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11.1. Introduction

Progress in computing the interactions between small
numbers, even pairs, of chemisorbed atoms has been re-
markably slow because of the very low symmetry of the
problem. In contrast, the energetics of monolayers of
adatoms, which have the full two-dimensional symmetry
of the substrate, can now be characterized with impres-
sive precision. However, even treatment of partially com-

pleted adlayers with (2×1) or c(2×2) symmetry doubles
the size of the surface primitive cell, but quadruples the
size of secular matrices, raising computer time require-
ments by a factor of order 43. At the other end of the
scale, a single adatom (in a symmetric site) will at least
have the point-group symmetry of the substrate. As-
sociated with these symmetries are conserved quantities
(“good quantum numbers”) which make calculations sim-
pler. As a result, a variety of elaborate many-body tech-
niques have been applied successfully to these systems.
For two adatoms on a surface, there is little or no sym-
metry, typically just a two-fold rotation or mirror plane
(leading often to splittings of levels). Few systems have
been treated in a satisfactory way. Sophisticated com-
putations attempting to assess these interactions tend
to resort to studies of ordered overlayers (Tománek et
al. 1986). Desjonquères and Spanjaard (1993) signaled
the difficulty of the problem by placing it as the final
topic in their recent text. Reviews stressing various as-
pects of the problem have been presented by Einstein
(1979a, 1991), Muscat (1987), March (1987, 1990), Braun
and Medvedev (1989), Feibelman (1989a), and Nørskov
(1993).

This chapter will explore the many mechanisms by
which chemisorbed atoms interact with each other. To
set the stage early, it is useful conceptually to distinguish
between direct and indirect interactions. Direct interac-
tions would occur even if there were no substrate; they
are, thus, sometimes called “through-space”. Examples
include van der Waals, dipolar, and electronic hopping
[between the adatoms]. The substrate, however, will gen-
erally provide at least some degree of perturbation. The
alternative is indirect interactions, in which to lowest or-
der there would be no interaction without the substrate.
The coupling can be by electronic states (usually predom-
inant), elastic effects, or vibrational coupling (usually in-
significant). Since the coupling to the substrate is crucial,
these are sometimes called “through bond”. Special em-
phasis will be given to the indirect electronic [“pair”] in-
teraction between two light gas or transition series atoms
on a [transition] metal. Moreover, we thoroughly explore
a simple model of these interactions. The motivation is
not so much to explain specific data but rather to give a
theoretical framework in which to understand the relative
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magnitudes and qualitative behavior of the interactions.
Without this sort of picture, it is difficult to make sense
of the results that emerge from more realistic attempts to
describe the adsorption systems. We also present a thor-
ough summary of the methods that have been applied to
make progress in understanding this general problem.

As we fix ideas, it may be helpful to describe our prob-
lem in oversimplified terms by speaking of three char-
acteristic energies: (1) Eas is the binding energy of an
isolated atom to the most attractive site on the sur-
face. Typically this is a high-symmetry site; e.g., on
a square lattice, such sites (cf. Fig. 1.12) can be called
A (atop, or linear, or on-top, the latter two not allow-
ing the abbreviation), B (bridge, between two substrate
atoms), and C (centered, or hollow, above the middle
of a square). Identical terminology applies to substrates
with triangular symmetry. Ed denotes the diffusion bar-
rier, due to variations in the adatom-substrate potential,
between adjacent most-favored sites. Usually this is a
saddle point in a potential energy surface; e.g., if the C
site is most attractive, one might expect Ed = EC - EB ,
although substrate relaxation can sometimes lower this
barrier significantly. The corrugation of the substrate po-
tential provides an upper bound for Ed. Finally, Eaa is
the magnitude of the characteristic energy of interaction
between nearby atoms. In physisorption, Eaa is compara-
ble to Eas, both being much greater than Ed. (For dense
overlayers, the actual diffusion barrier increases signifi-
cantly due to adatom-adatom effects.) In contrast, in
chemisorption Eas > Ed À Eaa. Thus, in this ideal sce-
nario, adatoms all sit in the most favorable site; their
lateral interactions are relatively small. In this case it
is fruitful to couch the discussion in terms of a classical
lattice gas picture. [Cf. Roelofs chap. 14.]

In setting the stage for what we will find regarding
electronic lateral interactions, it may be helpful to divide
(somewhat artificially) the physics into a few regimes,
depending on the separation between adsorbates. In the
near regime, the adatoms may be close enough to have
non-negligible direct interactions. If not, they typically
still “share” one or more substrate nearest neighbors, so
that the bonding of one adatom to this substrate atom is
strongly influenced by the presence of the second adatom.
This regime is the most important for applications: in
chemistry it determines the details of dissociative adsorp-
tion; in surface transport it enters problems of surface
diffusion mechanisms. The strong impact of one adatom
on the other may alter their binding sites, weaken bond-
ing to the substrate, etc., as emphasized in a review by
Feibelman (1989a). In short, in this regime Eaamay be
comparable to Eas. In the intermediate regime, these
effects fade and the lattice-gas approximation improves.
The individual-adatom adsorption process is largely im-
mune to the interactions. Most of the interesting physics
can be isolated in the question of how the disturbance
produced by a point defect at some position propagates

to another. All the occupied band of states in the sub-
strate are involved in a complicated way. This regime
is important in describing the formation of ordered frac-
tional monolayers of adsorbates and in characterizing the
chemical potential and the correlation functions of these
adsorbates, even at higher temperatures at which there
is little order. Thus, these interactions play a role in un-
derstanding thermal desorption spectra, vibrational line
shifts, etc. The asymptotic regime is reached when the
adatoms are several spacings apart. The interaction is
dominated by the substrate Fermi surface. Analytic ex-
pressions, albeit complicated, can be derived. Until re-
cently, there was little evidence of experimental impact
of this regime, but there may be implications for the in-
teractions between steps on metal surfaces. We caution
that as with most simple pictures of complicated phe-
nomena, it is easy to point out ways in which the broad-
brush rendition is oversimplified. For example, in the
case of weak, non-directional bonding, the adatoms may
slip out of high-symmetry binding sites even when a cou-
ple spacings apart, as suggested by Persson (1991) for
some cases of CO adsorption. Moreover, for weak bond-
ing, the Fermi-surface electrons may dominate at close
spacings, inviting simple descriptions in terms of frontier
orbitals (Hoffmann 1963, 1988).

A major motivation for studies of pair interactions is
to understand the origin of the wide variety of ordered
overlayers at fractional coverages on metal surfaces. (See
chap. 13.) These have been tabulated by Ohtani et al.
1987; Van Hove et al. 1989; Watson 1987, 1990, 1992;
Watson et al. 1993). Consider a c(2×2), i.e. a checker-
board pattern on a square lattice (Chap. 1, Fig. 1). This
pattern could arise simply because of a strong nearest-
neighbor repulsion: E1 > 0 for an overlayer with about
half the sites occupied. If additionally there is a next-
nearest-neighbor attraction, one finds islands of adatoms
with c(2×2) symmetry at low temperatures and cover-
ages. Sometimes these lie at temperatures so low that
the equilibrium local configuration is not attained dur-
ing the time of an experiment, at most several hours.
But when islands are present, they provide strong evi-
dence of an attraction. There are many more compli-
cated phases. The explanation of most of their ground-
state energies in terms of pair interactions is fairly obvi-
ous (cf. Suzanne and Gay, chap. 11, and Roelofs, chap.
14), but for troublesome cases, exhaustive tabulations
have been published by Kaburagi and Kanamori (1974,
1978), Kaburagi, 1978). By attraction or repulsion here,
we mean that the lattice site is favorable or unfavorable.
There is no implication about the direction of a force act-
ing on an adatom sitting in a lattice site; in the lattice
gas picture, this force is assumed to vanish. In the near
region, this assumption may often be questionable, but
in the intermediate region it should be reasonable.

Some experimental data on these systems appear in
chapters 10, 12, and 13, to which we shall refer. We will
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dwell mostly on theory. Progress in the field has come
in the form of study of self-consistency and correlation
effects (which seem to be less important than might be
expected) and of multi-parameter-model attempts to de-
scribe real systems. Next we shall show in a single simple
model how pair, three-adatom, etc., interactions combine
to produce ordered overlayers. We will briefly consider
changes in density of states (DOS) caused by two-adatom
interactions from a similar viewpoint, and also show the
more dramatic effects that arise when these combine to
produce an ordered overlayer. In closing, we shall spec-
ulate on areas ripe for development.
11.2. General Features of Lateral Interaction En-
ergies
11.2.1. Fundamental Ideas

If chemisorbed atoms are sufficiently close to overlap
each other, there will be a strong direct interaction. This
interaction is essentially a chemical bond, comparable in
strength to the chemisorption bond. (There is interesting
physics in the degree to which these bonds are not sim-
ply the equivalent of bulk bonds. We shall explore these
effects further in later sections.) For larger lateral inter-
adatom distance R, the interaction falls off exponentially
along with the overlap so that for R more than a few
Å, it is negligible. Most of the physics of this problem
comes from the two adatoms and their substrate nearest
neighbors; hence a cluster calculation can be appropri-
ate. These interactions are important for supersaturated
or even monolayer-covered surfaces. They also arise in
the problem of dissociation and reassociation of adsorb-
ing molecules (e.g., the question of whether there is an
activation barrier) which has been studied both schemat-
ically and in great detail.

If the chemisorption bond involves charge transfer,
electric dipole moments µ will develop. Kohn and Lau
(1976) showed that the non-oscillatory part of the dipole-
dipole interaction energy on metals behaves as

Edip−dip ∼ 2µaµb

4πεoR3
(11.1)

for large R. The novel aspect of this expression is the
factor of 2, for which they give the following qualita-
tive explanation: For either adatom, say a, µa is the
product of the charge transfer qa to the adatom and the
distance za between the adatom and the surface/image
plane, at which the induced charge of -qa lies. However,
the potential experienced by a second adatom is deter-
mined by the first adatom and its image at -za, and so
is 2µazb(4πεo)−1R−3. Hence, the work in bringing the
second charge from z = +∞ to z = zb, and so Edip−dip,
contains the novel factor of 2. Inserting numbers, we find
this interaction energy to be 1.25 eV times the two dipole
moments in units of debyes divided by R3 in Å3.

Nørskov (1993) reviews the direct electrostatic inter-
action in some detail. The effect is generally larger for

electropositive than electronegative adsorbates because
the latter tend to bond closer to the substrate; conse-
quently, they are better screened and so have a smaller
dipole moment. For alkali adatoms, dipolar effects dom-
inate the interactions which determine the 2-d phase di-
agram (Bauer 1983, Müller et al. 1989). Pre-adsorbed
alkali-metal atoms increase both the binding energy and
the dissociation rate of light gas dimers like CO, NO,
N2, or O2 on metals, while preadsorbed electronegative
atoms do the opposite: Typically adsorption of these
dimers involves some charge transfer to them. (Back
donation to the anti-bonding molecular orbital exceeds
donation from the bonding orbital.) In the simplest ap-
proximation, the resulting energy is the product of the
admolecule-induced dipole moment normal to the sur-
face and the gradient of the electrostatic potential due
to the preadsorbed atoms (or the extra charge times the
potential itself). To support this picture, Nørskov et al.
(1984/5) explored the form of this potential, for several
different preadsorbed atoms on jellium, as a function of
the height of the dimer above the surface. For the partic-
ular case of N2 on Fe(111) with pre-adsorbed K, Nørskov
(1993) finds an interaction of 0.08 eV, which can be used
to account for most of the measured shift in adsorption
energy due to predosing. The second-order correction,
proportional to the square of the potential, is always at-
tractive. Thus, for cases in which the charge transfer
is from the dimer, he notes that the long-range interac-
tion with a pre-adsorbed alkali can be repulsive while the
short-range interaction is attractive.

In addition to producing static repulsions, dipole-
dipole interactions can raise the vibrational frequency
of adsorbed molecules. E.g. Scheffler (1979), using just
dipole-dipole coupling, accounts for the coverage depen-
dence of the shift of the C–O stretch frequency of CO on
Pd(100) and Pt(111) measured by IR absorption reflec-
tion spectroscopy. In the process, he derives a coverage-
dependent (as well as frequency dependent) effective po-
larizability which depends significantly on the distance of
the dipole from the reference [image] plane of the metal
(assumed to be jellium). In focusing on the cases of CO
on Cu(100) and Ru(0001), Persson and Ryberg (1981)
advancedthe treatment of these questions by treating the
adsorbate polarization as a single entity rather than try-
ing to split it into admolecule and an image; they, further-
more, used the coherent potential approximation (CPA)
(Soven 1966) to consider interactions for a dense but not
ordered overlayer. They find that the dipole-dipole inter-
action is enough to account for the coverage-dependent
frequency shift for the Ru substrate, but that on Cu
there is a counteracting chemical shift of nearly the same
magnitude. Nørskov (1993) discusses the shifts of dimer
vibrational frequencies due to interactions between pre-
adsorbed (non-neutral) atoms and the dimer.

The van der Waals interaction always produces a weak
attraction between two adatoms and is the dominant con-
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tribution in the case of physisorption. The leading term
is the dipole-dipole contribution, which goes as -C/R6; C
in turn is proportional to the square of the polarizability.
According to Hirschfelder et al. (1954), C is roughly 30
eV-Å6 for Ar, N2, and O2, and five times as great for
Xe. For physisorbed gases, this mechanism dominates
the interaction, and hence the details of the interatomic
potential have been studied extensively. To fit gas-phase
data, one must go beyond a simple R−12 Lennard-Jones
repulsion (to some exponential description) to avoid over-
estimating C by nearly a factor of two. Two higher-order
gas-phase effects are non-negligible: (l) The R−8 dipole-
quadrupole force which increases the depth of the well-
minimum by roughly 10% and (2) the repulsive [in all
important cases] R−9 triple-dipole [Axilrod-Teller (1943)-
Muto (1943)] interaction, the magnitude of which is at
most 3% (for Ar) to 5% (for Xe) of a pair interaction if all
distances are set at their equilibrium values. While this
effect is of little concern here, there have been interesting
applications [Klein et al. 1986].

A variety of calculations of rare gas adsorption onto jel-
lium (Sinanoglu and Pitzer 1960), continuous dielectrics
(McLachlan 1964), Xe crystals (MacRury and Linder
1971), and graphite (Freeman 1975) all show that ph-
ysisorption reduces the gas-phase pair attraction by
roughly 20%. As an example of the state of the art in
this refined subject, Barker and Rettner (1992) produce
an accurate “empirical” (actually more semiempirical, in
the language we will use later) potential for Xe/Pt(111)
as a “benchmark.” For the lateral interactions, they in-
clude, in addition to the van der Waals potential, the
“nonadditive” McLachlan modification, the interaction
of adsorption-induced and image dipoles, and the triple-
dipole term, citing as reference Bruch’s (1983) clear and
comprehensive discussion of the significant contributions.
[This classic review of lateral interactions in physisorp-
tion, as well as of the single-atom holding potential, pro-
vides an account of the general features of this prob-
lem that is evidentally still timely a decade later. March
(1987, 1990) presents more recent reviews. Vidali et al.
(1991) have produced a useful compilation of potentials
for physisorption.] The substrate-mediated dispersion
energy is the largest contribution to the lateral interac-
tion at the intermediate separations of ordered overlayers,
accounting for slightly over half the [repulsive] corrections
to the gas-phase interaction for two sample Xe overlay-
ers (Bruch 1983). The effect of the substrate on the
interadatom interaction was first tackled using pertur-
bation theory by Sinanoglu and Pitzer (1960). McLach-
lan (1964) calculates in second-order perturbation theory
the interactions of adatom dipoles and their images in
the substrate, including a frequency-dependent response
for the substrate. Explicit expressions for the substrate-
mediated dispersion energy and tables of the attendant
coefficients are given by Bruch’s (1983) review; a key is-
sue is determining the distance of the adatoms from the

image plane. Freeman (1975) approaches the problem
using the Gordon-Kim (1972) version of density func-
tional theory (for Ar adatoms) and obtains fair agree-
ment with the preceding formalism; similarly, Vidali and
Cole (1980) apply both methods to He on graphite.

