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" ABSTRACT

~ Experimental advances in recent years make possible quantitative observations of step-edge
fluctuations. By applying a capillary-wave analysis to these fluctuations, one can extract
characteristic times, from which one learns about the mass-transport mechanisms that underlie the
motion as well as the associated kinetic coefficients [1-3]. The latter do not require a priori insight
about the microscopic energy barriers and can be applied to situations away from equilibrium. We
have studied a large number of limiting cases and, by means of a unified formalism, the crossover
between many of these cases[4]. Monte Carlo simulations have been used to corroborate these
ideas. We have considered both isolated steps and vicinal surfaces; illustrations will be drawn
from noble-metal systems, though semiconductors have also been studied. Attachment
asymmetries associated with Ehrlich-Schwoebel barriers play a role in this behavior. We have
adapted the formalism for nearly straight steps to nearly circular steps in order to describe the
Brownian motion of single-layer clusters of adatoms or vacancies on metal surfaces, again in
concert with active experimental activity [3,5]. We are investigating the role of external influences,
particularly electromigration, on the fluctuations.

"INTRODUCTION

In addition to providing information about the energy of kinks, thermal fluctuations of steps
on a vicinal surface provide a rich source of insight into the microscopic atomic processes which
underlie the fluctuations. In recent years it has become possible to make quantitative measurements
of these fluctuations using STM (scanning tunneling microscopy), LEEM (low-energy electron
microscopy), and REM (reflection electron microscopy). The fluctuations of the steps can be
viewed as a form of Brownian motion and can be analyzed using a capillary-wave approach and
Langevin formalism. From this analysis one can deduce the key macroscopic parameters—step
stiffness, step-step interaction strength, and transport coefficient—which govern the macroscopic
behavior of the steps. These parameters can then be applied to situations out of equilibrium or in
which the steps are driven by external forces. Furthermore, the analysis of nearly-straight steps
can be adapted to treat nearly-circular steps and thereby describe the Brownian motion of
monolayer clusters of atoms or vacancies on surfaces, for which quantitative experimental data has
also been obtained over the last few years.

This submission has its roots in a conference review paper [3] but emphasizes new results
only briefly broached there. Our scientific purposes are 1) to summarize the assumptions and
results of the unified formalism and an alternative formalism [4]; 2) to review the application of this
formalism to the diffusion of single-layer clusters, using the notation of Ref. [4]; 3) to discuss the
results in view of recent experiments and theory; and 4) to briefly describe work in progress to
consider electromigration in this framework.
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EQUILIBRIUM FLUCTUATIONS OF ISOLATED STRAIGHT STEPS

In Monte Carlo simulations of the SOS model or similar lattice systems, one can graphically
watch how the step configuration changes as adatoms or vacancies attach to or detach from the step
edge [4]. In LEEM, REM, or STM experiments, one either lacks the resolution to observe atomic
events or these events happen so rapidly that they cannot be observed individually. The challenge,
then, is to deduce as much as possible about these atomic processes from observations of the step
configurations alone. To do so, we apply capillary wave analysis. In what has been called
“Maryland” notation, the steps are taken to run along the y direction, so that excursions
perpendicular to it are in the x direction. Thus, the position of the nth step, relative to a uniform
staircase, is denoted xy(y,t). A motivation for this notation is that formulas can be easily compared
to the one-dimensional limit by removing the y dependence. As the “wavelengths” (characteristic
size in §) of the equilibrium fluctuations increase, so do their amplitudes (in ®) and their duration,
as shown below.

It has long been known [6] that there are three well-characterized limiting cases, denoted
hereafter EC, TD, and PD [2,7], depending on what process limits the rate at which fluctuations
heal. In EC [2D] evaporation/condensation, or attachment/ detachment, of atoms and/or vacancies
at the step edge limit the production and decay of fluctuations. Once the adatom or vacancy is free
of the step, it is assumed to be instantly equilibrated into a 2D “gas” of mass “carriers” on the
terraces. InTD, diffusion across the terrace is the rate-limiting process, leading to a non-uniform
distribution of carriers on the terrace that decays exponentially toward the thermal value for a flat
surface. In PD (periphery (or edge) diffusion), motion along the step edge limits the rate of the
healing of fluctuations.

To make quantitative progress, we use a Langevin formulation. This amounts to an
overdamped harmonic oscillator driven by a noise term [8]. We have described this process
several times before.[2—4,9]. It is very helpful to perform a Fourier transform along the mean
direction of the step, i.e. writing x(y,t) as Zqexp(iqy)xq(t) in this capillary-wave analysis. It is
particularly fruitful to study the behavior of the (measurable!) [10-12] autocorrelation function
Gq(t-t') of the capillary modes:

G,(t-#)=(fx,(0)-x, )= 2, 0 )~ 2, (0, (1) = A1 - V) )

From equipartition arguments, one finds that the prefactor A = 2kBT/'[~5q2Ly [where Ly is the
size of the system along §] depends simply on known quantities, except perhaps the step stiffness
B, which can thus be determined from this relation or checked with previous independent
determinations. [The stiffness is the coefficient of the integral of (1/2)(@x/3y)? in the Hamiltonian
of the step; B() = B(B) + B”(8), where B(8) is the free energy per length of a step.] The q2
dependence does not depend on the limiting case. On the other hand, by integrating eqn. (2) and
computing {Xq(t) xq(t")), we find

