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Abstract

From quantitative measurement of the equilibrium terrace-width (¢) distribution (TWD) of vicinal surfaces, one can assess
the strength A of elastic step-step repulsions A/¢>. Generally the TWD depends only on A = A x (step stiffness)/(kgT)*.
From ideas of fluctuation phenomena, TWDs should be describable by the “generalized Wigner distribution” (GWD),
essentially a power-law in £/(¢) times a “Gaussian decay” in ¢/(f). The power-law exponent is related simply to A.
Alternatively, the GWD gives the exact solution for a mean-field approximation. The GWD provides at least as good a
description of TWDs as the standard fit to a Gaussian (centered at (¢)). It works well for weak elastic repulsion strengths A
(where Gaussians fail), as illustrated explicitly for vicinal Pt(1 1 0). Application to vicinal copper surfaces confirms the
viability of the GWD analysis. The GWD can be treated as a two-parameter fit by scaling ¢ using an adjustable characteristic
width. With Monte Carlo and transfer-matrix calculations, we show that for physical values of A, the GWD provides a better
overall estimate than the Gaussian models. We quantify how a GWD approaches a Gaussian for large A and present a
convenient, accurate expression relating the variance of the TWD to A. We describe how discreteness of terrace widths
impacts the standard continuum analysis. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction feasible. The primary motivation for examining the
terrace width distribution (TWD) is, arguably, that it

About a decade ago quantitative measurement of provides the optimal way to assess the strength of the
the widths ¢ of terraces on vicinal surfaces became elastic (and/or dipolar) repulsion between steps.

Building on ideas from three decades ago [1], con-
temporaneous theoretical work at Maryland was
important in these early investigations of this problem
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notably, we have recognized that since steps on vicinal
surfaces should share general features of fluctuating
systems, the TWD should exhibit certain universal
properties. The goals of this short paper are to present
a brief summary of this work, with a few new remarks,
along with references for readers seeking more infor-
mation. In particular, the first author recently pre-
sented an invited talk on the subject at the
International Symposium on Surface and Interface
— Properties of Different Symmetry Crossing —
2000 in Nagoya; readers are referred to the proceed-
ings for a succinct review of the work [13].

Standard analysis procedures of TWDs make a
continuum approximation in the direction along the
steps, called y in “Maryland notation.” (The perpen-
dicular direction in the terrace plane, in the “down-
stairs” direction, then becomes X.) In the highly
successful [14] step continuum approach to vicinal
surfaces, equilibrium properties are described in terms
of two parameters: the step stiffness [3 and some
measure of the interaction strength. The former is
essentially the thermal energy divided by the diffu-
sivity, (the proportionality coefficient associated with
the linear growth of mean-square wandering of steps
in X with increasing y, starting from some position on
the step). Generically, the interaction between steps
consists of an elastic repulsion per length A/¢* and a
temperature-dependent “‘entropic’ repulsion — also
o 7% — arising from the physical restriction that
steps cannot cross each other. The repulsion is usually
characterized by A. (It can also be characterized by a
combination of the two. Note that this is not a simple
sum, since as A increases, neighboring steps encounter
each other less often, decreasing the entropic contri-
bution.) In the ensuing description of TWDs, i.e. the
fluctuations of ¢ from the average value (¢), A appears
only in the form of a dimensionless interaction
strength

A= AB(ksT)™ ()
Our guiding philosophy can be capsulized:

e The “standard analysis procedure” noted above is
part of the step continuum approximation. In this
perspective [14], the mesoscopic behavior of the
step is characterized in terms of three parameters:
and a parameter representing the dominant kinetics
(a kinetic coefficient or diffusion constant times

carrier density). Hence, a knowledge of A is crucial
to a proper description.

o In this approximation, because step overhangs are
physically forbidden, the set of step configurations
in 2D space maps into the world lines describing the
evolution of non-crossing particles (spinless fer-
mions or hard bosons) in 1D space. This mapping
is what leads to most of the progress in theoretical
understanding.

e In experiments to date, investigators have measured
the distribution of terrace widths ¢. This correlation
function in essence is a many-particle correlation
function, since one measures the probability of
finding a pair particles separated by ¢ with none
between them.

In experimental systems A is typically between 0 and
15[9,10,14] (cf., esp., Table 2 of Ref. [13]). When Ais
not too small, the shape of a TWD can be adequately
described by a Gaussian. However, as noted initially,
there are conflicting theories on how to estimate A
from the variance of this Gaussian [1-7]. More
recently, we have recognized [8-11] that the TWD
might better be described using a simple expression
arising from random-matrix theory, called the ‘““gen-
eralized Wigner surmise.” The underlying model
[15,16] is exactly solvable only for A =0 and
A=2 [17,18], as well as in the limit A — oo. Hence,
to assess the merits of various approaches for general
A, we had to generate well-characterized distributions
numerically.