The next largest contribution to the substrate-related
interaction, perhaps half the size of the preceding, is the
interaction of adsorption-induced dipoles. The role of
the surface was noted earlier in eq. 11.1. Bruch (1983)
reviews the many contributors to this subject. He and
Phillips (1980) showed how to compute these effects for
an overlayer lattice. Other effects include triple-dipole
[Axilrod-Teller (1943)-Muto (1943)] interactions within
the overlayer and changes in zero-point energy. In this
framework, lateral interactions can be computed to an
accuracy that makes those working on chemisorption
truly envious. Nonetheless, there are some differences be-
tween calculations on particular systems, e.g. the above-
mentioned benchmark (Müller 1990, Gottlieb and Bruch
1991, Barker and Rettner 1992).

To apply the van der Waals perspective to chemisorp-
tion, we can invoke the surface molecule picture to posit
that the this interaction between, say, two chemisorbed
O atoms [coupled to their substrate neighbors] is simi-
lar to that between two O2 molecules (although now the
molecules are oriented), i.e. roughly -25 eV-Å6/(R[Å])6.
At second and third neighbor separations on (l00)Ni,
for instance, this yields an interaction of -13 meV and
−2 meV, respectively, which is usually negligible com-
pared to the electronic indirect interaction. For heavy
adsorbates (e.g., W or Re) these numbers could possibly
be several times greater; no firm data exists. A curi-
ous application, to O/Ni(100), of van der Waals ideas by
Gallagher and Haydock (1979) suggested that by virtue
of large overlap with the attractive Ni potential of the
substrate, the O 2p orbitals become larger and far more
polarizable, dramatically increasing the associated inter-
action. There has been little follow-up work on this view-
point.

The first proposal that adatoms might interact indi-
rectly was made by Koutecký (1958). The essence of
this interaction is seen in Fig. 11.1, taken from the pio-
neering work by Grimley (1967) on this problem, which
even now begins most discussions. Consider two atoms,
each with an atomic potential producing some [relatively
high-lying] bound state. In free space (and at moderate
separation), each of the bound-state wavefunctions will
remain confined near its atomic site; the vacuum barrier
is insurmountable. If, alternatively, they are adsorbed
onto (or absorbed into) a metal, both atomic wavefunc-
tions can tunnel through the narrow potential barrier
to the metal and couple with propagating metal wave-
functions. Fig. 11.lb shows how both atomic wavefunc-
tions might couple to one such background eigenstate.
If the coupling places the two atomic wavefunctions in
(out of) phase, the interaction is attractive (repulsive),
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lowering (raising) the energy of the participants. From
the oscillatory nature of the intermediate wavefunction,
the electronic indirect interaction should be oscillatory in
sign as a function of interadatom distance. It should be
(two-dimensionally) isotropic if and only if the (surface
of the) metal background is. Such isotropy is expected
only for substrates which can be well approximated by
free-electron or jellium models. Furthermore, the two
adatomic orbitals can couple through not just one, but
any of the occupied states (including surface states). As
adatom separation increases, fewer substrate wavefunc-
tions will match well with the atomic orbitals, causing a
rapid decay in magnitude of the interaction energy.

As discussed at the outset, our discussion assumes that
Ed À Eaa, which should be a good approximation for
strong chemisorption at low to moderate coverage. Under
these circumstances, the most favorable adsorption sites
will be filled or vacant, and when nearby sites are filled,
the associated interaction energy will modify the total
energy of the system. In this lattice gas picture, the
Hamiltonian of the adatoms takes the form:

H = E1

∑

〈ij〉1
ninj + E2

∑

〈ij〉2
ninj+... (11.2)

+
∑

T

ET

∑

〈ijk〉T
ninjnk +

∑

Q

EQ

∑

〈ijkl〉Q
ninjnknl+...

Each site of the net of most-favored substrate sites (la-
beled i) can be occupied (ni = 1) or vacant (ni = 0).
Here the pair interaction energies are denoted Em for mth

neighbors; ET is the “trio” (three-adatom, non-pairwise)
interaction energy, with the index running over the possi-
ble trimer configurations; EQ is the “quarto” energy; and
so forth. For this formulation to be useful, the pair en-

FIG. 11.1: Classic schematic of the indirect interaction be-
tween pairs of adatoms. a) Potential and wave functions
for two atoms in vacuum separated so far that there is no
overlap and so no direct interaction. b) The same atoms,
now chemisorbed on a simple metal surface. (From Grimley
(1967a), with permission)

ergies should fall off relatively rapidly in magnitude with
increasing m, so that only a few need be considered. Fur-
thermore, the multisite terms should be small; at worst,
only a small number of the most closely spaced multi-
adatom terms should contribute. We shall see that the
pair interactions do decay rapidly. The multisite terms
are smaller but not always negligible. Moreover, there
may be several different configurations with compara-
ble magnitude. Nonetheless, cancellations typically occur
such that the energies of ordered submonolayer overlay-
ers are often adequately described by the pair energy of
the closest pair[s] found in the overlayer.

Before delving into specific simple models, it is worth
stating the underlying philosophy motivating them.
11.2.2. Electronic Indirect Interactions in Simple
Tight-Binding Model

To gauge roughly the relative magnitudes and general
behavior of these interactions, it is convenient and cus-
tomary to study a simple model, in this case a tight-
binding model in which the substrate is a single-band,
simple-cubic solid. (See LaFemina, Chapter 4, for a
discussion of tight-binding models.) This model was
adopted two decades ago (Einstein and Schrieffer, 1973)
[hereafter ES] to embody the idea that the d-bands of the
substrate were primarily responsible for the interactions
and, unlike jellium, allowed one to consider the depen-
dence of the interaction on the type of adsorption site in
a simple way.
11.2.2.1. Model Hamiltonian

The model, as well as many subsequent discussions of
interactions between adatoms, is couched in terms of an
Anderson (1961) [magnetic] model in which the adatoms
are represented as dilute impurities at sites r (= a,b for
pairs) in an unperturbed host:

H = Ho
metal +

∑
r

(
Ho

r + H
′
r

)
(11.3)

The first term in the parentheses represents the atomic
factors of adatom r, while the second is this atom’s cou-
pling to the metal. To include a direct interaction, one
would add terms of the form H

′
ab coupling atoms a and b.

Until recently, most work on the problem has amounted
to taking progressively more realistic expressions for var-
ious of these terms and solving the resulting system to
varying levels of approximation. To simplify notation,
we assume that the adatoms are identical. Over the
last decade the coadsorption problem has attracted some
interest; it is straightforward to extend the formalism.
Some of the simplicity of the above ansatz comes from
the use of an atomic orbital picture. While this formu-
lation makes it easy to do initial calculations, it neglects
such effects as orbital deformation and local distortion,
which may often be important.

The adatom part of the Hamiltonian is

Ho
a = εo

a

∑
σ

naσ+Una↑na↓, (11.4)
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and similarly for Ho
b . This expression can be general-

ized to include degenerate orbitals, multiple levels, etc.
As a first approximation, one might set εo

a at the ion-
ization level -I of the adatom and take as U the dif-
ference between -I and the affinity level. For greater
accuracy, εo

a should be raised and U reduced by corre-
lation effects (screening and image charges). In a [re-
stricted] Hartree-Fock approach, one neglects U entirely
and replaces εo

a by εa = εo
a+U 〈naσ〉 where 〈naσ〉 is the

mean occupation of the adatom for either spin direction.
For neutral chemisorption,〈naσ〉 is 1/2, suggesting εa be
the [negative] average of the ionization and affinity ener-
gies, as in many chemical molecular orbital calculations
(where this is called the Mulliken (1934) electronegativ-
ity) [cf., e.g., Pople and Beveridge, 1970]. Using the idea
of chemical transferability, Pandey (1976) adjusted the
adatom and coupling parameters so that cluster compu-
tations of small molecules fit the levels found in pho-
toemission experiments; presumably the same parame-
ters carry over to the chemisorption system. Brenig and
Schönhammer (1974), Hertz and Handler (1977), and
Bell and Madhukar (1976) went beyond Hartree-Fock
in the case of single atom adsorption. The first group
also showed in the pair problem that correlation effects
are relatively unimportant, compared to the single atom
case, as we shall discuss below. On the other hand, using
self-consistent Hartree Fock and resorting to mean-field
theory, Gavrilenko et al. (1989) explored the parametric
conditions for magnetic ordering of the adatoms. Davy-
dov (1978) considers a similar question, including direct
interactions for a chain of adatoms.

The simplest approximation for the substrate assumes
a single band of one-electron states with energy εk. (A
band index would also be needed if more than a single
band were considered.) Many-body effects could also be
included by putting a diagonal Coulomb term like U on
each substrate site. Since only the component of crystal
momentum parallel to the surface is conserved for a slab
or semi-infinite crystal, k merely labels the states in some
suggestive fashion. It is usually convenient to work in a
mixed representation of k|| and a layer index.

In general there can be a different coupling between
each k state and the adatom. For most purposes, it is
adequate to consider, in the case of bonding at an atop
site, a single coupling constant V between adatom a (or
b) and its nearest neighbor on the substrate:

HaS = −V c+
aσcoσ + h.c. (11.5)

where c+and c are creation and annihilation operators,
respectively, for electrons in the state indictated by the
substrate. For bonding in a bridge or centered site,
coσ is replaced by a symmetric normalized combination
of c-operators for the number of substrate neighbors of
the adatom. In principle this coupling should also con-
sider an overlap term between atoms and metal. This

question has been discussed at length by, among others,
Schönhammer et al. (1975), Grimley (1974), and Ein-
stein (1973). The usual approach is to “renormalize”
previously stipulated natural orbitals (and resulting en-
ergies) with Löwdin (1950) or Gram-Schmidt (Birkhoff
and MacLane 1965) schemes.

11.2.2.2. Calculation of Change in One-Electron
Energies Using Green’s Functions

Our goal is to find interaction energies between
chemisorbed atoms, which in a one-electron framework
can be expressed in terms of the associated change in
density of states ∆ρ:

∆W = 2
∫ εF

−∞
(ε− εF )∆ρ (ε) dε. (11.6)

The factor of 2 comes from spin degeneracy, and the use
of ε − εF rather than just ε indicates that the number
of electrons rather than the chemical potential is being
fixed [Grimley (1967), Newns (1969), ES]. (The contri-
bution due to the integral over εF ∆ρ (ε) is the result of
an infinitesimal shift in the Fermi energy.)

In the calculation presented below, the essential idea is
that the interaction between adsorbates can be obtained
by finding the underlying shifts in the one-electron ener-
gies of the system. It is convenient to do so in terms of
one-electron Green’s functions. We present enough detail
below to show that this procedure is not so daunting as
novices might suspect. Nonetheless, we follow this sub-
section with an explicit simple illustration using a ring
as the “substrate” and analyzing the results in terms of
level shifts to make contact with those readers more com-
fortable thinking in terms of quantum chemical models.

To obtain the change in density of states ∆ρ needed so
that the integral can be evaluated, we adopt a method
used earlier in the theory of dilute alloys by Lifshitz
(1964). Suppose the unperturbed

(
H
′ ≡ Ham = 0

)
and

perturbed Hamiltonians, Ho and H ≡ Ho + H
′

, have
eigenvalues εj and Ej , respectively. Then1

∆ρ =
∑

j

[δ (ε− Ej)− δ (ε− εj)]. (11.7)

1 Remember that the units of a delta function are the inverse of
its argument.
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But this can be rewritten as

∆ρ (ε) = − 1
π
=m

∑

j

(
1

ε− Ej + iδ
− 1

ε− εj + iδ

)

= − 1
π
=m

∑

j

∂

∂ε
(ln(ε−H + iδ− lnε−Ho + iδ)

= − 1
π
=m

∂

∂ε
ln det

(
1

ε−Ho + iδ

)
(ε−H + iδ)

= − 1
π
=m

∂

∂ε
ln det

(
1−GoV̂

)
, (11.8)

where Go is the unperturbed retarded Green’s function
(ε−Ho + iδ)−1 and V̂ + HaS was given in eq. (11.5).
[Since we choose here to follow convention by using re-
tarded functions, the signs of all imaginary quantities will
be the opposite of those appearing in ES and subsequent
papers in that series, which used advanced Green’s func-
tions, with infinitesimals of the opposite sign.] In scat-
tering theory det

(
1−G0V̂

)
is familiar as the Fredholm

determinant [of the 0th partial wave] (Gottfried, 1966).
Furthermore,

−=m lndet
(
1−G0V̂

)
=η (ε) , (11.9)

where ηo(ε) is the s-wave phase shift. (This identification
is perhaps clarified by the observation that “Im=mln” is
an arctangent, yielding an angle that amounts to a scat-
tering phase shift.) This approach makes optimal use
of the higher symmetry of the unperturbed system and
the locality of the perturbation associated with adsorp-
tion. It is generalized in the scattering theory approach
(Feibelman, 1989a). In terms of η, one writes the inter-
action energy simply as

∆W = −
(
2/π

) ∫ εF

−∞
η(ε)dε. (11.10)

The Fredholm determinant contains a dense set of al-
ternating poles and zeros, which turns into a branch cut
in the continuum limit. Dreyssé and Riedinger (1983)
pointed out that one can circumvent numerical difficul-
ties with this sort of integral by adopting the contour-
integration approach (in the T=0 limit) developed for
temperature-dependent fermion Green’s function prob-
lems. The result is an integration of the analytic contin-
uation of ln det

(
1−G0V̂

)
from εF + iδ to εF + iV. This

integration can be cast into a finite interval by making
a substitution for the imaginary part of the energy inte-
gration variable (Liu and Davison, 1988).