7' =(QB/ kg’ F (@), F(@)=k, +k., 2D,lgl, 2a,D,q* @

for the cases EC, TD, and PD, respectively. This notation generally follows that adopted in Ref.
[4] in an attempt to reduce confusion about physical interpretation. (The connection between this
notation and others is described in Appendix D of ref. [4]. The quantity T is Lyfq/2 of ref. [4],
where fg is the weighting factor in the orthogonality condition for the Langevin noise associated
with x¢(t).) The subscripts su and st are abbreviations for surface and step, respectively. The
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lattice spacings a, and ay are in the unit spacings in the & and the § directions, respectively, and Q
= a,a is the area per atom (i.e. of the surface unit cell). The writing of egn. (2) anticipates the
definition of a reduced stiffness S = QP/kpT, with dimensions of length. Thus, f has the
dimensions of velocity. In our standard linear kinetic approximation, the coefficients k.¢) are the
proportionality constants relating the difference—normalized by the Boltzmann energy—of the
chemical at the upper (lower) edge of the step and the chemical potential of the step itself to the
step-edge velocity i(y,t)l{\;). The factors of 2 reflect the simplifying assumption that these are the
same on both sides of the step edge. The three macroscopic transport coefficients can be re-
expressed in terms of characteristic inverse times for attachment/detachment, hopping along the
terrace, and hopping along the step edge, respectively. These characteristic times can be computed
straightforwardly in simple models. However, in interpreting complicated systems such as found
in most experiments, they are better viewed as effective parameters that involve an average over
several microscopic times. The driving philosophy is that these same average times will be
involved in all kinetic processes not far from equilibrium, so that it is counterproductive to try to
extract microscopic parameters from one measurement and reconstruct macroscopic parameters to
interpret a different experiment.

The behavior ‘:q4 o< g2 in EC arises because the relaxation is proportional to the change in the
chemical potential from its equilibrium value [, which in this case is just proportionai to the local
curvature of the step edge. The extra factor of g2 in PD (14! < g4) arises from the additional
-9%/9y? coming from the conservation condition. The extra factor of Igl (¢! = Igi3) in TD comes
from the exponential decay of the concentration toward the terrace value as one moves away from
the step edge. In contrast, the terrace concentration is uniform in EC and effectively zero in PD.
Notice from eqn. (1) that in all three cases the early-time behavior of Gq(t) is linear in t,
characteristic of diffusive, exponential relaxation. In contrast, the real space analogue, the mean-
square width w2(t-") = (|x(t) - x(t)I2) is not linear in any of the simple cases; instead, w2(t) o< t1/2,
113, 11/4, for EC, TD, PD, respectively. Fluctuations of positions along the step edge—in contrast
to those of the g-modes—are interdependent.

There are other ways to obtain many of these results. Decades ago Mullins [6] showed the
fruitfulness of formulating the problem in terms of a step chemical potential. Bales and Zangwill
[13] used the linear kinetic approximation that the step velocity is proportional to the difference
between the adatom concentration near the step edge and its equilibrium value. Pimpinelli et al.
[14] trisect each system into a fluctuating step, a reservoir of atoms enabling the fluctuations, and a
pipe connecting the two, through which the exchange of atoms occurs. From this incisive
perspective, they can quickly account for a large number of limiting cases, including multi-step
situations, but sacrifice the factors of & and the like appearing in more precise derivations. B.
Blagojevi¢ and P.M. Duxbury [15] formulate the problem in terms of the probability P(y) that
atoms leaving the step at one point retum to this step a distance y away. Not only do they retrieve
the early-time growth of the mean-square width in the three limiting cases EC, TD, and PD, but
they can achieve intermediate values t1(@+1) if P(y) oc y=. It is not immediately clear how this
particular form of P(y) relates to the physical nature in our formulation. We [4,5] have also
studied cross-over behavior between limiting cases by considering a unified formulation that
considers all three mechanisms simultaneously, as well as reproducing and extending the multistep
behavior of Pimpinelli er al. [14].

As an illustration of the application to actual data of the analysis procedure developed at
Maryland, we consider the case of an isolated step on Ag(110) directed 30° from the close-packed
[170] direction, measured by STM at room temperature by Reutt-Robey’s group at Maryland [12,
16, 17]. A best fit of the early-time measurements of the autocorrelation function is w2(t) =
33.7A2.0099, consistent with EC. In the capillary wave analysis, the lowest value of qwas 2.1x
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10-3 A-1, corresponding to a wavelength 3000A. Some half-dozen values of q up to eight times
that lowest value were analyzed for up to 1000 sec. From the fits of Gg(t), A (and thence B =18
meV/A) and Tq were obtained. In the plot of ‘tq'l vs. q, the fit to g2 was much better than the
alternatives, supporting the view that the fluctuations are EC limited. From the prefactor of this fit
and the deduced 5, we estimate the time between atomic attachment/detachment events T, = 350
msec. For an isolated step along the [110] direction, the stiffness is over 8 times as large, but Ty =
400 msec, indicating that the ability of steps to supply Ag atoms to the terrace (ta"! = 3 [events] per
second [per step site]) has little dependence on step orientation (and so kink density) [12]. For Si
surfaces at much higher temperatures, also examples of 41 e g2, the mobilities are much higher:
for Si (111) at 900°C, t4-1 = 106 atoms/sec [13, 18); for Si (100) at 700-1200°C, 1,1 = 103 — 106
dimers/sec [11, 19]. Kuipers et al. [20,21] had found similar fluctuations on vicinal Au(110) and
Pb(111). Cases of vicinals on which fluctuations with ’L‘q'l o< g4 have been observed are: Ag(111)
[22], Cu(100) [22-26], Ag(100) [27, 28], and Pt (111) [29]. To date there have been no
observations of ‘tq'l o< Iqi3; as discussed in the next section, there may be reasons for this related to
the isolated-step approximation. It can, however, be readily seen in Monte Carlo simulations of
the SOS model [2].

