the analytic convenience makes it a convenient choice. The dips

in these contour lines as functions of z correspond to the
crossover region.

3 For example, a similar tactic could be used to distinguish

TDPS, i.e. TD with a perfect Schwoebel barrier [5], from PD,

both of which have s�1q / q4. Analogous to Eq. (3), from Eq.

(53) of Ref. [1], with the Schwoebel rate asymmetry parameter

r ¼ 0, we find zq ¼ 2þ 2=ð1þ q2‘dÞ. The crossover behavior is
more complicated since the dimensionless combinations qd and
q‘ are multiplied. Moreover, as noted in Appendix A of Ref. [1],
there is an alternative formalism which is probably more

physically realistic and makes a non-trivial difference when

both terrace and step-edge diffusion are important. To avoid

obscuring the key ideas of this short paper and because TDPS

applies only for extreme situations [1], we defer detailed

discussion of this example.
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by appropriate scaling of independent variables

lends confidence to theoretical understanding of

the dynamics.

Acknowledgements

This work was supported by NSF MRSEC

Grant DMR 00-80008. It grew from a draft ap-

pendix to Ref. [12]. I am very grateful to E.D.

Williams for persistently encouraging me to per-

form this study and to D.B. Dougherty for many

helpful discussions along the way. I also benefitted

greatly from insightful comments from S.V. Khare
and F. Szalma.

References

[1] S.V. Khare, T.L. Einstein, Phys. Rev. B 57 (1998) 4782.

[2] T.L. Einstein, S.V. Khare, in: P.M. Duxbury, T.J. Pence

(Eds.), Dynamics of Crystal Surfaces and Interfaces,

Plenum Press, New York, 1997, p. 83.

[3] B. Blagojevi�cc, P.M. Duxbury, in: P.M. Duxbury, T.J.

Pence (Eds.), Dynamics of Crystal Surfaces and Interfaces,

Plenum Press, New York, 1997, p. 1.

[4] B. Blagojevi�cc, P.M. Duxbury, Phys. Rev. E 60 (1999) 1279.
[5] A. Pimpinelli, J. Villain, D.E. Wolf, J.J. M�eetois, J.C.

Heyraud, I. Elkinani, G. Uimin, Surf. Sci. 295 (1993) 143.

[6] T. Ihle, C. Misbah, O. Pierre-Louis, Phys. Rev. B 58 (1998)

2289.

[7] N.C. Bartelt, T.L. Einstein, E.D. Williams, Surf. Sci. 312

(1994) 411.

[8] M. Giesen, S. Baier, J. Phys.: Cond. Matt. 13 (2001) 5009.

[9] H.-C. Jeong, E.D. Williams, Surf. Sci. Rep. 34 (1999) 171.

[10] M. Giesen, Prog. Surf. Sci. 68 (2001) 1.

[11] A. Pimpinelli, J. Villain, Physics of Crystal Growth,

Cambridge University Press, Cambridge, 1998, p. 97.

[12] I. Lyubinetsky, D.B. Dougherty, T.L. Einstein, E.D.

Williams, Phys. Rev. B 66 (2002) 085327.

[13] T.L. Einstein, S.V. Khare, M.R. D�Orsogna, O. Pierre-
Louis, Bull. Am. Phys. Soc. 43 (1998) 110.

[14] I.S. Gradsteyn, I.M. Ryzhik, Table of Integrals Series and

Products, Academic Press, San Diego, 1980, p. 930ff., 940ff.

T.L. Einstein / Surface Science 521 (2002) L669–L673 L673

SU
RFA

CE
SCIEN

CE

LETTERS


	Crossover between terrace-diffusion and diffusion step-to-step on vicinal surfaces: scaling function and analytic approximations
	Acknowledgements
	References