To evaluate the phase shift for the two-adatom prob-
lem, we arrange the matrix so that the adatom sites (a
and b) and the substrate nearest neighbors to which they
couple (o and n) come first (o, a, n, b) and then all other

substrate sites. The matrix
(
1−G0V̂

)
then differs from

a unit matrix only in the upper left hand 4 ×4 block:




1 −GX
ooVoa 0 −GX

onVnb

−GX
aaVoa 1 0 0
0 −GX

noVoa 1 −GX
nnVnb

0 0 −GX
bbVbn 1


 (11.11)

The superscript X indicates that the substrate Green’s
functions can be easily generalized, for adsorption in B
or C rather than A sites, to represent a [normalized] hy-
brid (cf. remarks after eq. (11.5)) of substrate orbitals
(Einstein and Schrieffer 1973).2 The major result com-
ing from the possibility of coupling to combinations of
orbitals is that GB or GC is generally very different from
GA, so that the pair interaction will depend very strongly
on the adsorption site. This feature arises naturally in
LCAO models, in contrast to the other simple starting
point, jellium models (see below). (Braun (1981), how-
ever, argues that the effective εa becomes adsorption-site
dependent, possibly mitigating the variation with site
symmetry.) The determinant of this matrix can be writ-
ten as

det
(
1−GoV̂

)
=

(
1−GaaGX

oo |Voa|2
) (

1−GbbG
X
nn |Vnb|2

)

− GaaGX
onGbbG

X
no |Voa|2 |Vnb|2 (11.12)

It is noteworthy in this expression that the parenthe-
ses enclose the contribution to det

(
1−GoV̂

)
from the

adsorption of an isolated adatom a at o (or b at n). Fac-
toring out these terms, and assuming adatoms a and b
are identical, as are sites o and n, we find

det
(
1−G0V̂

)
pair

=
det

(
1−G0V̂

)

[
det

(
1−G0V̂

)
single

]2

= 1− (
ḠX

aa

)2 (
GX

on

)2
V 4, (11.13)

2 Explicitly, GA
on =

P
j

cos(k
j
||•Rn)

ε−εj+iδ
, where Rnis the vector in the

surface plane from site 0 to site n, εj denotes the eigenvalues
of Ho, and the notation on the wavevector reflects the fact that
only crystal momentum in the surface plane is a good quantum
number. If a single adatom sits in a bridge site between surface
atoms 0 and 1, then GB

00 = GA
00 + GA

01. If a second adatom sits
between n and n+1 (assuming all four sites colinear for simplic-

ity, then GB
on = GA

on + (1/2)
�
GA

o,n+1 + GA
o,n−1

�
. To complete

the description, one must make some statement about how the
adatom-substrate hopping depends on the adsorption site, which
will involve some at-least-implicit assumption about dependence
on bond angles, bond lengths, local relaxations, etc. The param-
eter V that appears in the formalism corresponds to

√
z times

the hopping parameter between the adatom and one of the z
members of the hybrid to which it couples.
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where ḠX
aa is a Green’s function for a single adatom renor-

malized to account for its adsorption:

ḠX
aa ≡

Gaa

1−GaaGX
oo |Voa|2

=
1

ε− εa−V 2GX
oo (ε)

. (11.14)

Because of the logarithm, the phase shift (and hence
the changes in DOS and energy) characterizing the “pair”
interaction of the adatoms can be obtained directly
from the phase shift associated with 1−V 4

(
ḠX

aa

)2 (
GX

on

)2

rather than from explicitly subtracting twice the single
adatom phase shift from the two-adatom shift. For any
number of adatoms, the single adatom adsorption part
factors out of the matrix (ES; Grimley and Walker 1969).
On the other hand, as shown below in eq. (11.20), for
more than two adatoms there is no way to factor out
the pair effects from the higher order ones. [The feature
that the single-adatom part factors out is a pleasant con-
venience, but with modern computational power it does
not produce a significant improvement in numerical re-
sults, except perhaps in the asymptotic regime.]

In the LCAO framework, the formula for the pair in-
teraction energy En between the adatoms adsorbed on
sites o and n (which we identify as nth- nearest neighbor
sites on the surface) is, from Eqs. (11.9), (11.10), and
(11.13),

En =
2
π

∫ εF

−∞
=m ln

[
1−(

ḠX
aa(ε)

)2 (
GX

on(ε)
)2

V 4
]
dε .

(11.15)
To gain some understanding of this interaction, we first

expand the logarithm and consider the lowest order term
[Kim and Nagaoka (1963)], which becomes a good ap-
proximation for weak coupling (small V) or large separa-
tion (small Gon):

En = − 2
π
=m

∫ εF

−∞
V 4

(
ḠX

aa(ε)
)2 (

GX
on (ε)

)2
dε (11.16)

If Ḡ is neglected (which is generally a poor approxima-
tion at small separations), expression (11.16) is just the
RKKY interaction energy [Ruderman and Kittel (1954),
Yosida (1957)], in which two localized spins (here local-
ized defects) interact via coupling to a bulk conduction
electron sea. If this sea is viewed as a free-electron gas,
the propagator Gon reduces to a continuum G(|R|;ε),
where R goes from one bulk spin/defect to the other.
This bulk interaction is proportional to (x cos x - sin x)
x−4, where x = 2kF |R|. It is thus oscillatory in R and de-
cays asymptotically as R−3, characteristic of Fermi sur-
face domination. We shall discuss the decay on surfaces
in the section on asymptotics.

A physical interpretation of eq. (11.15) is that an elec-
tron in an occupied state starts at one adatom, hops back

and forth to the substrate many times, then propagates
to the second adatom, hops back and forth again for a
while, then propagates back to the starting site. Alter-
natively, one can describe the process as a particle and
a hole propagating from one adsorption site to the other
(Zangwill, 1988). While eq. (11.16) suggests that the
interaction is proportional to V4, such behavior only ob-
tains in the limit of weak coupling. For stronger coupling,
the V-dependence in Ḡ eventually cancels the leading V4.
This strong-adsorption case is the limit of the “surface
molecule”, in which the adatom and its substrate part-
ner form a dimer which rebonds perturbatively (with the
bulk coupling strength) to the substrate. The interaction
between the adatoms then comes from the interference
between the two dimers in the rebonding process, which
does not depend on V.

Grimley (1967a, 1967b, 1968, and Walker 1969) was
the first to apply the Anderson model to chemisorption,
using as a substrate a semi-infinite single-band crystal
with a phenomenological surface reactivity. This adjust-
ment highlights a problem with free-electron gas sub-
strates, namely how to allow coupling with adatoms. If
the adatom sits beyond an infinite barrier, e.g., there will
be no coupling whatsoever. To avoid this problem, to put
in site specificity in a natural way, and to reflect the be-
lief that the d-bands were primarily responsible for the
lateral interactions, ES modified Grimley’s model by us-
ing as the substrate the (100) face of a single-band simple
cubic crystal (“simple cubium”) in the nearest-neighbor
tight-binding approximation. Eq. (11.15) was then eval-
uated numerically.

Table 11.1 capsulizes the results of ES. The energies
are measured in units of one-sixth of the bandwidth (i.e.,
twice the hopping parameter). For the typical transition
metal d-band being modeled, this unit is of order 1 to 2
eV. The Fermi energy and adatom level are measured rel-
ative to the center of the band. As the table illustrates,
the pair interaction is highly anisotropic, oscillatory in
sign, and rapidly decaying. At close separations the de-
cay is precipitous, more exponential than inverse power
like, dropping roughly by 1/5 with each lattice spacing,
while asymptotically it decays as R−5. While asymptotic
behavior is discussed in more detail in §11.2.6, we note
here that it is characteristic of dominance by a single
k-state on the Fermi surface. The more complicated be-
havior at shorter range shows that many electronic states
participate in the pair interaction. The pair interaction is
comparatively insensitive to changes in εa and V, some-
what more sensitive to shifts in the Fermi energy (espe-
cially for larger interadatom separation), and very sen-
sitive to the adatom binding site. Typical values of the
magnitude of the nearest, next nearest, and third nearest
pair energies are 1 × 10−1, 2 × 10−2, and 8 × 10−3 units,
although each of these can vary over a range of an order
of magnitude.

As presented here, this formalism implies that the sub-
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strate is essentially rigid during the adsorption process.
In fact local distortions certainly do occur. Feibelman
(1987, 1989, 1990) has emphasized that these distor-
tions can play a crucial role, particularly at near-neighbor
spacings. At farther separations, it does not seem unrea-
sonable to believe that the distortions essentially renor-

malize Ḡaa while leaving Gon relatively unaffected. Thus,
over this range, the distortions might be taken into ac-
count by tuning the atomic and coupling parameters.

Table 11.1: Display of the pair interaction energy En suggesting the sensitivity of adatom arrays to changes in the
Fermi level, the hopping potential V, the adatom energy level εa, and the binding-site symmetry A, C, B, and BP.
[For bridge-site adsorption, there are two nearest-neighbor configurations: in B, the vector R between adatoms is in
the plane formed by the adatom and its two substrate neighbors; in BP, R is perpendicular to it. Note that, e.g.,
for E2 there is no difference between B and BP.] One adatom sits at the origin “0”; the pair energy is for a second
adatom at the nth nearest-neighbor site. The magnitude of the number given is 10 plus the common logarithm of the
magnitude of the interaction. A plus (minus) sign indicates that the interaction is repulsive (attractive). Thus, table
entries of +8.9, -7.7, and -6.6 represent interactions of +8×10−2, -5×10−3, and -4×10−4, respectively. The energy
unit is one-sixth the substrate band width, roughly 1-2 eV. Each chart is labeled by the symmetric adlayer pattern
predicted. (Adapted from Einstein and Schrieffer (1973) and Einstein (1979).)

11.2.2.3. Simpler Illustration: Pairs on a Ring

Many of the ideas in the preceding section may be
couched in a [Green’s functions] language unfamiliar to
some readers. In an attempt to make the key ideas clearer
to people more comfortable with the language of quan-

tum chemistry, we present in this section results of an
explicit calculation, done with Mathematica, in which
the substrate is taken to be a ring of 50 atoms. For a
system of such limited size, we can keep explicit track
of what happens to all of the molecular orbitals. While
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1-d models are a typical starting point in similar studies
(Hoffmann 1988, Whitten 1993), we caution that conse-
quently they contain some anomalous features which are
not characteristic of most 3-d substrates. In attempt-
ing to keep the following discussion uncluttered, we do
not dwell on such unpleasantries as the inevitability of
split-off states (due essentially to the divergence of the
density of states at the band edge) and the anomalously
slow decay of the interaction with separation. After ex-
ploring interaction energies from the perspective of shift-
ing molecular orbitals, we show how the problem can be
recast in the Green’s function formalism presented above.

The Hamiltonian of the ring itself can be represented
by a 50×50 matrix with non-zero entries (taken as -1/2)
only along the two diagonals next to the main diagonal
(i.e. entries {n, n±1}) and at the corners ({1,50},{50,1})
to close the chain into a ring. By analogy, e.g., to ben-
zene rings, it is well known that the 50 eigenstates are
traveling waves with wavevectors k = nπ/25a, where a
is the nearest-neighbor spacing. There are just 26 dis-
tinct eigenenergies -cos(ka), all but two (viz. 1 and -1)
are doubly degenerate [due to the symmetry of clockwise
and counterclockwise travel]. The bandwidth in these
units is, thus, 2, and the band is centered about 0.

The prescription in this Hückel model for adding extra
atoms essentially follows that in the tight-binding model.
An adatom having energy εa (i.e. -α′ in Hückel language;
α = 0) couples, via the hopping parameter -V (i.e. -β′

in Hückel language; recall β = 1/2) to an orbital of the
ring (as in atop bonding). Consequently, one adds a row
and column to the 50×50 matrix. The diagonal entry
{51,51} is εa; the only other non-zero entries are pairs of
-V’s at {1,51} and {51,1}. For simplicity, to retain sym-
metry in ε and to focus on covalent effects, we take εa =
0. As might be expected, the computed eigenvalues move
away from εa = 0, by an energy ∝ V2 in the perturbative
regime. [Actually, this interaction splits the degeneracies
of the ring. The combination of the two eigenstates with
an antinode at the adsorption site gets shifted, while the
other combination with a node keeps its original value of
-cos(k).] This downward shifting of orbitals increases the
adsorption energy (absolute value of the change in total
energy due to adsorption) as the Fermi energy approaches
εa = 0; thereafter, the adsorption energy decreases, even-
tually reaching zero [as particle-hole symmetry demands].

To assess pair interactions, we add a second adatom n
sites away from the first.3 The matrix becomes 52×52

3 Note that on the ring, there is really a second pair interaction
over separation (50-n)a. Because of the periodic boundary con-
ditions used in the previous section, this effect exists implicitly
in the formalism developed there. For a large ring, this second
interaction is negligible, but this effect prevents us from using a
small ring. The alternative of using a chain rather than a ring is
undesirable because the “substrate” sites are inequivalent.

with εa = 0 at {52,52} and -V at {n+1,52} and {52,n+1}.
To compute the pair interaction at close spacings, we
compare the eigenvalues when the adatoms are at neigh-
boring or next-nearest neighbor sites with those when
they are at opposite sides of the ring. To make sense of
these results, we first consider the situation of adatoms at
opposite sides of the ring. For an infinitely large ring one
would expect results to be similar to the single-adatom
case, but with shifts twice as large. For the finite case
here, we note that this will occur only for states with
an even number of nodes, so that the ring eigenstates to
which the adatoms couple will have the same amplitudes
on the two adsorption sites.

The pair interaction arises from the shifts in the energy
levels when the above widely-separated pair of adatoms
are moved to nearby sites.4 We expect that the eigenen-
ergy will decrease (become more energetically favorable)
if the coupling is in-phase and increase if it is out-of-
phase. More explicitly, we consider the eigenvectors of
the antecedent of each energy level, from the original
ring (without adatoms). If the eigenvector has the same
sign on the two nearby sites, we expect the shift to be at-
tractive (i.e. the level lowers in energy when the adatoms
are brought to the nearby sites). The pair interaction
comes from the shift of the occupied levels. How many
levels are occupied is, of course, determined by the Fermi
level. We generally expect that near the bottom of the
band, the shifts will be attractive (negative) because the
adatoms couple in phase. As the Fermi energy increases,
more-rapidly oscillating eigenstates become involved.

To plot and thereby analyze this behavior, we do the
following: Along the horizontal axis we use the energy of
each of the levels of the ring with the adatoms at opposite
sides. Thus, as we set the Fermi energy further to the
right along this axis, more levels become filled. At each of
these 52 discrete energies, we plot as the vertical coordi-
nate the shift of the level when the adatoms are brought
to nearby sites. It is these shifts, due to the “interfer-
ence” of the proximate adatoms, which in the weak-V
limit tend to scale as V4 [cf. eqns. (11.15) and (11.16)],
i.e. as a next-order effect after taking into account the
V2 shifts due to adsorption. The sum of these shifts, for

4 There are alternative definitions. Burdett and Fässler (1990)
start with ligands (viz. CO) attached to 1, 2, or 3 metal atoms,
using the extended Hückel model, and seek to explain structure of
the ligand “pair potential” for a monolayer. Since it is impossible
to move ligands far apart, they define the pair energy as the
sum of the energy of the system with both ligands present and
the energy with both absent, minus twice the energy with just
one ligand attached. Some thought shows that this definition is
equivalent to the one we use, assuming that our adatoms are far
enough apart that they do not interact. While this perspective
may be appealing, it is a chore to keep track of the electrons as
they are added, and tricky to trace the evolution of the levels.



11

FIG. 11.2: Integrand used to compute pair interaction energy
for adatoms at nearest-neighbor and next-nearest-neighbor
sites on a ring: Solid curve: continuum limit, as described
in §11.2.2.2. ×’s: shifts of pairs of eigenvalues vs. average
of their unshifted energy for a ring of 50 atoms. See text for
discussion.

the occupied levels, is the pair interaction.5 Thus, what
we have plotted is the integrand in eq. (11.15), essen-
tially the phase shift η. Near the bottom of the band,
the integrand is, as noted above, generally negative, but
with increasing energy, it begins to oscillate in sign. (The
closer the adatoms, the larger is the energy between sign
changes.) In performing this analysis, the shifts alter-
nate between the expected behavior and a much weaker
shift of the uninteractive ring eigenstates. Thus, in Fig.
11.2 we combine pairs of shifts, plotting their sum vs.
the average of their [unshifted] energies [from the case of
adatoms at opposite sides].