CROSSOVER BEHAVIOR OF VICINAL SURFACES

The preceding approach relies on a different Langevin equation, each with its distinct
restoring force, for each of the three cases of isolated steps. We have since developed a more
general formalism that takes into account all three mechanisms in a unified way, thereby allowing
us to assess in a systematic way the extents of the various limiting regimes and the nature of the
crossover between them.

As indicated above in conjunction with the definition of k+, we begin by assuming that the
contribution to the step velocity on either side of the step edge is linearly proportional to the change
in the chemical potential on that side of the edge from the equilibrium value i of the step edge. In
the limit of small deviations (Ix’(y)! « 1), ys reduces to - Bﬂx". While in principle the chemical
potential should be a function of both spatial coordinates and the time, as in the classical Stefan
problem, we make the usual quasistatic approximation of neglecting any explicit time dependence
of it. (In studies of the analogous growth problem, this approximation was shown to be
reasonable until the deposition flux became so large that nucleation of islands began on the terraces
[30]. Then our problem reduces to solving Laplace’s equation for p(x,y). [Equivalently, we
could work in terms of the concentration field c(x,y); this involves no extra effort if we make the
lowest order approximation u(x,y)/kpT = (c(x,y)/csu) -1, where cgy is the equilibrium
concentration of the “carriers” far from the step. To include mass conservation, we stipulate that
the step velocity can be produced either by carriers by atoms diffusing along the step edge or by
carriers traveling between the terrace and the step (so proportional to D and to the normal current,
viz. the normal gradient of p). Combining this boundary condition with the linear kinetic
assumption (and dividing out the Boltzmann energy) leads to the important equation

2 + *
a,D, J ll(02 ,¥) D, (0%, y) - k:{ll(ot»)’)”ﬂ,}’: k,,Ti(y,t)L 3)

oy ox
This formulation contains the standard and arguably unphysical implicit approximation that the
energy barrier for an atom to attach to the step (presumably onto a kink site) from the terrace is the
same as that to attach from a mobile state along the step edge onto a kink. (More precisely, the
implicit assumption is that these rates are comparable, but it is hard to imagine that the prefactors
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would just compensate for the differences in the Boltzmann factors.) We discuss below how to
generalize the conventional perspective embodied in eqn. (3) to take into account the different
possible rates.

It is again fruitful to perform a capillary-wave analysis, Fourier transforming along § and
thereby introducing the wavevector q. The dimensionless parameters of the problem then become
apparent:

a;=D,lql/k; b=D,a,q*Ik; |gt; r=k [k, @)

Here ag* and byt are dimensionless measures of the terrace diffusion and the step-edge diffusion
relative to the attachment/detachment rate, respectively. Many [30-32] use the so-called “kinetic
length” di = Dgy/ks instead of agt. Anticipating the next section discussing vicinal surfaces, the
product g¢ measures the ratio of the mean terrace width £ to the wavelength of the fluctuation of
the step edge.

As for the limiting cases, we probe the dynamics by computing the inverse time constant
associated with the wavevector-dependent decay of fluctuations:

* +
a,,+b,7 J

— )
1+a; +by

v Y T

1 1 1 1 2
—=— _ESktq[
T * 7
To describe the crossover behavior, we compute an effective dynamic exponent zg defined by

zq=-9 log 1¢/d log Ig! 6)

For an isolated step we define for convenience Pq = 8g + bg and allow motion on only the lower
side of the step. Then we find

_ p, +b, ~ r(1—r)pq(1+pq)
% _2+l:p4(1+ pq):l[l (pq +r)(pq+pqr+ 2r):" M

I ,logb
3 /093, log

Fig. 1. a) 3D replot of the contour plot (Fig. 2 of ref. [4]) of the effective exponent zq as a function
of the common logarithms of the dimensionless ratios ag and bq for isolated steps (£ = o0) and

b) simple plots of zq vs. log bg—solid line (or log ag—dashed line) when ag =0 (or bg =0,
respectively). Note that zq can take on values below 4, even down to 2, when motion is confined
to the step edge (aq =0).
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Written in this way, it is obvious that the expression in the right-most bracket of eqn. (7) becomes
one at both r=1 and r=0, i.e. full symmetry or asymmetry. In either of these cases, we display in
Fig.1 a three-dimensional plot of zg vs. agand by. We see that for most of phase space we are on
plateaux of zq = 2, 3, 4, corresponding to EC, TD, and PD, respectively, or cases B, C and F in
the notation of Pimipinelli et al. [14]. Only in fairly narrow regimes slightly over an order of
magnitude wide are there non integer exponents. We see that for large values of ag and bg,
corresponding to small values of k that limit transport, we recover EC. Likewise, when Dgy or Dgy
are the limiting quantities (so bg « aq « 1 and ag « bq « 1), we recover TD or PD, respectively. To
emphasize this point, we plot in Fig. 1b the value of zq when either ag or bg vanish.

The crossover regions are rather well confined and smooth, so that if one measures the
effective exponent over a decade or so, it should have a well-defined value (i.e., the log-log plot
should be linear) only if one is in one of the plateau regions. Conversely, if one finds an effective
exponent other than 2, 3, or 4, the fits should not be good, and there should be indications of
monotonic variation. With two or more decades of data, one reaches one of the three integer
plateau regions. We emphasize that these statements assume that the data is plotted in terms of one
of the dimensionless ratios of eqn. (4); conversion from measurable variables may not always be
simple. If any of these statements are inconsistent with the data, then either the experiment is
flawed or the theory has left out some crucial ingredient of the system.