2. Fundamental results
2.1. Gaussian approximations to TWDs

For convenience and simplicity we initially divide ¢
by its average value (¢), thus constructing the dimen-
sionless parameter s = ¢/(¢). Then the TWD, P(s), is
not just normalized but has unit mean. The Gaussian
approximation to the TWD takes the form

2
oxp [ u] o

2
205

In addition to their simplicity and familiarity,
Gaussians can be justified readily for strong elastic
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repulsion between steps. In this limit the motion of
each step is confined near its mean position; a Gruber—
Mullins (GM) argument (in which a single step is
treated as active and its two neighbors are fixed at
twice (¢)) shows that [1,2]

2 512
- =KA 3)
For the GM case, with interactions only between
nearest-neighbor steps, K is 1/ V48 = 0.144. If all
steps interact with A/Ez, then the effective interaction
increases by a factor of 9'—0n4 ~ 1.08", decreasing the
variance, and so K, by just 3 (to 0.139).

The Grenoble group [6,7] argued that the GM-
derived variance underestimates (for given A) the true
variance. For very large A the entropy of interaction
between steps becomes negligible (since the repul-
sions prevent their coming close together), so that the
only entropy is that of the individual steps. Then,
assuming both steps bounding a terrace fluctuate
independently, the variance of the TWD should be
the sum of the variances of the fluctuations of each
step, i.e. twice the variance obtained in the GM picture
(in which there is a single “active’ step between a pair
of fixed straight neighboring steps). Due to antic-
orrelations, o and so K increase by 1.801 (for given
A) rather than doubling.

Including entropic repulsions in an average way [§]
amounts to replacing A by Eq. (3) by an effective
interaction strength Aeff obtained from the cubic term
of the expansion of the projected free-energy of a
vicinal surface as a function of misorientation slope
[19]. The resulting enhancement is

AT (VA + 1+ 1)

AT @)

~—1/
This modification (which vanishes as A— Q)
extends to smaller A the range of viability of this
(modified) asymptotic limit. In this approximation,
including interactions with all steps decreases o> and
so K by nearly 10%. The Saclay group [3-5], alter-
natively, makes a continuum approximation in the x-
direction as well as y and invokes correlation functions
from roughening theory to obtain a result of the form
of Eq. (3), again with Ay replacing A, in which
K =2/n* ~ 0.203.

Since the various Gaussian approaches make dif-
ferent fundamental approximations, the detailed rela-
tionships between the width of the Gaussian and A
differ notably. Even when a TWD can be well fit by a
Gaussian, the estimation of A can be ambiguous.

2.2. Symmetry and Wigner approximation to TWDs:
CGWD

Wigner long ago proposed that fluctuations in the
spacings of energy levels of a system (originally
nuclei) should exhibit certain universal features
depending only on the symmetry — orthogonal, uni-
tary, or symplectic — of the underlying couplings.
This insight, promulgated using random-matrix theory
[17,18], has been widely applied to fluctuation phe-
nomena in chaotic systems. The pathway to this
valuable information is the description of the equili-
brium fluctuations of steps using the Calogero [15]
and Sutherland [16] models of spinless fermions in
1D, interacting with a repulsion decaying as the
inverse square of separation. Remarkably, the TWD
becomes equivalent to the distribution of the energy
spacings, which can be solved exactly by random-
matrix methods for the three symmetries. According
to the so-called Wigner surmise, these exact solutions
for the three distribution of fluctuations can be
approximated by [20]

Py(s) = aps® exp(—b,s’) 5)

where the constants b, associated with unit mean of
P(s) and a, deriving from normalization are

2
B %1—\(@;—2) _2b£,g+1>/2
by = =y and a, = — o (6)
T(4) L)

The variance of P,(s) is

» _o+1 1
Oy = 2b, 1
The three symmetries correspond to the values ¢ = 1,
2, or 4, respectively. This trio of expressions are
outstanding approximations, accurate to better than
£0.004 for the latter two cases (cf., esp., Fig. 4.2a of
Ref. [20]). From the mapping of the step problem onto
the Sutherland [16] Hamiltonian comes the relation

A=}ole-2) (8)
Inverting Eq. (8) gives ¢ = 2/ Aeff (cf. Eq. (4))!

(N

020



T.L. Einstein et al./Applied Surface Science 175-176 (2001) 62—68 65

The three special values of ¢ correspond to A = — i,
0, or 2, respectively. The second case describes steps
interacting only via the entropic repulsion, while the
first indicates a physically unlikely attraction. The
third case, A= 2, corresponds to a rather moderate
repulsion. As documented in Table 1 of Refs. [8,13],
the variance of Wigner’s P,(s) is nearly the same as the
exact value. The Saclay and GM estimates are a few
percent too low, while the modified Grenoble estimate
is much too high.