We now seek to show that these results offer a de-
cent finite-size approximation of the quasi-continuous be-
havior considered in the previous section. For an in-
finitely long chain, one can derive the analytic expres-

5 Actually, it is half of the interaction, since we have been neglect-
ing the factor-of-2 spin degeneracy in this section.

sion (cf., e.g., Economou (1979) or Davison and M. Stes-
licka (1992) for background information, or Kalkstein and
Soven 1971, with no intralayer hopping) :

Gon(ε) =
−i√

1− ε2

[
−ε + i

√
1− ε2

]n

(11.17)

inside the band (|ε| < 1); outside the band
√

1− ε2 →
−i · sgn (ε)

√
ε2 − 1 and Gon is pure real (Ueba, 1980).

For the 50-atom ring, the substrate Green’s functions can
be computed numerically as

Gon (ε) =
1
50

∑

k

cos(kna)
ε + cos(ka) + iδ

, (11.18)

setting the infinitesimal at a value of, say, 0.1 6 While
these Green’s functions have many secondary oscillations,
their overall behavior is rather similar to the analytic
infinite-length Green’s functions of eq. (11.17). In any
case, inserting the analytic form into eq. (11.15), we pro-
duce the integrand (without the factor of 2) and coplot
it in Fig. 11.3. We see that the couple-dozen pairs of
levels from the ring provides a decent accounting for the
results of an infinite ring in a form that may be more
transparent.

Our exercise further supports the idea that the pair in-
teraction is a delicate mix of the couplings to all the occu-
pied levels (or at least the half of them which are symmet-
ric with respect to the inversion about the midpoint of the
adsorption sites). Thus, a discussion in terms of HOMO
(highest occupied molecular orbital) and LUMO (lowest
unoccupied molecular orbital), i.e. frontier orbitals (Hoff-
mann 1963, 1988) will not capture all the physics of the
problem. On the other hand, with increasing separation
there are more oscillations in sign as a function of εF . In
the limit of large separations, reminiscent of stationary-
phase problems, the interaction energy will be dominated
by the endpoint of the integration, namely the behavior
at εF , making a frontier-orbital approach appropriate, if
one has some grasp of the long-range behavior of wave-
functions at this energy. (In the section on asymptotics,
we shall explore this problem further.) More importantly,
in the limit of small V, the shifts and hence the interac-
tion are quite small except when εF is close to εa. In the
limit of weak chemisorption, then, the HOMO/ LUMO
viewpoint may well offer a fruitful perspective on pair
interactions. Burdett and Fässler (1990), for example,

6 The size of δ in this discussion should be large enough so that
the spiked distribution due to the discrete levels is smoothed but
not so large that it is completed washed out. This parameter
broadens the levels, a common way to represent a large system
by a much smaller one with a limit set of eigenenergies.
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FIG. 11.3: Off-diagonal Green’s functions G01 (nearest-
neighbor) and G02(next-nearest-neighbor ) for a ring of 50
atoms (setting δ = 0.1) compared with the continuum form
(solid curves), computed exactly. The imaginary parts are
given by ×’s, the real parts by 2’s.

in modeling CO adsorption find the interaction is strong
only when εF is near a large HOMO-LUMO gap.

Before closing, we mention, for those particularly in-
terested, some details skirted above. In Fig. 11.3 only
24 pairs of levels are included In addition, there are pairs
above and below the band, corresponding to what have
been called “split-off” states (ES) and amount to local-
ized levels outside the substrate band (where Im=m G
vanishes). As one might guess from eq. (11.12), they are
the solutions ε± of the equation

ε− εa − V 2 (<eGoo (ε)±<eGon (ε)) = 0 . (11.19)

For the case of isolated adatoms at opposite ends of
the chain, the ± term is absent and the solutions εw are
doubly degenerate. The eigenenergies of the 52×52 ma-
trices correspond virtually identically to the solutions of
these equations, which use the quasicontinuum Green’s
functions. For 3-d substrates, these states typically oc-
cur only for strong coupling (large V) but in 1-d they are
always present, formally due to divergent van Hove sin-

gularities in <e G at the band edge, physically because
of the large number of states near the band edge in 1d
models. From the figures in ES,7 one sees that ε+ + ε− -
2ε0 is positive. This initially counterintuitive result can
be derived analytically or graphically from the generic
form of the Green’s functions. The fact that ε+ shifts
down from εw less than εt shifts up corresponds to the
relative decrease in shifts in the levels as one gets far-
ther from the band and εa. The split-off state involves
fully in-phase hopping around the ring. Perhaps when
the adatoms are close to each other, the electrons get
somewhat concentrated in the region near the adatoms,
so that they cannot take full advantage of the hopping
all around the ring. In any case, this result leads to the
spikey behavior with the unexpected sign near the band
edge.
11.2.3. Multisite Interactions
11.2.3.1. Three-Adatom (Trio) Interactions

In general there will be several adatoms in close prox-
imity. Eq. (11.2) anticipated the possibility of multi-
adatom interactions. The expectation of ES is that over-
layer electronic energies are overwhelmingly dominated
by nearest pair interactions. To evaluate multisite inter-
actions, and thereby check this idea, it is straightforward
(Einstein 1979a,b) to enlarge the matrices needed to com-
pute the phase shift in eq. (11.10). If the sites to which
the adatoms bind are `th, mth, and nth nearest neighbors,
we find

ET=`mn ≡ − 2
π

∫ εF

−∞
=m ln (∆)dε− E` − Em − En,

(11.20)
where

∆ ≡ 1−V 4Ḡ2
aa

(
G2

ol+G2
om+G2

on

)−2V 6Ḡ3
aaGolGomGon .

(11.21)
As indicated in §11.2.1, eq. (11.21) does not factor,

making an explicit subtraction of pair energies necessary.
There are two parts of this new interaction: (1) a new

triangular path, represented by the G G G term; and (2)
an “incompleted cubic” term, marked by the absence of
V8 and V12 terms that would be present in E` +Em +En

if their logarithms were merged. Trial calculations using
just the ”triangle path”, with moderate V appropriate
to chemisorption, reproduce the full interaction at least
qualitatively.

Computations of trio energies using eq. (11.20) sug-
gest that their magnitudes are determined primarily by
the two closest (strongest) pairs. In explicit comparisons
(Einstein 1979a,b) of E`mn= E223, E225, E238, and E335,
for typical V and εa, for all possible substrate fillings,
the first two have the strongest trio interaction energy.

7 Beware some misleading analysis in §II.B.3 of ES.
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E223,which has a 3rd neighbor spacing as its third side,
is somewhat the larger, and is nearly as strong as E3.
The other two are smaller by at least half an order of
magnitude. With increasing adatom separation the trio
energies fall off rapidly, much like the pair energies.
11.2.3.2. Complete Overlayers

While quartets and higher-order terms could be calcu-
lated, numerical noise problems from successive cancella-
tions would become troublesome. Starting from the other
extreme, one can easily show that the indirect interaction
energy per adatom for a complete (1 ×1) adlayer is

− 2
πN||

∑

k||

∫ εF

−∞
=m ln

1− V 2Gaa(ε)G(k||, ε
1− V 2Gaa(ε)Goo(ε)

dε = (11.22)

− 2
πNa

∑

k

∫ εF

−∞
=m ln

[
1− V 2Ḡaa

{
G

(
k||, ε

)−Goo(ε)
}]

dε,

where the summation goes over the surface Brillouin zone
(SBZ), containing N|| the number of adsorption sites)
points. G(k||,ε) can be computed analytically [Kalkstein
and Soven (1971)], rather like a semi-infinite chain.

For a real monolayer, direct interactions between the
closely-spaced adsorbates are likely to produce an inter-
action energy quite different from that predicted from
eq. (11.22). Not only does the direct interaction make a
great difference for individual pairs [Burke (1976)], but
it often leads to the formation of two-dimensional ad-
layer bands which overshadow any indirect effects [Lieb-
sch (1978)]. Therefore, we focus on the c(2 ×2) overlayer.
Since the real space unit cell area is doubled, the SBZ is
halved, most naturally taking the form of an inscribed
“diamond” (square rotated by 45◦). Points outside the
new SBZ get folded back in, giving doubling of the [highly
blurred] two-dimensional band-structure. The upshot is
that for a c(2 × 2) adlayer, G(k||,ε) in eq. (11.22) is re-
place by [Einstein (1977, 1979a)]

{
G

(
k||, ε

)
+ G

(
π (1, 1)− k||, ε

)}/
2 . (11.23)

Based on these ideas, one can compare (Einstein 1977,
1979a) the indirect interaction energy (per adatom) for a
full c(2 × 2) overlayer with an explicit sum over the pair
energies for all pair configurations arising in a c(2 × 2)
pattern – only the five shortest contribute significantly –
weighting them according to the number per adatom ex-
isting in the pattern: two for pairs along the 〈10〉 and
〈11〉 mirror axes, four otherwise. Overall, this curve
does a good job of reproducing the c(2 × 2) plot. Trio
interactions can also be included in the sum and help
make up differences between the overlayer calculation
and the explicit sum. Their contribution generally is im-
portant only near energies corresponding to the Hartree-
Fock bonding and antibonding resonances in the DOS.

In short, multisite interaction energies are not too im-
portant in total overlayer energies, although they may
play a role in other circumstances.

The other way to approach dense monolayers is to in-
voke results from the theory of alloys (Ehrenreich and
Schwartz 1976). Perhaps the simplest such scheme is the
average T-matrix approximation (ATA) (Korringa 1958),
which assumes that adatoms are randomly distributed
over the lattice sites. Urbakh and Brodskii (1984, 1985)
work out the formal expression for ∆ρ(ε) and apply it
to H/Pt(111). (Cf. §11.4.2.) The next level of sophisti-
cation is CPA, in which the self-energy of the “effective
medium” of the alloy is calculated self-consistently; an
application by Persson and Ryberg (1981) was noted in
§11.2.1.
11.2.4. Coulombic Effects: Self-Consistency and
Correlation, and Other Improvements

The issue of self-consistency has pervaded most subse-
quent efforts to apply tight-binding methods to the pair
problem. The inability to resolve this problem in a sat-
isfactory way is one of the greatest difficulties in extend-
ing this approach to quantitative investigations. In the
LCAO framework, since the electron orbitals are fixed
at the outset, self-consistency is discussed in terms of
the Friedel (1958) sum rule – which in this case requires
charge neutrality within some finite range of an adatom –
rather than Poisson’s equation (Appelbaum and Hamann
1976). Typically, εa is adjusted (making it a derived
rather than a free parameter) (Allan 1970, 1994). The
energies of nearest neighbor(s) on the surface may also
be altered, thereby inviting new surface states (Kalkstein
and Soven 1971, Allan and Lenglart 1972). Sometimes
off-diagonal Coulomb terms are also included in various
ways (Rudnick and Stern 1973, Leynaud and Allan 1975),
meaning that changes in charge on a site affect the po-
tential of its neighbors. Generally neutrality is required
either at each site or just in the surface cluster consist-
ing of the adatom and its nearest neighbor(s), excluding
any longer-range oscillations. The quantitative results
are rarely compelling. The qualitative results (Einstein
1975, 1979a) are plausible.

A second approach assumes that in a strongly
chemisorbed system, the essence of the pair interaction
lies in a surface molecule. A small cluster is treated care-
fully, gaining an improved description of local Coulomb
effects at the expense of any background effects from the
substrate. From studies of W2H and W3H2, for exam-
ple, Grimley and Torrini (1973) conclude that H atoms
at nearest neighbor sites on W(100) will be unstable, the
repulsive energy being of order 200 meV. This method
is not extended readily to more widely separated pairs,
since the distance from the adatom to the edge of the
cluster should presumably be at least as large as its
distance from the other adatom. Since the “substrate”
wavefunctions–via which the pair interacts–are sensitive
to the details of the cluster, matching conditions to the
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background must be adjusted carefully. Moreover, in
cases where adatoms bond to a common substrate atom,
some anomalous structure may arise which should not be
generalized (ES, Einstein et al. 1990). The best hope for
cluster approaches is to embed them in well-characterized
semi-infinite substrates (Grimley 1976). Grimley and
Pisani (1974) have taken this approach for clusters con-
taining single adatoms and calculated in a SCF-LCAO-
MO scheme.

The embedded cluster technique has indeed flourished
(cf. NATO conference proceedings in Pacchioni et al.
1992). Most of the applications are to monomer adsorp-
tion, but the dissociation of [gas] dimers is also often
considered (e.g. Cremaschi and Whitten 1981, Madhavan
and Whitten 1982). As noted, it is hard to imagine ap-
plying the method to larger pair separations. Feibelman
(1989a) provides a lucid critique of this approach, ques-
tioning typical choices of bases and treatment of back-
ground effects. Also, since correlation is typically con-
sidered only in the cluster region, he wonders how much
of the adsorbate binding energy actually comes from al-
lowing substrate correlations in the bonding region.

Grimley and Walker (1969) observe that while sizeable
charge transfer might take place during chemisorption,
little more should happen as a function of the relative
placement of the adatoms. If energies in simple models
could be determined in some plausible way, the pair in-
teraction should work out satisfactorily even if the single-
adatom results are somewhat inadequate. Moreover, the
pair interaction is a rather insensitive function of εa, as
suggested by Table 1 and shown more convincingly by
Figure 11 of ES.

Schönhammer et al. (1975) studied carefully the corre-
lation effects in indirect pair interactions. Using a (100)
cubium substrate with parameters appropriate to H on
Ni, Schönhammer(1975) had previously shown from a
variational approach that the single adatom binding en-
ergy is roughly 1/3 stronger than in Hartree-Fock (al-
though the two curves did have the same structureless
shape as a function of εF ). They find that this corre-
lation energy, 1/4 the binding energy, roughly cancels
out when the pair interaction energy is computed. Al-
though this cancellation is reported to be less complete
for other parameters, the qualitative behavior holds for
V’s of order the “critical hopping” (below which Hartree-
Fock local moments arise). In addition to confirming the
anisotropic, oscillatory behavior of the pair interaction,
Schönhammer et al. (1975) corroborate the roughly ex-
ponential fall-off with separation (for interadatom dis-
tances of order 1 to 4 lattice constants). The implica-
tion of this work is that correlation effects (in the form
of careful treatments of the Anderson Coulomb term),
while important for single adatom effects, can (to a rea-
sonable approximation) be neglected in computing pair
(and higher order) effects. Later studies discussed below
(§11.3.5) cast doubt on how well this result generalizes

to models treating the d-band aspects of the substrate.
Over the last decade or more, research in chemisorp-

tion theory has stressed generation of numerical results to
fit quantitatively data from UV photoemission, ion neu-
tralization spectroscopy, low-energy-electron-diffraction
(LEED), and scanning tunneling microscopy (STM) ex-
periments. The primary object has been to compute the
spatial and energy distribution of the electron density
near the surface region and to find exact locations of sur-
face states. For these applications self-consistency (here
in a Poisson’s equation sense) is crucial. The first at-
tempts to gauge the role of such effects were considered
the adsorption of single adatoms on jellium In semicon-
ductors it is difficult to propagate electrons from one ad-
sorption site to another, from a physics viewpoint be-
cause the Fermi energy lies in the band gap, from a chem-
ical perspective because electrons are relatively localized
in covalent bonds. (Some implications are discussed in
the next section.) Tosatti (1976) has considered the inter-
action between adatom pairs on Si(100) 2 ×1, assuming
a short-range defect potential for the adatoms and linear
response by the surface electrons. His pair interaction
is always repulsive, oscillatory (in strength) with separa-
tion, but with an exponentially decaying envelope (due
to trying to propagate electrons in the gap).