The behavior of the expression in the right-most bracket in eqn. (7) has been thoroughly
characterized in ref. [4]. For positive pq, it has a smooth minimum of ~0.83 near r= 0.4. At
smaller pq the minimum occurs at smaller values of r. Overall, the factor appears most significant
for positive values of aq and b, regions in which zq = 2 (EC plateau), so that the r-independent
factor is tiny.

To generalize from an isolated step to a vicinal surface, we must consider the fluctuations
xn(y.t) of each step from its equilibrium position and associate an independent chemical potential
with each terrace as well as another (lLgn) with each step. Then there is a separate mass-
conservation boundary condition equivalent to egn. (3) for each side of each step. To solve the
resulting set of coupled equations, one can Fourier transform in the & direction [31,33].

However, for present purposes we just consider the acoustic or in-phase combination xg (y,t) and
the optical or out-of-phase combination xa (y,t) = Z (-1)"xy(y,t). We have worked out a large
number of limiting cases, as given in Table 1 of ref. [4].

To consider the crossover between cases B, C, D, and E, we focus on the dynamic
exponent associated with xa g(t), where we expect interstep effects to be maximal. To simplify the
algebra by setting Dg = 0, since diffusion along the step edge essentially affects each step
independently, at least for small amplitudes. Even then, the resulting expression for zg, given in
ref. [4], is rather formidable. In the limit igl¢ — oo, the expression does reduce to EC or TD (cases
B or C).

Fig. 2. 3D replot of the contour plot (Fig. 4)
of ref. [4] of the effective exponent zq as a
function of the common logarithms of the
dimensionless ratios aq and iql{ for bg =0
and no Ehrlich-Schwoebel barrier.
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In Fig. 2 we present a 3-d plot of the effective dynamic exponent as a function of ag and Igl/.
For ag « 1 and Igl¢ » 1, we see a plateau corresponding to case C. However, for Iqif « 1, a plateau
at zg = 3, corresponding to the TD behavior of case C. There is a smooth descent to 7q=2,
characteristic of EC, in the other three quadrants. The crossover occurs over roughly a decade
along either axis. The two quadrants with ag» 1 correspond to case B, while the remaining
quadrant with ag « 1 and Iql¢ « 1 is case D, in which the long-wavelength TD fluctuations on a step
relatively close to its neighbors have the signature of EC fluctuations because a power of Igl is
supplanted by 1/¢. The general behavior seen in Fig. 2 holds till remarkably small r. Qualitatively,
the descent from the plateau occurs at decreasing values of aq and ripple develops on the lower
plateau along the diagonal aglgi¢ = 1. For r = 1/2, this ripple at its largest corresponds to zq =~ 2.05.
By r=0.1, this ripple has increased to zq=2.5. (See Fig. 3a.) Only for very small r does
qualitatively new behavior occur. The ripple broadens and grows, and its center shifts to smaller
values of aq as r decreases. By r = 105 - 106 , a plateau at zq = 4 has formed in the quadrant aq « 1
and Igl¢ « 1. (See Fig. 3b.) This region corresponds to case E. For r=0, aq « 1, we can show zq=
4 analytically. (Interested readers should refer to eqn. (53 of ref. [4].) Such behavior evidently
will occur only for extremely small r, with virtually no attachment to steps from their upper side.

Bonzel and Mullins [34] have carried out a similar analysis for an isolated straight step, and
we [4, 35] have extended our formalism to treat both such steps and a vicinal surface, i.e. an
infinite array of steps. We have also investigated an alternative, physically more plausible
formalism, as described briefly below and expounded in Appendix A of ref. [4). As for islands,
one can examine the crossover between the three limiting regimes for isolated steps. The main
result, again, is that the crossover regions comprise a rather narrow portion of phase space. We
also recover the important cases of transport between steps when the q-dependence of 'cq4 and the
early-time dependence of the mean-square width do not correspond to the corresponding behavior
of an isolated step, cases D and E in Pimpinelli ez al. [14]. In case D, there is no diffusion along
the step edge (Dg=0). Since Dgylgl/ks+ «1, the transport is terrace-diffusion limited, but now Iql¢ «
L. As aresult, w2 ~ 1122 and 1471 o £-1g2: the latter inequality leads to a factor of q being replaced
by £-1. For case E, atomic motion along the step edge is again forbidden, Dsulgi/k+ « 1, and Iglé «
1, but now there is also the condition of a perfect (infinite) Schwoebel barrier: atoms approaching a
step from the upper side are reflected back rather than crossing over the step and possibly attaching
to it. Following through the algebraic reductions from taking the appropriate formal limits, we find
that 141 o< £ q4 rather than Iq3, and w2 ~ 14, Thaus, it is important to measure step fluctuations for
different vicinalities to be certain of the correct assignment of transport mode. On the other hand,
if one does find Iqi3 or t1/3 behavior, it most likely is due to the TD mechanism.
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Fig. 3. 3D plots of the effective exponent zq as a function of the common logarithms of the dimen-
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Other crossover behavior can arise when one moves to a regime where the continuum picture
is not valid. For examples, Giesen-Seibert er al. [25] show that for PD, at very early times w2
behaves like t1/2 rather than t1/4 because the dynamics are dominated by random walks of kinks.