The crucial question is how to generalize to other
values of A. We simply use Eq. (5) for arbitrary value
of 9 > 2, with g related to A by Eq. (8). This dis-
tribution, for general g, is denoted the CGWD (con-
tinuum generalized Wigner distribution). While there
are no symmetry arguments to justify the CGWD
form, there are arguments in its favor:

e Py(s) should give a decent approximation of the
TWD for values of g between 2 and 4 since the
range in parameter space is small. In any case, the
Gaussian approximations are invalid in this regime.

e For very large A, the Grenoble viewpoint becomes
compelling. In this limit, the leading term in the
expansion of J§V in Eq. (7) implies that Kw = % in
Eq. (3), with A replacing A. Thus, as listed in
Table 1, the CGWD variance approaches the (mod-
ified) Grenoble estimate nicely, while the Saclay
estimate is notably too small. Since the CGWD
does well for both ¢ — o0 and ¢ =4, it is a
promising candidate for intermediate values.

e As a function of s, the CGWD not only has the
Gaussian behavior expected (from random-walker
analogies) at large s but also reproduces the exact
power of s for s < 1. In this limit, the many-step
correlation function becomes identical to the pair
correlation function, which o s?, with a prefactor
similar to a, [21-25].

e We can derive the CGWD from a Schrddinger-
equation approach [11], as discussed below.

To test numerically the accuracy of Eq. (5) we apply
standard Monte Carlo methods to the simplest ade-
quate model, the terrace-step-kink (TSK) model. The
only thermal excitations are kinks of energy € along
the steps. For simplicity we consider a vicinal simple
cubic lattice with unit lattice constant. The stiffness
Prsk of an isolated step — needed to extract A from A
— is then simply 2kgT sin h*(e/2kgT) [26]. This

model is obviously discrete in the y as well as the X
directions [2,3,5,26].

In Fig. 2 of Ref. [13] we provide some preliminary
results for the case (¢) =6 at kgT/c = 0.5, with
L, = 200 and the number of steps N = 10. In addition
to the standard Metropolis algorithm [27], we use the
“refusal-free’” n-fold way [28,29], especially for large
A (or at low T), where it is much more efficient than
the Metropolis algorithm. The elastic repulsion is here
considered only between neighboring steps, a com-
mon simplification in Monte Carlo [2,4]. The key
result is that the CGWD provides globally the best
accounting of the variance as a function of A.

3. Useful results for interpreting experiments

We here collect some useful formulas and ideas
derived earlier (mostly in Ref. [10]). From Eq. (8) and
series expansions comes the arguably optimal expres-

sion from which to estimate A from ¢

Ar k(@) =7 + 2+ 347 ©)
with all four terms needed to provide a good approx-
imation over the full physical range of A. As in Eq. (3)
the Gaussian methods essentially use just the first term
of this expression and adjust the prefactor. For large
enough (see Ref. [10]) A, those preferring Gaussians
over P,(s) of Eq. (5) can extract o2 from their fit and
then apply Eq. (9).

When fitting experimental data, it is often fruitful to
generalize the CGWD to a two-parameter fit. The
central idea is that the characteristic length by which ¢
is normalized should be taken as an adjustable para-
meter £ rather than as the first moment (£), as it would
be ideally. Normalized data are then fit to

(90

In the experimental systems studied to date, (¢)/f
tends to be greater than unity, typically by several
percent. In contrast, our companion Monte Carlo
simulations [12] find that the optimal / is essentially
identical to (£).

In a careful study of the effects of lattice discrete-
ness in the y direction, we found two major results
[10]. (1) When (¢) > 4, A using the CGWD provides a
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satisfactory estimate over the range of physically
reasonable dimensionless repulsions. (2) As the
TWD becomes narrower at large A, using the CGWD
to estimate A becomes questionable. This breakdown
occurs for ¢ near ()%, i.e. when the squared interstep
spacing becomes comparable to the variance. Analo-
gous problems at high misorientation also occur when
continuous Gaussians are used as the fitting functions.

To estimate uncertainties in the determination of the
TWD and, ultimately, ;\, one needs a good estimate of
the number of independent measurements, which is
generally much smaller than the total number of
measurements. This issue is treated in Ref. [10], where
arough calculation shows that the reduction factor can
be nearly two orders of magnitude, emphasizing the
need for using several STM images to obtain decent
statistics.