Realistic slab calculations for transition and noble met-
als began appearing about a decade ago and are becom-
ing more or less routine for flat surfaces. They are dis-
cussed at length in volume 2 of this handbook. Nonethe-
less, even today most total energy self-consistent calcula-
tions consider only a (l ×l) overlayer, with the full sym-
metry of the substrate.
11.2.5. Lattice Indirect Interactions: Phonons
and Elastic Effects

To check whether there were significant interactions
mediated by phonon rather than electronic degrees of
freedom of the substrate, Cunningham, Dobrzynski, and
Maradudin (1973) studied the contribution to the free en-
ergy of the interaction between two identical adatoms via
the substrate phonon field. In their model, the adatoms
sit in the top position on the (100) face of cubium. Re-
sults are computed as a function of the three dimen-
sionless quantities: adatom mass over substrate mass,
adatom-substrate coupling over substrate-substrate cou-
pling, and inter-adatom separation R (in lattice con-
stants). They find that the zero point energy is invariably
attractive and that it decreases monotonically in strength
with R, going like R−7 for large R. The attraction is at
most 10−4~ωL(where ωL is the maximum phonon energy)
or of order 10−6 eV, and thus nearly always negligible.

Given these negative results, little further work was
done on this problem. However, beginning half a decade
later, considerable interest has been paid to elastic inter-
actions on surfaces. When electronic interactions play a
significant role, it is generally not just difficult but arti-
ficial to try to isolate elastic effects from other electronic
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effects. However, for non-metallic substrates, where there
are no electrons near the Fermi energy, focus on elastic
interactions may often be a fruitful perspective. Also, in
the asymptotic region, the elastic interaction generally
dominates for large enough separation. In this section
we first give a chronological account of studies of this
interaction between adatoms. We then discuss in more
detail, via a few examples, the interplay between elastic
and electronic effects on metal substrates, and why this
perspective is often not fruitful at close range.

Lau and Kohn (1977) investigate the long-range inter-
action between two adatoms due to classical elastic dis-
tortion of an isotropic semi-inifinite substrate, finding:

Eelas(R) =
1− σ

4πµ

ΛaΛb

R3
, Λa =

∑

j

Fa
j · (Rj−Ra) ,

(11.24)
where Fj

a is the force exerted by adatom a at Rj , σ is
the Poisson ratio, and µ the shear modulus. For iden-
tical atoms, this interaction is always repulsive, due to
frustrated relaxation of substrate atoms between the two
adatoms, as illustrated in Fig. 11.4. Taking σ ≈ 1/2
and µ ≈ 10−3 atomic units as typical, they estimate this
repulsion to be of order 0.1 eV at R = 10 a.u. ≈ 5 Å.
(If the adatom-substrate coupling on a triangular surface
has the form -3γR0

−6, where R0 = |Rj- Ra| is the spac-
ing between the adatom and one of its 3 substrate neigh-
bors, then the virial (Stoneham 1977) Λ = -6γa2R0

−8.)
For different adatoms, the elastic interaction can have
either sign. Its R−3 decay is reminiscent of the dipole-
dipole repulsion. Inserting reasonable numbers for Xe
pairs on Au, Lau and Kohn find at R = 10 a.u. that the
elastic repulsion is 0.53 meV, compared to their dipole
repulsion of 1.1 meV, about half as large. On the other
hand, at nearest neighbor sites it is three or four orders
of magnitude greater than the phonon-mediated attrac-
tion just discussed; in essence Cunningham et al.́s (1973)
calculation gives the leading quantum correction to the
classical distortive effects.

Varying the vertical position of the adatoms relative
to the isotropic substrate, Maradudin and Wallis (1980)
also find the R−3 decay but find that the interaction is
attractive if the average distance below the surface is
greater than R/2

√
2.

Stoneham (1977) shows that if the substrate or the
adatom-substrate coupling is anisotropic, then the elas-
tic interaction between like adatoms can again be attrac-
tive. He estimates that the magnitude of interaction of
neighboring bridge-bonded H’s on W is of order 0.1 eV,
large enough to account for some measured interactions
without recourse to electronic effects. He also considers
additional elastic effects due to clusters of adsorbates.

Lau (1978) in turn considers anisotropic substrates
with hexagonal or cubic symmetry. Using Green’s func-
tions derived by Dobrzynski and Maradudin (1976) and

by Portz and Maradudin (1977), he works out explicit
formulas. For Xe pairs on graphite, separated by 5 Å, he
finds a repulsion of 0.18 meV. On Au (100), with pairs of
Xe again 5 Å apart, he finds an attraction of 0.30 meV
along the cube axis and a repulsion of 1.73 meV at 45◦.
He expects this anisotropic behavior to be fairly general.
While these energies are quite small, he expects elastic
effects to become stronger and play a significant role in
distortive phase transitions.

Kappus (1978) rederives the previous results on
isotropic and cubic substrates, finding again the possibil-
ity of homonuclear pair attractions on anisotropic sub-
strates. Between clusters a repulsive barrier arises, pro-
portional to the product of the areas of the clusters, even
in directions in which the long-range interaction is at-
tractive. Kappus (1980) extends this work to consider
an anisotropic force dipole tensor, which enters the cal-
culation of the virials, but restricts the substrate to be
elastically isotropic, a reasonable approximation for W.
Again there is the possibility of elastic attractions be-
tween like adatoms. The formalism is applied to explain
the ordered p(2×1) phase of O on W(110) (Engel et al.
1975, Wang et al. 1978). He obtains “reasonable qual-
itative agreement” with the pair interactions used by
Williams et al. (1978) in a Monte Carlo simulation of this
system. However, since they do not lead to the p(2×1)
superstructure, Kappus (1981) generalizes the model to
include a nearest neighbor interaction, an electric dipole
repulsion caused by adatom dipoles normal to the sur-
face, and another long-range part coming from elastic
dipoles of nearest-neighbor pairs of adatoms. This third
energy leads to multisite interactions. Nonetheless, with
an E2interaction, he cannot stabilize the p(2×1) super-
structure; such an interaction could, of course, arise from
the electronic indirect mechanism, from small anisotropy
in the elastic constants, or from a breakdown in the con-
tinuum approximation.8

Theodorou (1979) proposes an intriguing approach to
the overlayer structure of O/W(110). He noticed that on
a rigid substrate the W-O-W angle of bridge-bonded O
was 102.2◦ rather than the ideal 90◦. Presumably, then,
these two W’s would be drawn toward each other; there
are two other W’s, at the far ends of the “diamond” at
the center of which the O sits, which are repelled by a
lesser amount. From this perspective, he estimated en-
ergies per O of isolated atoms, the chain constituent of
the p(2×1), the p(2×1) itself, and a full (1×1) to be
0.15 eV, 0.05 eV, 0.15 eV, and 0.29 eV, respectively. In
terms of interactions, he essentially finds an attraction

8 This system has proved quite challenging. Rikvold et al. (1984)
used a model with E1< 0, E2 > 0, E3, and trio interactions,
and still found that an attractive E5 1% of E1 could introduce
pronounced first-order behavior at both low and high coverages.
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FIG. 11.4: Schematic of the origin of the elastic repulsion between like atoms on an elastically isotropic substrate. a) Response
of the substrate to a single atom. Here the displacement is taken to be away from the adsorbate, though it is more likely to be
toward the adatom. b) When two adatoms are present, substrate atoms between them cannot relax fully.

E1 = -0.10 eV which duly produces chains. A repulsion
in a different direction keeps the chains apart. Unfortu-
nately, some more distant (second-neighbor in some di-
rection) interaction between chains is also repulsive, pre-
venting the p(2×1) from forming. He speculates about
what other interactions might overcome this repulsion,
noting that the small work function change suggests that
dipolar interactions are insignificant. Apparently no res-
olution of this problem was ever achieved and the paper
seemingly has had little impact on research in adsorbate
interactions, though perhaps it influenced thinking about
strained superlattices in heterostructures (Tserbak et al.
1992). Tiersten et al. (1989) note that Kappus (1978)
smoothly truncates 2-d integrals over the surface Bril-
louin zone with a cutoff parameter of order the inverse
lattice constant and that his interaction energies between
adatoms separated by less than a few lattice spacings
depends sensitively on this cutoff. Thus, they conclude
that a lattice-dynamics analysis of the substrate is needed
in the non-asymptotic range instead of the continuum
elasticity approach. Working in a mixed representation
(cf. just above eq. (11.5)) they find an expression for the
pair interaction energy in terms of [Fourier-transformed]
local force vectors associated with each adatom and a
substrate propagator between the sites. This propagator
they take to be essentially the inverse of the dynami-
cal matrix. (In elasticity theory, the propagator is an

angular-dependent term divided by the magnitude of the
2-d wavevector; one then readily recovers the R−3 decay.)
Tiersten et al. (1989) apply their formalism to As dimers
on Si(100). They plot the interaction along the three
principal directions, finding that it 1) can change sign
with increasing R, 2) is highly anisotropic, 3) is rather
small, less than 10 meV (often much less) once R ≥8Å.
They also looked at interactions between H pairs on re-
constructed W(100). Again they find that the interaction
can be attractive or repulsive, that it depends on the di-
rection, and is at most about 3 meV for the shortest
R’s, and becomes less than an meV quickly with increas-
ing R. Presumably electronic effects are much larger for
this case. In both cases the sign of the interaction at
small separations can usually be understood in terms of
the dominant forces on the substrate atoms or by simple
arguments based on interference of the relaxations pro-
duced by the individual adatoms. (Cf. Fig. 11.4.) Later,
Tiersten et al. (1991) consider O/Si(100), finding gener-
ally similar qualitative features, but with larger magni-
tudes, around 50 meV at 4Å, but then falling quickly to
less than 5 meV, then less than a meV. In other words,
when electronic interactions are present (on metals), they
should dominate, but on semiconductors or ionic crystals,
these could be the leading interaction.

Recently Rickman and Srolovitz (1993) present a very
general Green’s function formalism for finding the elastic
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interaction between defects of spatial dimensionality D
and multipole character m on a surface. Specifically, they
tabulate results for four generic defects: a point force
(D=0, m=0), an impurity adatom or island (D=0, m=1),
a stress domain (D=1, m=0), and a step (D=1, m=1).
Since defects in general involve more than the lowest-
order multipole, the results apply for large lateral separa-
tion R. For point interactions (D=0) between an m-pole
and an n-pole, the interaction E(R) ∝ R−(m+n+1), re-
producing R−3 for the interaction between adatoms. For
linear defects, E(R) ∝ R−(m+n), or C1ln(R/a) + C2 for
m=n=0. Further comments related to steps are deferred
to §11.4.3.

The preceding discussion assumes that one can neatly
distinguish between electronic and elastic interactions.
Such a distinction is generally possible at moderate-
to-large separations between adatoms, but fails in the
“near” region: in computing carefully the electronic in-
teraction between adsorbates (Feibelman 1989a), relax-
ations can play an important role. There is clear experi-
mental evidence that adsorption can distort the substrate
in the vicinity of binding site, although the precise na-
ture of the deformation may be difficult to determine.
E.g. for p(2 ×2) O/Ni(111) Narusawa et al. (1982) mea-
sured, with high-energy ion scattering, outward displace-
ments of about 0.15Å of the three Ni’s to which each
adatom binds (i.e. substantial buckling and overall re-
laxation); from LEED analysis, Vu Grimsby et al. (1990)
note, in addition, lateral “twist” displacements of about
0.07Å. However, Schmidtke et al. (1994) find in a sub-
sequent LEED analysis no twisting, minimal relaxation,
but buckling of 0.09Å. In a painstaking LEED survey
of S/Ru(0001), Pfnür’s group finds progressively greater
substrate distortions with structures of increasing cover-
age: For the p(2 ×2) there is slight buckling and out-
ward relaxation, of ∼ 0.03Å (Jürgens et al. 1994). In the
(
√

3×√3) symmetry forbids such buckling; the relaxation
is still comparably minimal (Jürgens et al. 1994). In the
1/2 ML c(4 ×2) phase, there is substantial (∼ 0.2Å) row
buckling (Schwennicke et al. 1994), Ru atoms bonded
to two S’s relaxing more than those bonded to one S.
(Moreover, the S atoms occupy fcc and hcp sites with
equal probability, but are shifted laterally from the high-
symmetry 3-fold position by ∼ 0.16Å!) Finally, in the
(
√

7 × √
7) at 0.57 ML, there is even stronger depen-

dence of the Ru relaxation on the S coordination: Sur-
face atoms with 3 S’s relax 0.39Å more than those with
a single S (although the overall relaxation is minimal)
(Sklarek et al. 1995). (It is also noteworthy that in all
cases the local chemistry is preserved in the sense that
S-Ru bond lengths do not change by more than 0.05Å!)
Since these displacements are based on fits to data, accu-
racy depends on the insight and ingenuity of the exper-
imentalist. Using Tensor LEED and scanning tunneling
microscopy, Barbieri et al. (1994) investigate two of the
four ordered overlayers of S on Re(0001) (Ogletree et al.

1991) and find a similar increase in surface distortions
with increasing coverage.9 Substantial displacements of
surface atoms will certainly affect the electronic states
nearby (and so the interaction energy) and evidently can
depend on the separation between the adatoms. It is a
futile exercise to sort out which portion of the interaction
is elastic. As more specific systems are carefully docu-
mented, it will be interesting and important to look for
trends in the evolution of buckling with coverage.
11.2.6. Asymptotic Form of the Indirect Interac-
tion between Atoms and between Steps

In this section we present more information than in
§11.2.2 about the nature of the indirect interaction be-
tween widely separated adsorbates. Our intention is to
stress the general features and underlying physics while
skirting explicit formulas, which can become quite com-
plicated (Einstein 1973, 1978, 1979a, Lau and Kohn 1978,
Flores et al. 1979, Roelofs 1980). From eq. (11.16) we see
that the asymptotic behavior hinges on the behavior of
Gon(ε) at large R, where R is the vector from site o to
site n. While studying scattering in solids four decades
ago, Koster (1954) recognized that with the competition
of rapid oscillations, the solution required stationary-
phase arguments. He uncovered much of the essence of
our problem, finding that

Gon(ε) ∝ R−1 exp(ik(ε) ·R), (11.25)

where k(ε) is that wavevector along a constant-energy
surface at which the velocity (viz. ∇kε) is parallel to R,
as illustrated in Fig. 11.5. Moreover, the proportional-
ity constant varies inversely with the Gaussian curvature
of the constant-energy surface at k. More generally, if
Gon(ε) ∝ k−1R−m exp (ikR), then integration by parts
(Grimley 1967) leads to the important result

En ∼ V 4

R
<e

[
Ḡ2

aa(εF )G2
on(εF )

]
(11.26)

and the interaction decays like R−(2m+1). For sur-
faces, one can show quite generally that m=2, i.e. that
Gon(ε) ∝ k−1R−2exp (ikR) (cf. discussion in paragraph
after eq. (11.28)) and

En ∼ R−5
n cos(2kF Rn + φ) (11.27)

if the interaction is isotropic. The complex quantity Ḡaa

is independent of the separation and so leads to the phase

9 Einstein (1991) pointed out that several distinct trio interactions
would be needed to account for these ordered phases; presumably
some of these are related to the local distortions.
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factor φ; from eq. (11.14), this factor is given explicitly
by (Joyce et al. 1987)

φ = arg
(
Ḡ2

aa

)
= 2arg

[
εF − εa − V 2Goo(εF )

]−1
,

(11.28)
which vanishes when V2πρ0(εF ) ¿ εF − εa -
V2<eG00(εF ), e.g. when the coupling is weak or the
adatom level is far from the Fermi energy. Gumhalter
and Brenig (1995a) emphasize that the phase factor only
appears in nonlinear theories.