In their simulations the effective exponent decreases smoothly with increasing temperature, with no
evident crossover in any of the fixed—T log-log plots of w2 vs. t. They also show how to take into
account “fast events,” viz. rapid, inconsequential back-and-forth motion of atoms (“blinkers”).
This work builds on an earlier analysis [24] in which they examine the structure of the probability
distribution of the time between jumps as a function of the number of scans and the time of each
scan, showing that the result does not depend simply on the product of these two arguments and
that this sort of analysis can be used to filter out blinker events. Masson et al. [26a) propose a way
to scale the step-step correlation function in terms of the STM scanning speed to allow the
separation of diffusive behavior at fast scanning speeds from rapid temporal fluctuations at slow
speeds.

' ALTERNATIVE FORMALISM FOR STEPS

As noted above, the use of a single kinetic coefficient for both terrace and edge motion, while
convenient, is open to question. For example, in very recent LDA/GGA on Al (111), Bogicevic et
al. [36] found the detachment barrier for hopping from a kink position to a step edge to be about
1/2 eV (somewhat more for a B step, with (111) microfacet, but an exchange process also has a
barrier around 1/2 eV); in contrast, the barrier for detachment from an edge to the terrace is about
0.8 eV, so that this process becomes activated at about twice the temperature of the former.

To account for this difference, we [4] can consider separate kinetic coefficients k45U and k4t
for surface (terrace) and step-edge processes. Then we must generalize egn. (3) to

) 2,0 B B
a,D, a—’{%ﬁ =k{p©*y)-n) *D, i‘l%’y—) =k {u©,y) -1} @

We then redefine our dimensionless ratios and find a new expression for the inverse time constant

- - 1 N
4 =D/KE b =D /K FEsqz[
q

ko | Kibg? ] “©

1+af  1+b}

We emphasize that this is not merely an extension of the previous formalism: if we take the limit
k45U = k45t = k4, we do not retrieve the previous inverse time constant of eqn. (5). The various
limits in the table of ref. {4] remain unchanged provided we make the appropriate substitution for
k+. While Fig. 1 will change, the others will remain unaffected once k45t replaces ks and a'qt
replaces agt.

7 APPLICATIONS TO DIFFUSION OF LARGE SINGLE-LAYER CLUSTERS

As discussed in several papers earlier in this proceedings, and elsewhere as well, the
diffusion of large single-layer clusters of [100’s to 1000’s of] atoms or vacancies can now be
measured quantitatively with STM. Considerable effort has been devoted recently to
understanding the size dependence of the diffusion constant, especially the exponent o describing
the power-law dependence on the [mean] radius R: D¢ = DeoR"®. In approaching this problem we
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" pursued the perspective that the fluctuations of the cluster are in essence the fluctuations of its
boundary, which is a closed single-height step [5, 37]). Hence, we adapted the formalism for open
nearly straight steps to closed nearly circular steps. Denoting by r(6,t) the radial distance of the
edge from the center of mass, we define a normalized deviation g(6,t) from a perfect circle and do
the equivalent of capillary-wave decomposition:

7 8(9")i(r(0.t)lk)—l= 2'3.(')4“ - (lo)

* The Langevin equation for ga(1) is basically the same as eqn. (2) for xqt), with ty°! replacing 147!
Our previous calculations for straight steps can be carried over to circular steps by making the
replacement g — w/R. Since the displacement of the center of mass at time t is given by rey2 =
xcm?2 + yom2, we find [5,37)

D, m{riu)/ 4=Rgf)/t=Rf, =Dk, .

(In going from linear to circular geometry, a new term appears which is proportional to g and is
associated with changes in cluster size. The derivation in ref. (5] of the equivalents of egn. (11)
explicitly neglects this term, as discussed in its Appendix. When we do include it, we find that
eqn. (11) is unchanged, but we must modify many intermediate steps and, in the process, gain
new physical insight [38].) For the cases EC, TD, and PD, since 1q'1 o< fq =« g2, Igi3, g, we now
have f) « R-2, R-3, R4, and so & = 1, 2, 3, respectively, or equivalently, D¢ o N-122, N-1, N-372,
In passing we note that for late-stage coarsening by cluster coalescence—in contrast to the near-
constant size regime treated here—Sholl and Skodje [39] show that the average cluster radius
increases like tg.r»:here B = 1/(0+2) = 1/3, 1/4, 1/5, respectively, rather than the t13 behavior for
all 3 cases in the limit of Ostwald ripening. Furthermore, they find the dynamic scaling law for ng,
the density of islands of area s: n(t) ~ t-28 f(s/t28). Several recent experiments [40-42) have
carefully examined the island coalescence on Cu and Ag; such work is described in this volume by
Rosenfeld et al. {42).

Our analysis of cluster diffusion makes all the assumptions of the straight-step analysis plus
taking the step stiffness and the relevant kinetic coefficients as isotropic. Initially it seemed that the
experimental situation could be well described by this simple picture. In this framework, the
Morgenstem et al. [43] experiment for Ag(111) single-layer pits appeared to be an example of TD,
as they themselves concluded (43a] from an argument following the approach of Pimpinelli et al.
[14); specifically, they found that & = 1.97 £ 0.39 for R between 10 and 75 atomic spacings (viz.
2.9A). Microscopically, the assumed picture was that Ag atoms cannot surmount the barrier posed
by the bounding step, so that they are trapped inside the pit, prohibiting the particle fluctuations
associated with EC. Subsequent evidence favored diffusion predominantly by adatom motion
around the pit periphery [43c]. For Ag atoms on Ag(100) Wen et al. [44a} reported 1/2<sa < 1.
On the other hand, Wen et al. [44] reported behavior that seemed consistent with EC. There were
considerable particle fluctuations: Wen et al. [44a] remark that they exclude islands which decrease
in area by more than 20% during the course of the observations. Moreover, the islands are more
nearly square than circular [41,44b]); much of the evaporation may occur by an edge-peeling
mechanism [45] which is rate-limited by the detachment of a corner atom and so virtally
independent of island size. In that case, the experimental exponent o could be more like 1/2 than
1. However, in a subsequent experiment with more extensive statistics, Pai et a/. [40] reported PD



~ behavior for Cu islands on Cu(100) and Ag islands on Ag(100), consistent in the latter case with
measurements of vicinal Ag(100) [28].