4. Applications to experimental TWDs

In two papers [9,10], we applied these ideas to
extensive data on Cu {100} and {111} vicinals,
each at three different misorientations, and these six
cases at various temperatures. In all, around 30 dif-
ferent cases were considered. Several trends appeared:
the value of ¢ derived from the two-parameter fit to a
CGWD is almost always smaller than () given by the
mean of the TWD. The directly measured variances
usually exceed the values deduced from any of the
fitted curves (cf. Section 7 of Ref. [10]). The value of ¢
deduced from the two-parameter CGWD fit is higher
than that from the single-parameter version, and the
resulting ¢ is typically closer to that deduced from the
Gaussian fit. For “good” data — in which the mea-
sured TWD behaves essentially monotonically on
either side of the peak — ¢/(¢) differs from unity
by a few percent, and the change in ¢ and o? is
negligible. When the TWD has a double-peak or hump
at large s, £/({) is at least twice as far below unity, and
the two-parameter-fit curve is narrower than the sin-
gle-parameter-fit curve.

We also studied data for vicinal Pt(1 1 0) at room
temperature; the terraces are (1 x 2) reconstructed,
with “(1 x 3)”-segment steps. Recent measurements
show that the interaction between their steps is
small [30], rendering traditional Gaussian approxima-
tions invalid. Fits to the CGWD yield ¢ =2.06

(A= 0.0309) or, when done in the two-parameter
way, 0 = 2.24 (;\: 0.134) [10]; in the latter case,
the optimal £/(¢) is 91% and the fit is notably better.
The presence of a high-s bulge indicates this feature is
not peculiar to the vicinal Cu systems of [9,10].

5. New directions

In addition to measuring TWDs, experimentalists
should be able to obtain the distributions of the
distances between pairs of steps having n steps,
n =1, 2, or more, between them. This supplementary
data could provide a valuable consistency check. For
the three special cases ¢ = 1, 2, 4, these distributions
have recently been investigated theoretically in a
different context [31]; the main assumption is that
the conditional probability density of occurrence of a
step at a given distance from a fixed step, with n steps
in between, can be expressed in terms of the (n + 1)th
power of the corresponding probability for this dis-
tance with no intermediate steps. The generalization is
discussed in Ref. [13]. Preliminary Monte Carlo
checks find good agreement with the prediction for
the double-terrace-width (n = 1) case, but just ade-
quate agreement for the case n = 2. Alternatively, one
can simply measure the step—step correlation function,
regardless of the number of intermediate steps. The
advantage is that there are analytic results available
[22], which we are in the process of applying to
data.

Since a formal symmetry-derived basis of the
CGWD exists only for the three special values of g,
we have developed arguments using Schrodinger
equations to find circumstances under which it can
be justified for arbitrary-strength repulsions [11]. The
formalism also allows treatment of more general
potentials than the inverse-square term characterizing
the long-range behavior of elastic interactions. Of
particular physical importance are the higher-order
terms that enter at smaller terrace widths and an
oscillatory interaction mediated by electronic surface
states [32], expected [33] to have the form

072 cos(2kel + ), (11)

where kg is the wavevector of the surface state at the
Fermi level and ¢ is a phase shift associated with
scattering from the pair of steps.
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A wave function yo(s) defined such that /g = P,(s)
satisfies the Schrodinger-like equation

2
T Wols) 4 A5~ bylo + 1) + B3N (s) = 0

Cds?
(12)

The new potential term U(s) = bgs2 is a dimension-
less projected free-energy representing interactions
with all the other steps not explicitly considered in
the dimensionless step interaction As‘z, while
by(0+ 1) is the eigenvalue of the ground state. In
this framework, by substituting more general poten-
tials for As2 in Eq. (12) and solving for the ground-
state wavefunction, we can contend analytically with
more complicated potentials. Successful tests are
described in Ref. [11]. Though tempting, it is danger-
ous to invert straightforwardly the preceding approach
to deduce the underlying interaction potential from the
experimental TWD. We have devised a more success-
ful, albeit laborious, procedure to do so [11].

6. Closing summation

The CGWD, expressed in Eq. (5), provides an
excellent interpolation between the exactly solvable
cases at A = 0 and A = 2, and approaches the correct
limit for very large A. It gives the qualitative behavior
of variance as a function of A, and numerical evidence
suggests that it interpolates well when A is large. The
TWDs shape approaches a Gaussian in this regime of
moderately strong A; the CGWD (via Eq. (9)) then
offers the best estimate of A from the variance. As is
evident from Eq. (3), any fractional error in gauging
the width or variance of the TWD is greatly amplified
when subsequently estimating A. When there are
active surface states near the Fermi energy, the
TWD should exhibit notable deviations from a CGWD
(or a Gaussian).

The theory of random fluctuations in complex
systems has concentrated on the three special values
of ¢ (with some attention to intermediate values), i.e.
the range of A weaker than in most physical systems.
Further effort is warrant to probe why the CGWD
works so well when there is no fundamental symmetry
argument to justify it. The step—step pair correlation
function, which can be analyzed in greater detail

theoretically than the TWD, can be measured almost
as easily as it. Multistep correlations should also not
be neglected in experiments measuring TWDs.
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