In studying the static response function, Rudnick
(1972) found essentially this result for jellium confined by
an infinite barrier. He interpreted the sinusoidal varia-
tion as a Friedel oscillation of the screening charge around
a point impurity. Similar behavior was also found by
Moore (1976) and Flores et al. (1977a). The response at
point n due to a disturbance at point o of the infinite-
barrier system can be described in terms of the bulk re-
sponses from the disturbance at o and from a comparable
disturbance at the mirror image of o, with the opposite
sign to produce a node along the barrier (Flores et al.

FIG. 11.5: Illustration of the wave vector which dominates the
asymptotic interaction. The curves indicate constant-energy
lines in the surface Brillouin zone, in the lower third of the
band of a simple cubic crystal in the tight-binding model. The
dots denote sites in real space. The dashed line shows the R
connecting the origin with a particular site. For ε = -2.1, the
arrows show the velocity ∇kε of two candidates for this wave
vector; it is not the k at which ε(k) intersects R, but rather
the lower one at which ∇kε is parallel to R, which enters eqn.
2.25. For isotropic systems, the contours become circles (as
near the bottom of the band, as depicted for ε = -2.8), and
there is no distinction between the two candidates. When the
Fermi curve lies on more than one “sheet,” one must sum over
the contributions from each k.

1979). Then the leading R−1 contributions to Gon cancel,
leaving the next order, with coefficient R−2, to dominate.

Lau and Kohn (1978) verify that a similar asymptotic
interaction occurs for a jellium substrate even if the bar-
rier is finite. Treating the adatom-substrate interaction
in second-order perturbation theory, they can separate
the pair interaction energy from the adsorption energy
of single atoms, analogous to what was done above for
the tight-binding model. The R dependence of the pair
interaction is given by

∫
d2k|| eik||•RG

(
k||

)
, (11.29)

where G(k||) is a kernel which depends only on the sub-
strate energy spectrum (here of the free electron form).
After detailed analysis, they find that asymptotically
the integral is dominated by a singularity in the fourth
derivative of G(k||)|2kF times a unit step function. Using
the results for generalized functions given by Lighthill
(1958), they reduce behavior to the form of eq. (11.27).

Lighthill’s formulas can be applied more generally to
find the asymptotic form of the Gon(ε), particularly in
the tight-binding model; there is no need to assume
2-d isotropy, weak coupling, or large separation be-
tween εF and εa, viz. ionic bonding (Einstein 1973, 1978,
1979a). [From another approach with different expan-
sions, Le Bossé et al. (1979) rederive most of Lau and
Kohn’s results without the latter restrictions.] The final
expressions are rather cumbersome. An interesting qual-
itative aspect is that the use of surface rather than bulk
Green’s functions means that one must be somewhat cau-
tious in applying Koster’s approach. (Cf. Flores et al.
(1979) for some details of the application to surfaces.)
Only k|| is a good quantum number (since the surface
destroys crystal translation invariance in the k⊥ direc-
tion), so we have a Fermi “loop” rather than a surface.
For each k||, however, the kernel of the surface Green’s
function can be rather simply related to those of bulk
Green functions (Kalkstein and Soven 1971). For the
(100) face of a simple-cubic tight-binding model, it turns
out that there are essentially two subbands, each with
2/3 the bulk bandwidth B and centered at B/3 from ei-
ther band edge. Thus, in the central portion of the band,
there are essentially two sheets to the Fermi surface, so
that there are two special values of k|| to be considered.
For a more realistic model of the substrate, there might
well be even more. On the other hand, near the bottom
of the band, the tight-binding dispersion relation sim-
plifies to the parabolic form; Lau and Kohn (1978) ma-
nipulate the Anderson model (in essence, applying the
Schrieffer-Wolff (1966) transformation) to make contact
between their free-electron calculations and the earlier
tight-binding work. (See also Einstein 1978).

An R−5 interaction at large separations is clearly of
rather academic interest. However, in the infinite-barrier
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model, prompted by Hjelmberg (1978)’s explicit numer-
ical calculations, Johansson (1979) and Johansson and
Hjelmberg (1979) notice that in addition to this “far
asymptotic” region, there is a region with bulk R−3 in-
teraction occurring for much smaller values of R, still
larger than kF

−1 but smaller than the distance to the
barrier, so that the image does not cancel the leading
term due to the atomic charge. (Cf. comments after
eq. (11.27).) When R is a few lattice spacings (specific
range dependent on the electronic charge density, i.e. kF ,
of the jellium), there typically is a crossover region be-
tween the bulk-like and far asymptotic limits, with a de-
cay exponent varying continuously from 3 to 5. Le Bossé
et al. (1978) also find the R−3 decay, but do not report
the transition or far asymptotic region and attribute (Le
Bossé et al. 1979) the lack of R−5 decay to other factors.

Seemingly the latest word on this problem is Eguiluz et
al. (1984)’s numerical treatment, based on a Kohn-Sham
self-consistent approach, of two charges in Al- and Na-
like jellium. They recover Lau and Kohn (1978)’s result
as the dominant result for contributions to the response
function from wavevectors at least 2kF , but their calcu-
lations show that this weak oscillatory term is masked
by a much larger, monotonically-decaying attractive in-
teraction due to smaller wavevectors. (The singularity
in the integrand at 2kF is numerically invisible.) When
the charges are placed outside (inside) the jellium, the
direct Coulomb repulsion overwhelms (roughly compen-
sates) this attraction, which is presumably a manifesta-
tion of the polarization screening. In their range of study
(which does not reach the “far asymptotic” regime), they
also see the R−3 decay of the envelope of the oscillatory
part. The oscillations are observable in the total interac-
tion only when the charges are inside the jellium, and are
strongest when the charges are near the surface, with ini-
tial oscillation amplitudes somewhat larger than 10 meV
(larger for “Na” than “Al”). Although for charges out-
side jellium there is no observable evidence of long-range
oscillatory interactions due to polarization of the sub-
strate electron gas, the authors carefully note that their
model does not allow for electron exchange coupling to
the substrate expressed in eq. (11.5)

In the asymptotic regime, the lateral interaction may
be analytically tractable but is generally insignificant. At
short distances, the interaction is far more complicated,
since it depends on all the occupied states and not just
those at one point on the Fermi surface. By the distances
that the asymptotic form dominates, the interaction is
quite small and is often masked by other interactions de-
caying like R−3. Thus, a particularly significant result
of Lau and Kohn is: if the indirect interaction is me-
diated by a surface state (assumed to be circularly sym-
metric), the singular nature of expression (11.29) appears
in the first derivative of G(k||) at 2kF , and the prefac-
tor of cos (2kF R) in eq. (11.27) becomes R−2! Of course
kF is now associated with the cylindrical Fermi surface.

The slower decay should in retrospect be not so surpris-
ing, since the curvature of the cylinder vanishes along the
axis direction, so that the form derived by Koster would
diverge. For the more general cases of a [2D] hexago-
nal or square tight-binding substrate, Volokitin (1979)
and Braun and Medvedev (1989), respectively, also find
asymptotic R−2decay, the latter suggesting that such be-
havior might be seen on Re (0001). With the axis of the
cylindrical Fermi surface parallel rather than perpendic-
ular to the physical surface, as obtained by adsorption
onto the edge of a semi-infinite square tight-binding net,
Braun (1981) and Braun and Medvedev (1989) find R−4

and R−2 for the “surface” [edge] and “bulk” contribu-
tions, respectively, to the interaction energy; the physical
analogue is Re (101̄0) in the [1̄21̄0] direction.

Lau and Kohn (1978) also consider a model in which
the Fermi surface is defined by two exactly parallel planes
spaced ∆k apart in the x direction; they find Ex ∝
x−1 cos(∆kx). Braun (1981) and more explicitly Braun
and Medvedev (1989) illustrate this decay for the case
of a tight-binding chain as substrate. In rederiving these
asymptotic behaviors, Flores et al. (1979) also find a frac-
tional exponent for a conical Fermi surface. Lau and
Kohn’s idea of mediation of interactions by quasi-one-
dimensional states with consequent x−1 decay has cap-
tured the imagination of many for years but has only very
recently been applied to a physical system: H/Ni(110)
(Bertel and Bischler 1994; Gumhalter and Brenig 1995).
This speculative recent work is discussed at the end of
§11.4.3.

Further analytic progress was achieved by Brodskii
and Urbakh (1981) (For a more general theoretical re-
view from their perspective, see Urbakh and Brodskii
(1985).) They note that in the Lippmann-Schwinger in-
tegral equations underlying the formalism in §11.2.2.2,
behavior is dominated by poles in the Green’s functions
at the resonance energies of the closely-spaced and the
infinitely-separated adatoms, as well as by the singularity
in the energy spectrum of the substrate. Making a zero-
range potential approximation, they recover the struc-
ture of the asymptotic form reported by Einstein (1978).
They also obtain a somewhat similar expression assum-
ing a separable potential. More remarkably, they de-
rive, with suitable approximations, analytic expressions
for the “intermediate asymptote” regime, for smaller sep-
arations than the asymptotic regime. In trying to make
contact with experiments, they consider both wide and
narrow bulk bands, surface bands, and possibly different
species of adatoms. Including the possibility of interac-
tions between heterogeneous pairs, they produce a table
with at least four different power-law decay exponents.

Apparently independent of all the above work, Ebina
and Kaburagi (1991) apply methods of Brovman and Ka-
gan (1974) for finite-temperature Green’s functions to
study interactions on jellium substrates. By approximat-
ing surface electrons as two-dimensional objects, they im-
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plicitly focus on interactions mediated by surface states.
From a step-like anomaly in the second-order susceptibil-
ity, they find a trio interaction dominated by wavevector
kF
√

3. In their calculations, there is also a contribution
from wavevector 2kF . Seemingly this competition in the
asymptotic regime reflects the two interaction terms in
eq. (11.21).

While most of this chapter is devoted to individual
adatoms on flat surfaces, it is worth mentioning some rel-
evant results for vicinal surfaces, i.e. surfaces misoriented
slightly from high symmetry directions. On semiconduc-
tors, the energetic interactions between steps, if notice-
able, are repulsive. In contrast, on metals evidence is
emerging that the interactions can be oscillatory in sign.
We discuss this novel application further in §11.4.3.
11.3. Attempts to Model Real Systems
11.3.1. Tight-Binding, Jellium, and Asymptotic-
Ansatz

The philosophy behind the single-band tight-binding
calculations of ES is that the d-band is primarily respon-
sible for the lateral indirect interactions. Burke(1976)
raised doubts about the adequacy of this idea, even for
refractory transition metals like W, by performing more
realistic tight-binding calculations with a five-fold degen-
erate substrate band. His goal was to reproduce the pair
data for transition metals on transition metals, gleaned
from experiments performed by Tsong and coworkers
(1973, 1975), Bassett (1975), and Graham and Ehrlich
(1974) using field ion microscopy. Generalizing ES, Burke
first showed how five-fold degenerate adatoms may be in-
corporated into the formation starting with eq. (2.9) by
an orbital-peeling matrix procedure. The idea was to
1) focus on one of a pair of nearby adatoms, 2) remove
it from the system orbital by orbital, and 3) replant it
infinitely far away (as though there had been originally
five single-level adatoms rather than one at each site of
the pair). In this procedure, the bulk is unspecified. In
actual calculations, the substrate was the (100) or (110)
face of a semi-infinite bcc crystal, with adatoms imag-
ined as the same element (viz. W) as the substrate and
sitting in the otherwise vacant lattice sites above the sur-
face. All diagonal matrix elements are set at the energy
zero; the possibility of having to modify what amounts
to εa = 0 is dicussed and dismissed, thereby neglect-
ing self-consistency corrections completely. Overlap is
also excluded. Slater-Koster (1954) matrix elements be-
tween nearest and next-nearest sites are calculated in
terms of the two sets of 3 d-d tight-binding parameters.
Alas, these six values are simply scaled up from narrow
band values [Pettifor, 1969], ignoring any details of hy-
bridization with s-p electrons. To compute the substrate
Green’s functions, Burke combined the continued frac-
tion approach with a scheme counting poles and zeros
on the real energy axis. When the adatoms are sepa-
rated by just a [bulk] nearest or next-nearest neighbor
distance, a direct interaction between them can (and

should) also be included. With no direct interaction, the
results look similar to those of ES: oscillatory in sign,
peaking in strength when εF is near εa. Inclusion of the
direct interaction makes a substantial difference for small
interadatom separation, leading to an attraction at all
εF due to the bonding between the adatoms themselves
(Desjonquères and Spanjaard 1993). Overall, Burke re-
confirms that the pair interaction energy has roughly the
same size as in ES and that it oscillates as a function of
εF for fixed separation and as a function of R for fixed εF .
In a rather cursory look at decay with separation, Burke
finds much faster fall-off on the (110) face than the (100);
there are no analytic results. Burke was disappointed
to find the calculated pair binding of a nearest-neighbor
dimer on the (110) surface to be nearly five times the ex-
perimental value of 0.3 eV [Tsong and coworkers (1973,
1975), Bassett (1975)]. Another difficulty is that sub-
sequent work suggested that the adsorbed W sits in a
“surface site” rather than a “vacant lattice site”. Burke
alleged this makes little difference but gave no support-
ing evidence; in light of the results of ES – cf Table 11.1,
especially the difference between the two bridge configu-
rations – this insensitivity is surprising. Burke suggested
a number of sources of error, but aside from adding a
Coulomb counter term or massaging parameters, it is not
clear how to improve matters. His dissatisfaction with
this approach was heightened when he could not explain
the ordered phases of O/Ni(100)(Holloway and Hudson
1974, Demuth and Rhodin 1974); in this case the com-
puted strength was typically much too small, of order
1-10 meV, to account for disordering temperatures.

As discussed in §11.2.6, Flores et al. (1977a), Lau and
Kohn (1978), Le Bossé et al. (1978, 1979), Johansson
(1979), Johansson and Hjelmberg (1979), and Eguiluz et
al. (1984) showed that with a jellium substrate there were
also indirect interactions of substantial magnitude. The
last group in fact explored the interaction between two
protons on/in Al as a function of separation, for several
distances from the surface. A major result of the latter
four of these studies was that the ultimate [R−5cos(2kF R
+ φ)] asymptotic regime is not reached till separations R
so large that the interaction is negligible. At shorter spac-
ings, the interaction goes first like R−3cos(2kF R + φ), as
in the bulk; for larger R, typically those of most inter-
est, the decay exponent increases smoothly to the surface
value of 5. Rogowska and Wojciechowski (1989,1990) use
these ideas to consider noble-metal adatoms on jellium,
using the exponent 3 exclusively (for separations larger
than suggested by Johansson and Hjelmberg (1979)), of-
fering ways to compute the charge density from which
to get kF . While this approach may be reasonable for
free-electron-like substrates, the eventual application to
a W(110) substrate (Rogowska and Kolaczkiewicz 1992)
seems questionable.