To check whether this behavior, based on a continuum viewpoint, is applicable to vacancy
clusters on the scale of the experiments, we performed Monte Carlo simulations using the standard
Metropolis algorithm. (It is, perhaps, worth mentioning that the Metropolis—as distinguished
from kinetic—Monte Carlo has served successfully in obtaining quantitative agreement between
theory and experiment for surface processes [46].) Since the goal was not to replicate any
experiment, we invoked several simplifications and “tricks” to bring out the central physics with
minimal complications. However, we did demand consistency in the three transport coefficients
associated with fluctuations of straight steps and the ones associated with the cluster diffusion
constant Dc. We used a square lattice with just an (attractive) nearest-neighbor (NN) energy -€.
We worked at kgT/e = 0.6 (0.5 for TD), well below the roughening temperature of the
corresponding SOS mode! but high enough so that the equilibrium shape was nearly circular. For
EC, we used straightforward Glauber (atom hops to/from *reservoir”) dynamics, adjusting the
chemical potential to keep the number of vacancies about constant. Alternatively, after removing
an atom at some random value of 6, we could simply immediately reattach it at some other random
position along the periphery, avoiding the nuisance of adjusting a chemical potential for the
reservoir. (In this approach it is important when scaling the Monte Carlo data to include the fact
that the chance of such a move per unit increases proportional to the circumference, contributing a
factor of R to D¢(R).) For TD, we used Kawasaki (atom hops to [NN] vacancy) dynamics. To
prevent the vacancy cluster from dissolving, we forbade vacancy diffusion from the cluster
boundary into the surrounding atomic lattice. To enhance motion across the terrace, we reduced
the energy of an isolated atom in the interior of the monolayer pit to € [from 4¢]; this had the added
benefit of suppressing atom-cluster formation in the pit. For PD we again used Kawasaki
dynamics, but with the modification that only NNN (next nearest neighbor), not NN hops were
allowed. This “trick” enhanced the probability of creation, along a straight edge, of atom—notch
pairs—vacancies are explicitly excluded—and prevents diffusing atoms from being trapped in
corners, allowing us to achieve asymptotic PD behavior relatively quickly. Without this trick,
asymptotic behavior may be reached only for larger clusters, as discussed below. We considered
clusters of size 100, 400, 1600, and 6400 vacancies [embedded in a much bigger lattice] and found
from log-log plots of D vs. R the best-fit exponents o. = 0.97, 2.03, and 3.1, respectively, in
excellent agreement with the predictions of the continuum theory. In response to criticism [47] that
these exponents were each deduced from just four data points, we note that each set of these points
were nicely collinear on the log-log plot and that they spanned a greater logarithmic range than
those used in the “large” regime (100 < N < 1000) in ref. [47]; we believe that we were able to
obtain exponents consistent with the asymptotic limit because we chose our kinetic scheme to avoid
complications, not because we used Metropolis rather than kinetic Monte Carlo. In this way, we
were able to fulfill our primary goal of characterizing the asymptotic behavior in a completely self-
consistent manner. The scheme does not address the size of the physical system for which
asymptotia is achieved.

Our Langevin analysis also produces exact expressions for the prefactors for the three cases:
Dcom/Q = ky, Dgy, and a, Dy, respectively. The last of these is the 2D analogue of the 3D
expression derived by Gruber [48]. To check the numerical values of D, obtained from the y-
intercepts of the log-log plots, we also computed the diffusion constant directly by applying a weak
potential gradient F to straight steps (or to adatoms on a flat terrace for TD) and seeking the
resulting average velocity v. Thence, the carrier diffusion constant can be calculated from the
Einstein-Nemnst relation D = kgTW/IFI. The resulting values agree to within 25% with those from
the log-log plots. It is tempting to extract activation energies from the prefactors, an activity in

246



which we have participated [5]. While the numbers obtained are semiquantitatively sensible, the
level of correspondence to the real physical numbers depends on the accuracy of the presumptions
made by the investigator about the microscopic Hamiltonian and how the macroscopic parameters
depend on these energies.

Again, we seek a general formalism to encompass all three cases and the crossovers between
them. Most of the procedures are identical to those for straight steps. E.g., we identify a cluster-
edge chemical potential of the form ps = -QR-1B32g/962. For simplicity we assume an atom
island, with all the atomic motion on the exterior. We define two characteristic lengths: 1) Rgy =
Dgy 7k s the ratio of the tracer (atomic) diffusion constant of the terrace Dy, to the kinetic
coefficient. When it is large, diffusion over the terrace is much greater than attachment or
detachment, so the motion is limited by the latter and so more likely to be EC than TD. 2) Ry =
(a,Dgt /k4)172 is a similar ratio of the tracer diffusion constant along the step to the mobility. To
determine the cluster diffusion constant D¢, we again need only f;. We find

2 -1
DL=£Z;_<*[1+ (R/R,) } . (12)

1+(R/R )R, /R,)

From eqgn. (12) it is straightforward to compute the exponent Oeff = —0logD/0logR that one
extracts from log-log plots of data. Fig. 4 displays this effective exponent in terms of two
dimensionless ratios of the three lengths. For very small clusters, EC eventually dominates
(although the continuum approximation may well fail before this limit is reached). For very large
clusters (perhaps unphysically large, depending on the size of Rgy, and Ry, TD eventually is
reached. The most important feature is that the crossover regimes are relatively narrow, little over
a decade in R. This suggests that Oefr should attain a constant value if the data contains a large
range of sizes and that one should not find values of O,gf other than 1, 2, or 3 for this constant.
Contrary findings indicate either problems with the experiment or significant physics missing from
the theoretical analysis (e.g. the edge-peeling of islands or strong anisotropy).