Proposing an alternative to the cluster-based picture of
H-H interaction of e.g. Grimley and Torrini (1973), Flo-
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res et al. (1977b) consider the system H/Pt(111). From
a variety of experimental evidence, they argue that the
H atoms sit in regions of high electron density, viz. cen-
ter sites. They then invoke [without justification and
rather implausibly] the asymptotic form of the interac-
tion, eq. (2.27), for 5 structures involving separations be-
tween one and two Pt nearest-neighbor spacings. Taking
into account the coverage of the ordered phase and the
idea that the assumed potential form must have a min-
imum at the pair spacing of the ordered structure, they
deduce this spacing and the associated graphitic 2×g
overlayer, found subsequently by LEED (Van Hove et al.
1978). Noting that for most of the structures there are
at least two identical nets with the particular choice of
neighbor spacing, they argue for the existence of two dif-
ferent binding states, consistent with experiment (Christ-
mann et al. 1976). Consistent with experiment again,
these become identical at monolayer coverage, when both
nets are complete (Burch 1980).
11.3.2. Embedded Cluster Model

Muscat (1985a) [Muscat and Newns (1981)] was the
first to allow explicitly for contributions of both free and
d-like electrons in producing lateral interactions between
adatoms, in his case H atoms. In his embedded clus-
ter model, spheres are centered on the sites of the H
adatoms as well as on several nearby metal atoms in the
substrate. Within the latter muffin-tin spheres, he places
self-consistent bulk band-structure potentials (Moruzzi et
al. 1978). The spheres are then embedded in some model
of a free-electron gas, usually infinite- barrier jellium. (In
some later work, the jellium contribution is taken from
effective medium theory (Nørskov 1982, Nordlander and
Holmström 1985), discussed below.) The d-wave con-
tribution comes from the λ = 2 solutions. Again, in-
teraction energies are calculated from changes in all the
one-electron energies. The technique was applied to a
wide variety of late-transition and noble metal substrates.
Pair interactions generally have the correct sign and or-
der of magnitude to corroborate the energies deduced
from Monte Carlo simulations of the experimental phase
diagram (but were often off by factors of very roughly
3). In these calculations the distance d between the H
proton and the jellium edge (taken as a plane half-way
between the surface atoms and what would have been the
next plane above the surface (Muscat 1986)) is the only
explicit adjustable parameter. By quoting the results for
a few values of d, Muscat gives some idea of an intrinsic
uncertainty in this approach. While the variation is not
negligible, the qualitative and usually semi-quantitative
results are not overly sensitive.

More specifically, this method also evaluates inter-
action energies based on integrations over one-electron
phase shifts. For a pair of adatoms, an explicit subtrac-
tion is required (in contrast to eq. (11.15)). As an illus-
tration, the phase shift for a single H muffin tin centered
zo from the infinite barrier is

η(ε) = tan−1 1− jo(2kzo)
cot δo − no(2kzo)

, (11.30)

where δo is the phase shift of a single muffin tin in a free-
electron gas. For two H atoms, the spherical Bessel func-
tion jo(2kz o) is replaced by jo(kR) - jo(k()), similarly for
the spherical Neumann function no(2kz o), and there is a
second tan−1 term in which these Bessel functions are
added rather than substracted. To calculate δo one must
stipulate the spherical potential in the muffin tin; Mus-
cat and Newns (1981) choose a simple exponential with a
prefactor set to produce a bound state just below the bot-
tom of the sp-band of Ni. On jellium [at the separations
of C sites on Ni(111), neglecting any difference between
“fcc” and “hcp” sites], they then find E1 = 900 meV, E2

= -70 meV, and E3 = -35 meV. Since E2 < E3, these
interactions would lead to a (1 ×1) rather than the ex-
perimentally observed graphitic (2 ×2). Next, they add
a [hexagonal] cluster of [seven] spheres at the appropri-
ate positions to represent the top layer of Ni. The effect
is calculated using standard multiple-scattering (KKR)
techniques, using only the l=2 component of the Ni-
centered spheres. To the relatively simple argument of
tan−1 above, one subtracts summations over products of
scattering matrix elements. In this case, for d=0, they
now find E1 = 450 meV, E2 = 2 meV, and E3 = -9 meV.
(As a measure of sensitivity, for the largest |d|, d=-0.4,
E2 = -10 meV and E3 = -19 meV. For Cu with d=0,
E1 = 600 meV, E2 = -2 meV, and E3 = 0 meV.) To
calibrate these numbers, Bartelt et al. (1983) show with
Monte Carlo simulations that the transition temperature
at the saturation coverage of the overlayer (i.e. the cor-
rect number of adatoms to form a defect-free overlayer)
is below 100K, far below the value of 270K determined
in LEED experiments by Christmann et al. (1979).

Extending earlier work (Muscat 1984b and 1985b),
Muscat (1986) gives the most comprehensive results,
treating the close-packed faces of seven substrates: Ti,
Co, Ni, Cu, Ru, Rh, and Pd. He first shows that the
fcc site is more favorable for H adsorption than the hcp
site (by about 10 meV for Ni up to 137 meV for Ru),
except for Cu. Most of this energy is due to one-electron
contributions, computed as described with phase shifts.
To assess Coulomb corrections due to changes in elec-
tron density at the adsite, an effective medium function
is computed. This correction is roughly an order of mag-
nitude smaller, around 10 meV. The principal goal was
to evaluate the relative stabilities of the ground states of
various possible ordered overlayers. In this regard, pair-
wise interactions alone, out to sixth neighbor (i.e. third
neighbor for the Ni’s or the same kind of 3-fold site),
suffice. For Ni, Co, Ru, Rh, and Pd, the dominant inter-
action is an attractive sixth neighbor [producing (2 ×2)
islands]. An unsettling feature of the numbers is that the
interactions do not tend to decay with increasing separa-
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tion; these attractions have the largest magnitude, except
for the very-short-range enormous E1 repulsion.

For H/Pd(111), Muscat confesses substantial problems
in comparison with experiment: his interactions are quite
small, dominated by E6

∼= -10 meV, which would produce
a p(2 ×2) rather than the observed graphitic (2×2). He
also notes in comparison with EAM calculations by Foiles
and Daw (1985) that he does not obtain subsurface oc-
cupation, which they found to be crucial. On the other
hand, in reexamining the system H/Ni(111) with larger
clusters, he basically reproduces his earlier values for E1,
E2, and E3 but now cites small E4 and E5repulsions and a
remarkable attraction E6 = −18meV (at an H-H separa-
tion twice the substrate nearest-neighbor distance). He
claims “excellent agreement with experiment” (Christ-
mann et al. 1979). This conclusion provides an oppor-
tunity to warn the reader that there are so many de-
grees of freedom in these systems that one can easily be
tempted into unwarranted enthusiasm. In this case, Mus-
cat obtains not only the correct ordered state, a graphitic
(2×2), but even a good estimate of the disordering tem-
perature for the saturation coverage. However, a more
detailed look at the experiment reveals a fairly broad
(2×2) region in the phase diagram which disorders con-
tinuously to a disordered state. In a Monte Carlo simu-
lation using Muscat’s interactions, Roelofs et al. (1986)
find, in contrast, a very narrow pure (2×2) region sur-
rounded by very broad coexistence (“island”) regions
produced by the anomalously strong 6th-neighbor attrac-
tion. Roelofs (1982) and Nagai (1984) both wrote down
sets of interactions based on fits to the whole phase dia-
gram rather than on any microscopic computation; their
sets had relatively weaker E6 interactions and stronger
shorter-range repulsions.

Another problem with the embedded cluster model
is that it is expensive to extend the clusters, since the
number of spheres grows rapidly with number of shells.
Reduced symmetry in the clusters severely complicates
the calculation, making it taxing to include local distor-
tions. In general, there is no unambiguous way to find
the parameter d nor to assess the accuracy. It is not clear
what would happen for a transition metal with wider d-
bands or for a more complicated adsorbate. In spite of
these criticisms, I hasten to add that these calculations
were the state-of-the-art in their time. They made sev-
eral clear predictions and usually produced energies with
sensible magnitudes.
Special case H/Fe(110):

Muscat’s (1984a) most extensive tabulation of trio en-
ergies is in his treatment of H/Fe(110). Experimen-
tal determination of the adsorption site was problem-
atic. Adsorption was first thought to occur in the long-
bridge site (based on LEED (Imbihl et al. 1982)) and
then in the short-bridge site (based on EELS (Baró et
al. 1981)), a conclusion consistent with Muscat’s calcu-
lations. The system has an interesting phase diagram

with a phase transition that was thought to be highly
unusual. Painstaking calculations (Kinzel et al. 1982,
Selke et al. 1983) using lattice gas models were performed
to elucidate the system. Eventually, however, they were
supplanted by the conclusion from detailed LEED work
(Moritz et al. 1985) that H sits in the quasi-three-fold
site and that the ordered phases observed in LEED have
different real-space symmetry.
11.3.3. Effective Medium Theory and Embedded
Atom Method–Semiempiricism

The first of the semiempirical methods (Nørskov 1977),
effective medium theory (EMT) begins with the self-
consistent calculation of the function Ec,Zi(ρ̄) of an atom
i, with nuclear charge Zi, in a homogeneous electron
gas of density ρ̄. [This laborious calculation need be
done only once. While this procedure to get Ec,Zi

(ρ̄)
is typical, Nørskov (e.g. 1993) mentions an alternative.]
For non-noble-gas atoms, these functions have a simple
shape with a single minimum at a value on the order of
0.1bohr−3. In a solid each atom sits in the tails of the
electronic charge density of its neighbors. The total en-
ergy of a solid is then approximated, to first order, by
the sum of Ec,Zi(ρ̄) for all atoms i. Here ρ̄ is the av-
erage of over the atomic sphere. There are correction
terms due to electrostatic effects (discussed in §11.2.1)
and to changes in one-electron energy sums, say between
an adsorbed system and the same atoms before adsorp-
tion (essentially the topic of §11.2.2). An early appli-
cation was to adsorption on jellium (Nørskov and Lang
1980), with later studies of transition metal substrates,
reviewed by Nørskov (1994). Variants of this method
are the quasi-atom approach (Stott and Zaremba 1981)
and the corrected effective medium theory (Raeker and
DePristo 1989,1991).

Applications of EMT to adsorbate-adsorbate interac-
tions has centered on the issue of poisoning and promot-
ing by preadsorption (Nørskov 1993, 1994). Most of this
interaction is electrostatic and was discussed earlier in
11.2.1. From another perspective, the role of rehybridiza-
tion, i.e. altering of the chemical nature of the adsorp-
tion bond, has been stressed by Feibelman and Hamann
(1984) and by MacLaren et al. (1987). These calculations
focus on the change in the local density of states around
metal atoms due to preadsorbed electropositive or elec-
tronegative atoms. Part of this change is electrostatic,
but the rest, in EMT language, must be attributed to
one-electron effects, i.e. the sort of covalent aspects dis-
cussed in 11.2.2.

There is a general result that emerges nicely in EMT
(Nørskov 1993) that will be useful in later analyses. If one
plots the cohesive energy of an fcc metal as a function of
coordination number for fixed interatomic spacing, the
curve does not decrease linearly as it would for a sim-
ple nearest-neighbor pair interaction model. Instead the
decreasing curve has a positive second derivative. The
effective pair interaction, defined as the derivative of this
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curve, is therefore enhanced for small coordination num-
bers (below 5) and diminished for larger such numbers
(above 5 or 6), compared to (1/12) the bulk cohesive
energy. Thus, interactions on surfaces should be con-
siderably smaller than one would predict based on near-
neighbor bond models gauged by bulk cohesive energy.

The semi-empirical embedded atom method (EAM)
(Daw et al. 1984, 1993, Foiles et al. 1986) has offered
a relatively easy way to contend with the low-symmetry
problems. In this approach, the cohesive energy is writ-
ten

Ecoh =
∑

i

F


∑

j

′ρa(Rij)


 + 1/2

∑

ij

U (Rij) ,

(11.31)
where the ρa’s are spherically-averaged computed atomic
electron densities, the prime on the summation indicates
j = i is excluded, and U is the electrostatic Coulomb
repulsion ZiZje2/|Rij |. The effective charge densities Z
inserted into U are determined by the formula Z (R) =
Zo (1 + βzR) exp (−αzR). The embedding energy can be
determined numerically by embedding an atom in a ho-
mogeneous background, as in effective medium theory
(Nørskov 1982, 1994) or by using the “universal” bind-
ing curve of Rose et al. (1984):

E (a) = −Eb (1 + a∗) exp (−a∗) , a∗ ≡ (a− ao)/λ,
(11.32)

where a0 is the equilibrium separation. Typically, the pa-
rameters are adjusted to fit the bulk properties such as
lattice constant, cohesive energy, and elastic constants
(e.g. λ can be obtained from the bulk modulus). For
adsorption of one species on another, one can fit adsorp-
tion position and vibration frequencies (Voter 1987). In
the “glue model” (Ercolessi et al. 1986, 1988) [and for
Voter-Chen (1987) potentials] one fits, in addition to F
and U, the atomic density ρ (Tosatti and Ercolessi 1991).
The fact that fitting functions are not uniquely specified
leaves the method vulnerable to criticism , but alterna-
tively can be viewed as a strength in that one can tailor
functions for specific applications and gauge uncertain-
ties by use of different sets of functions. In contrast, in
an earlier but similar scheme, Finnis and Sinclair (1984)
took the functions F to be proportional to the negative
square root, as they would be in the lowest approxima-
tion to a tight-binding model.

Since the numbers produced by EAM and similar cal-
culations can be tuned somewhat arbitrarily, they are
most useful in identifying trends and rough magnitudes
that do not depend on the detailed choices. For high-
symmetry systems more exacting band-structure tech-
niques become feasible and offer more reliable informa-
tion. (However, the flexibility of EAM can often lead
the practitioner to unexpected structural revelations that

might elude someone calculating with a scheme that de-
pends on human ingenuity to determine the likely choices
for equilibrium sites. E.g. for H/Pd(111) the existence
of subsurface sites and their domination of the interac-
tions needed to describe the phase diagram (Felter et
al. 1986, Daw et al. 1987) were discovered “by accident”
during dynamical simulations!) EAM is quite helpful in
assessing the effects of coordination number on bonding.
This theme underlies more exact work by Feibelman, to
be discussed below. The driving program developed at
Sandia-Livermore easily allows for substrate relaxations
or for preventing the motion of any atom in any direc-
tion. On the other hand, since there is no Fermi surface
in the method, EAM cannot describe any effect involv-
ing Friedel oscillations, such as the asymptotic form of
lateral interactions.