Some clarification of the names of the three regimes should be made. In the extreme case Dg,
=0, 50 Rgy =0, eqn. (11) reduces to D¢ e R[1 + (R/Rg;)2], and we find smooth crossover
directly from o = 3 to & = 1, as suggested by the bottom of Fig. 4. (Cf. Fig. 1b.) In this limit,
atoms cannot escape from the step to the terrace, even if they can detach. Physically, when the
atomic motion along the periphery is very long range, the local mass flow is effectively driven by

Fig. 4. 3D replot of the contour plot (Fig.
3 of ref. [5]) of the effective exponent
Oeff as a function of the common
logarithms of the dimensionless ratios
R/Rgt and Rg/Rgi. The large plateaux
represent & = 1, 2, and 3, indicative of
EC, TD, and PD, respectively. The
crossover regions are relatively narrow.

log (Rsu/Rst)
A
log (R/Rst)
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the curvature rather than its second derivative, and we find EC-like behavior. Thus, EC denotes
only that attachment/detachment limits the rate, and not that there is a finite carrier concentration on
the terrace. What we label TD was called “comrelated EC” by Soler [49] and by Van Siclen [45a].
The essential physical mechanism characierizing this regime is evolution by single-atom jumps
from one site on the island edge to another, mediated by a concentration field on the nearby terrace
region.

Kiirpick et al. [50) showed recently via molecular dynamics, using the semiempirical EAM
potential, that for vacancy islands on Ag(111) atom motion occurs predominantly by periphery
mechanisms. In fact, the problem has a remarkable history. As noted above, over three decades
ago, Gruber [67) found power-law scaling of Dc(R) for clusier motion via PD in 3D. Almost two
decades ago, Binder and Kalos [51], in studying phase separation and the consequent motion of
clusters of increasing size near the critical point, argued that the diffusion constant of a cluster
should decrease as an inverse power of size. Their results for cluster diffusion in a square lattice
gas are of particular relevance. Almost a quarter century ago, Binder and Stauffer [52] suggested
that at low temperatures dynamics are dominated by processes involving no changes in energy,
viz. PD. Arguing that the number of sites o< R and the center of mass moves by R-2, they deduced
that the diffusivity should go like R(R-2)2, implying & = 3. (They also note that an evaporation-
condensation process from edge sites should behave similarly.) At higher iemperature, they
observe that “bubbles” moving through the cluster should produce similar motion of the center of
mass, but with R2 sites participating, leading to & = 2 as in TD. They note that for large R the
motion should be dominated by processes in which some atoms evaporate into the 2-d gas while
others recondense from it. In this case the displacement of the center of the cluster goes like R°1,
with R sites participating, leading to a = 1 as in EC. In Monte Carlo simulations, an effective
exponent close to 2 was found, which was initially attributed [53] to TD behavior. However,
subsequent reconsideration [51] led to the belief—supported by simulations at &/kpT = 1.5 and
2.0—that the most likely explanation is that they were seeing crossover behavior of the form

De~Deo R*3 {1 + R2 exp(-3¢/kpT)). (13)

This experience provided an early waming that the size of clusters studied in current experiments
and simulations with lattice-gas or semiempirical interactions may not be large enough to achieve
the asymplotic regime; “‘corrections to [asymptotic) scaling” as in eqn. (13) may be significant. To
investigate this issue thoroughly should involve the derivation of the scaling corrections from a
self-consistent treatment rather than the mere ad hoc addition of two power-law expressions. This
discussion suggests that experiments at different temperatures may be desirable or even necessary
to understand the measured effective exponents. (However, there is the concomitant risk that at
higher temperatures, new transport mechanisms may enter [50] that will confound the analysis!)
Metiu’s group (47,54] is spearheading the systematic kinetic Monte Carlo simulation of
cluster diffusion as a function of temperature as well as size. For islands on Ag(100) and on
Ag(111), they [54a] find that o increases monotonically from room temperature to around 1000 K,
starting at a value around or below 2 and reaching a value close to 3; for higher temperatures o
decreases somewhat. Similar behavior is found [47] for model systems with plausible energy
barriers. Note that in crossover of the form predicied by egn. (13), the value of & should decrease
as temperature increases, as occurs in these simulations at high temperature. The lower-
temperature behavior is reminiscent of that found by Giesen er al. [25] for vicinal Cu(100). Their
proposed explanation—supported by analytic and Monte Carlo results—was that at lower
temperatures, one was seeing primarily random adatom hopping along the edge between pinning



sites, with an effective & of 1. At higher temperature, PD continuum behavior began to emerge.
Similar observations were made for vicinal Au(110) [21] and vicinal Ag(100)[28].

Itis tempting to imagine Rg; as a sort of mean effective hop length, even though strictly
speaking this parameter comes out of a continuum analysis and cannot rigorously be related to
microscopic properties. In the extreme case Ry = a), we recover a = 3 of PD. I, inspired by
Blagojevi¢ and Duxbury [14], we examine a probability distribution P(y) of various hop lengths of
a single atom, then this limit corresponds to a delta function: P(y) = &(y - a). In the opposite limit
P(y) = constant, the physics is reminiscent of the EC case, since the atom can return with equal
probability to any site on the step or cluster edge. Hence, 0. = 1. Note that it does not matter how
this distribution was achieved, i.e. what—in the language of Pimpinelli et al. [14]—the nature or
dimensionality of the “pipe” is. As the intermediate case it seems reasonable to suppose P(y) e
exp(-y/E), where & is a characteristic length scale which should be comparable to Ry . If & (or Rgp)
is ay, then P(y) becomes highly peaked near x =0 since ay/R « 1; this is the delta-function limit.
On the other hand for Rg; » R, P(y) is effectively constant, as in the other limit.

" CLUSTER RESPONSE TO ELECTROMIGRATION

Finally, we describe briefly our current studies of the fluctuations, dynamics, and
instabilities of vacancy islands during electromigration, generalizing earlier work on straight steps
without driving forces [30,55]. We emphasize the dependence on the mass-transport mechanism
in the three limiting cases. In particular, we find non-circular steady states and derive the out-of-
equilibrium diffusion constant of the vacancy cluster. Analytical calculations are corroborated by
both Monte Carlo simulations and numerical solution of the model.

Since surface electromigration is one of the most important sources of size limitation in
electric devices, it is clearly important to understand how surface morphology is affected by it.
Latyshev et al. [56] discovered that it induces step bunching of Si(111) vicinal surfaces. How
electromigration affects more complex surface structures is still poorly understood. Our first step
towards complexity is the study of a closed step (monolayer atom or vacancy island). Responses
of these clusters to electromigration shares similarities with void behavior in metal electric lines
[57]. Qualitative differences are found between the three cases. Indeed, cluster behavior at
equilibrium is already known to depend on these mechanisms. We develop a Langevin formalism
based on the BCF model [58] in manner similar previous recent studies for growth of vicinal
surfaces [30]. Noise correlation is calculated with the help of the approximation of local thermal
equilibrium.

We determine cluster drift velocity, in particular dependence on cluster size. In the three
limiting cases, we find V ~ R2-%. In the EC case, non-circular drifting steady states are found to
be induced by non-instantaneous attachment kinetics for vacancy clusters. They are elongated
perpendicularly to the migration axis. There are noteworthy differences between the evolution of
atom and vacancy clusters.

Periphery diffusion is known to induce morphological instability leading to cluster splitting
[59]. We find that adatom diffusion across the terrace induces a new morphological instability for
vacancy clusters and have investigated the instability threshold. The presence of an electric field
may also affect attachment/detachment rates. If so, we find novel properties of cluster motion,

Out-of-equilibrium shape fluctuations and the cluster diffusion constant are studied in the
framework of our Langevin model. We find evidence that diffusion across a vacancy cluster (EC
or TD) induces an anisotropic response of the cluster, whereas the response for pure PD remains
isotropic for weak electromigration. The behavior of fluctuations close to the instability threshold
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has been explored. Our results have considerable experimental relevance: New phenomena should
be observed on metal surfaces and for voids in {2D] electric [“bamboo”] lines.

CONCLUSIONS AND CLOSING COMMENTS

We have shown how capillary-wave analysis in a Langevin framework is a conceptually
enlightening and calculationally fruitful way to scrutinize quantitative data now available on step
fluctuations. For both isolated steps and vicinal surfaces, the problem can be treated in a unified
way within a single Langevin equation. Phase space is conveniently explored in terms of the
dimensionless ratios aq, bg, Igl¢, and r. It is dominated by limiting cases characterized by distinct
physical mechanisms of atomic motion, reflected in integer values of the dynamic exponent zg.

We have examined in detail these limits and the crossover between them. To see behavior
associated with a perfect Schwoebel barrier requires asymmetries in the kinetic coefficients of
about a million to one. The crossover between [isolated-step] terrace diffusion and step-to-step
diffusion is rather insensitive to all the dimensionless ratios except Igl¢. We have also proposed an
alternative formalism which uses different step attachment/detachment kinetic coefficients for
processes involving terraces and for those involving the step edge.

The same perspective that is used for conventional steps near equilibrium can be applied to the
closed, nearly circular steps defining a monolayer island. As a continuum approximation, this
approach should break down by the atomistic level. To supplement the asymptotic behavior we
have studied, corrections to scaling should be studied, as should asymmetries in the stiffness, to
account for recent experimental data, which suggest physically rich behavior.

Our philosophy is to work at the continuum, macroscopic level using the step stiffness and
transport coefficients as principal parameters. Monte Carlo simulations are used to check analytical
predictions. In simple microscopic models, one can compute the values of these coarse-scale
parameters as a check of consistency. However, it is risky to do the reverse—to deduce
microscopic energies, barriers, and hopping frequencies from macroscopic data—since physical
systems tend to be quite complicated, making the extracted effective energies different from actual
physical ones. Instead, the most meaningful test of our procedure is whether the deduced
macroscopic parameters provide a consistent framework for describing a broad range of
observable, non-microscopic processes: step fluctuations near equilibrium, island/cluster diffusion,
step bunching or unbunching, out-of-equilibrium, externally-driven motion (e.g. electromigration).
The Monte Carlo calculations we perform are to check the consistency of the macroscopic
parameters and to verify analytic predictions rather than to deduce rates. Thus, there is no
drawback to our using Metropolis rather than kinetic Monte Carlo in our simulations.
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