In EAM calculations of H/Ni(111) and H/Pd(100),
Einstein et al. (1990) assessed the ability of EAM to pre-
dict lateral interactions. The origin of the interaction in
this framework comes from the change in the argument
of the embedding functions of the atoms in the cluster
of atoms in the vicinity of the adatoms. Presuming the
overlap of the adatoms is negligible and their atomic den-
sity decays fairly rapidly, the primary contribution to the
interaction, in the EAM formulation, comes from sub-
strate atoms “touching” both adatoms. Specifically, by
expanding the embedding functions, we focus attention
on the effect of a small increase in density due to a second
adatom adding density to a substrate site (Foiles 1985):

∆Ecoh
∼=

∑

j

[
F ′i (ρ̄i)ρa

j (Rij) + F ”
i (ρ̄i){ρa

j (Rij)}2
]

(11.33)

To lowest order, the positive curvature of F(ρ) leads
EAM to predict repulsive interactions, with their mag-
nitude proportional to the number of shared substrate
nearest-neighbors (except at the shortest separations,
when direct interactions can overwhelm the physics). We
will find a similar result below in a second-moment, tight-
binding picture (cf. eq. (11.37)). In first-principles cal-
culations Feibelman (1988, 1991) found such a repulsion
for Al-S and Al-Te dimers on Al (100) and for H-S on
Rh(001).

Furthermore, for trio interactions, EAM is rather in-
sensitive to the configuration of the trimer: because the
charge densities are spherical, the only dependence of the
trio interaction on the angle (as opposed to the length of
the legs) of the trimer comes from substrate relaxations.
Such relaxations are particularly small for close-packed
(111) fcc surfaces. (Cf. Wright et al. (1990), discussed
near the end of §11.3.5, for evidence that a (100) fcc
surface can be expected to have significant relaxations.)
Thus, for (111) fcc surfaces, in EAM one can to good
approximation replace explicit treatment of trios (and
higher-order multi-atom terms) by pair energies which
depend on coordination (Fallis et al. 1995). While this
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approximation may be reasonable for the systems for
which EAM works well, viz. late transition and noble
metals, it is unlikely to be viable for most refractory
transition-metal systems (even their closest-packed (110)
bcc faces), since angle-dependent bonding is important;
cf. §11.3.5. On the other hand, when viable it can be
very helpful when doing simulations, and it highlights the
idea that high-coordination atoms bind less strongly to
another atom than low-coordination atoms. In the bond-
saturation model (BSM), one posits that the cohesive en-
ergy of each atom depends only on its (nearest-neighbor)
coordination. For the particular case of Pt(111), Fallis
et al. (1995) report that the bonding of adatoms can be
characterized simply by a quadratic expression A + Bz +
Cz2. Here z, the coordination number within the adlayer,
ranges from 1 to 6, A = -961.423 meV, B = 97.5456 meV,
and C = -4.86116 meV. The positive value of B is a reflec-
tion of the positive curvature of the embedding function
in EAM. The strength of the interaction between two
adatoms with coordinations z1 and z2is then the average
A + B (z1 + z2)/2 + C (z1

2 + z2
2)/2. The same tac-

tic can be applied more generally to problems in growth,
where the total coordination rather than just that in the
overlayer is considered. The dependence of bond strength
on coordination was already discussed early in this sec-
tion in the context of EMT and is reconsidered in §11.3.6.

For H/Ni(111) only the first-, second-, and third-
nearest neighbors are above 1 meV, since only these in-
volve shared substrate atoms. Their magnitudes are com-
parable to those found by Muscat (1984b, 1985b, 1986)
but all are positive, consistent with behavior deduced
from Monte Carlo fits of the phase diagram (Roelofs et
al. 1986). We found a tiny attractive trio interaction
for the smallest equilateral triangle of adatoms in the
same kind of three-fold site, comparable in size to that
found by Muscat but of the opposite sign. Overall, the
signs of the interactions seem more reliable than Muscat’s
and there are no anomalous attractions, but the second-
neighbor repulsion is less than 3/2 of the third, a p(2×1)
overlayer is predicted instead of the observed graphitic
(2×2) [or (2×2)-2H] (Christmann et al. 1979). Truong
et al. (1989) extended EAM to a procedure called EDIM
(embedded diatomics-in-molecules); they obtained mag-
nitudes for the lateral interactions more consistent with
expectations from experiment, but with the same sign as
we found. There were a number of modifications, with
no commentary on the effect of each. A likely possibility
is the allowance, for Ni’s in the top layer, of a different
number of s-electrons from the bulk value.

Since EAM successfully treated alloying at surfaces
and phase transitions of one noble metal on another
(Foiles 1987), we expected (Einstein et al. 1990) that
late transition metals adsorbed on each other would be
more accurately described in EAM. Wright et al. (1990)’s
studies of Pt, Pd, and Ni on Pt(100) bear out this belief.
We defer this discussion, as well as comparisons between

EAM and tight-binding results, till the end of §11.3.5.
Another issue of concern for adsorbates is the large

charge gradient near surfaces. For the reconstruction of
Au(110), EAM predicts (Foiles 1987) a (1×3) pattern
rather than the observed (1×2). To rectify this problem,
Roelofs et al. (1990) include the leading correction from
such gradients, using Daw’s (1989) modification of EAM
formalism. Moreover, to treat this system with Monte
Carlo simulations, they decompose the interactions of Au
atoms in the top layer, finding that not only are trios
significant, so are “quartos” (i.e. the interaction energy of
four surface atoms minus the constituent pairs and trios);
even the close-packed “hexto” interaction has a strength
-3.4 meV. To assess the role of the gradient contribution,
I quote some numbers for pair interactions I computed in
an early stage of this project before the corrections were
implemented: for adatoms on neighboring rows, at the
same position along the row or shifted by one unit [so
somewhat diagonal], the interactions are -10 and +17.6
meV, respectively, without the gradient term vs. -2.6
and +12.3 meV with corrections. In short, the gradient
corrections do not change the qualitative results but are
important for quantitative assessments.

More recently, Haftel (1993) proposed that many of the
problems in applying EAM to surfaces could be cured by
increasing the curvature of the embedding functions F(ρ),
particularly on the low-density side of the bulk value.
The impact of this procedure on pair interactions has
not yet been explored.
11.3.4. Empirical Schemes

To illustrate why EAM and related calculations are
called semi-empirical rather than empirical, in spite of
the several adjustable parameters, we present an exam-
ple of a truly empirical scheme. To take advantage of
the success of computationally intensive schemes such
as FLAPW (Wimmer et al. 1981) to compute details of
monolayer adsorption, Gollisch (1986) constructed an ef-
fective potential Ui, a generalization of the Morse form,
with several parameters to be fit to the numerical “data”:

Ui =
∑

i 6=j

bij [Qij(rij)]
sµλij−





∑

i 6=j

aij [Qij(rij)]
λij





µ

(11.34)

(11.34)
The two global parameters s and µ, on which the qual-

ity depends sensitively, adjust the exponents of compet-
ing terms. Three more parameters, a, b, and λ, adjust
the scale and exponent of a separation-dependent inter-
action function Q, here a sum of two exponentials, intro-
ducing four more parameters. These seven parameters,
computed from bulk properties, are tabulated for each el-
ement of interest. The off-diagonal a’s, b’s, and λ’s (i.e.
those for differing atoms) were computed as the geomet-
ric mean of those values for the two constituents.

As a test of the accuracy of the numbers produced by
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this scheme, Roelofs and Bellon (1989) computed the re-
sultant phase diagrams, using transfer-matrix finite-size
scaling, for Cu and Au on W(110). In both cases the pair
interactions for the three shortest separations were all
attractive, indicating the formation at low temperatures
of coexistence between a low-coverage lattice “gas” and
a high-coverage lattice “liquid”, both with (1×1) sym-
metry. Accepting Gollisch’s pair values, they tried to fit
the experimentally determined phase boundary by tuning
the multisite interactions. For Cu/W(110) the “quarto”
interaction is negligible while they estimate that the (re-
pulsive) trios underestimate the actual values by about a
factor of two. For Au/W(110) they find that by including
the repulsive trio interactions computed by Gollisch (as
well as the attractive pairs) then to fit the temperature-
coverage phase boundary would require a repulsive rather
than the computed attractive quarto (with a magnitude
at least a third smaller).
11.3.5. Field-Ion Microscopy, Modern Tight-
Binding, and More on Semiempiricism

While field ion microscopy (FIM) has long been ar-
guably the most direct and convincing way to see atoms
on surfaces, only in the last decade or so have technologi-
cal advances made it possible to accumulate enough data
to contribute detailed quantitative information about
the interaction between adsorbates. In the earlier years
of this work, it was necessary to azimuthally average
data in order to obtain tolerable statistics (Tsong 1973).
Casanova and Tsong (1980, 1982) plotted the pair inter-
action energy of Ir-Ir, of Ir-W, and of Si-Si on W(110)
as a function solely of separation; hence the oscillating
curve added to guide the eye actually misleads it: This
plotting strategy might be satisfactory for physisorbed
atoms (which are not amenable to FIM), but it obscures
the anisotropy that we have seen to be ubiquitous and sig-
nificant. Moreover, Watanabe and Ehrlich (1991) com-
ment that such a plotting scheme could mislead one into
thinking that a diffusing adatom could get trapped be-
tween two radial barriers in the potential, when in fact
the adatom can skirt the repulsive sites because of the
strong anisotropy of the interactions.

In recent years it has become possible to accumu-
late enough data to assess interactions between pairs of
adatoms at dozens of distinct separations, as best illus-
trated by an intensive set of experiments by Watanabe
and Ehrlich (1989, 1991, 1992), Ehrlich and Watanabe
(1991). This process can be eased by using two different
atoms, one of which bonds more strongly than the other,
so that one can study equilibration at a temperature at
which only the more weakly bonded atom is mobile.10 An

10 This idea dates back at least to 1977, when Cowan and Tsong
(1977) studied the interaction between a W adatom and a sub-
stitutional Re atom on W(110). Without benefit of a PC image

additional advantage is that the stationary atom can be
set near the center of a facet, minimizing the number of
“snapshots” with an adatom near the edge of the terrace,
where fringe fields make the data questionable. Accord-
ingly, Watanabe and Ehrlich (1989, 1991) fixed a W or
a Re atom near the center of a W(110) plane on a FIM
tip and monitored the distribution of a mobile Pd atom.
They observe that Pd is most frequently found at the
nearest-neighbor position of the fixed adatom, but the
nearby second and third neighbor sites are not populated.
From 1638 observations of a Re-Pd pair equilibrated at
205 K, they deduce E1= -36.8 ± 1.0 meV, E2 & 45 meV,
E3 & 45 meV; from 1288 observations of a W-Pd pair
equilibrated at 225 K, they find, rather similarly, E1=
-50.4 ± 8.0 meV, E2 & 40 meV, E3 & 40 meV. [Actually,
these are free energies rather than energies; we neglect
the distinction in quoting numbers. See §11.4.2 for more
comments on the analysis.] Along the close-packed [11̄1]
the interactions are attractive out to ∼10 Å. The decay
in strength is monotonic except for the second site (E4),
which is considerably smaller, giving an oscillatory ap-
pearance to the decay vs. R. Along the [001] direction
the interactions tend to be repulsive, along the [11̄0] be-
yond one spacing, they tend to be weakly attractive, in
both cases with some exceptions. Overall, then, the in-
teraction is highly anisotropic and oscillatory in sign, ex-
tending to large separations, with no simple pattern, i.e.
consistent with the general picture presented in §11.2.2.

With further work they were able to observe pairs of
identical adatoms, Ir-Ir (Watanabe and Ehrlich 1989,
1992) and Re-Re (Watanabe and Ehrlich 1992) on
W(110). From 2232 observations of the Ir pair equili-
brated at 375 K, they found qualitatively similar behav-
ior to the two heteropairs: E1= -86 ± 2 meV, E2, E3 ≈
70 ± 30 meV. In all directions there are oscillations in
sign and non-monotonic decay in amplitude. (See Fig.
11.6) From 3145 observations of the Re pair equilibrated
at 390 K, they find different behavior in that the inter-
action is repulsive at all close spacings: E1= +21.5 ±
9.3 meV, E2, E3 > 70 meV. At larger R, the interactions
again become attractive and are dependent on the ori-
entation of the pair on the surface; the interaction is os-
cillatory and anisotropic. Watanabe and Ehrlich (1992)
also try to assess the trio interaction. It is not feasible to
measure this interaction directly because at the tempera-
tures at which trimers dissociate they liberated adatoms
quickly move to the edge. From an Arrhenius plot of
lifetimes of linear (straight) trimers, they deduce a dis-
sociation energy, from which they subtract the diffusion
barrier Ed to find the trimer binding energy. From this
they subtract the pair energies of the three legs of the

digitizer, the found strong deviations in the site distribution from
random, i.e. the same measurement with no Re atom substituted.



26

FIG. 11.6: a) Distribution of separations between two Ir atoms on W(110) at 375 K. Observations over the entire surface have
been folded into a quadrant, and distant separations not plotted. [Along the bounding axes the number of observations is
doubled.] b) Distribution of separations between two noninteracting identical atoms on W(110). c) From the ratio of these two
distributions, the [free] energy of interaction between the Ir pair is computed and plotted as bars vs. R. Gray bars indicate
repulsions, black bars attractions. Standard errors are shown at a few locations, based on statistical uncertainty. (From
Watanabe and Ehrlich (1992), with permission)

trimer to obtain an attractive trio interaction of -130 ±
70 meV for the linear (L) configuration. On (110) bcc
surfaces there are two other trimer configurations with
two nearest-neighbor pairs (i.e. legs in the [111] direc-
tion): nearly equilateral (P for “pointed”), and H2O-like
(O for “open” or bent). For Re the trio interaction is
even more dramatic, stabilizing L and O trimers in spite
of the short-range repulsions, with energies of -240 meV
and -210 meV, respectively (Fink and Ehrlich 1984b),
suggesting trio attractions of -340 meV and at least -
380 meV, respectively; the P trimer is unstable, so has
a quite different trio energy. In both cases the adatoms
are at neighboring sites and are comparable in size to
the substrate atoms, so that direct interactions undoubt-
edly play a dominant role in these interactions, which are
much stronger (relative to the constituent pairs) than ex-
pected from §11.2.3.1.

Unfortunately, many kinds of atoms that cannot be
probed with FIM: they are largely limited to refractory
transition metals. Scanning tunneling microscopy (STM)
does not share this restriction; it has been used to ex-
amine a breathtaking range of systems (Güntherodt and
Wiesendanger 1992). On the other hand, one cannot
quench a whole [STM] sample nearly so quickly as one
can an FIM tip11 to get “snapshots” of rapidly evolving

11 Watanabe and Ehrlich (1991) note that FIM tips can be cooled
from a high equilibration temperature of 350 K to the imaging
temperature of 80 K in under 5 seconds.

configurations, even if one has a low-temperature STM.
If the STM scan time is not fast compared to the hop
rate of the adatoms, the analysis is considerably more
difficult. (Cf. Giesen-Seibert et al. 1993.)

Much of the theoretical work in the 1980’s on pair in-
teractions was spurred by earlier FIM measurements of
transition metals on [other] transition metals. In exam-
ining the dimer attraction for the 5-d series on W(110),
Bassett (1975) measured a striking minimum for Re, with
a rapid linear increase in attraction for lower Z and a
slower increase for heavier Z. This observation was par-
ticularly intriguing because the adsorption energy and ac-
tivation energies where largest in the middle of the series
and so motivated Desjonquères and Spanjaard (1993) and
coworkers to undertake several theoretical studies. Bour-
din et al. (1985) propose a very simple analytical model.
They claim that Burke’s excessively large energies were
due to his neglect of both core-core repulsions and elec-
tronic correlations (but cf. §11.2.4), which they compute
to second order in U/w, where U is the Hubbard-like
intraatomic Coulomb repulsion and w the bandwidth.
Bourdin et al. consider linear trimers at nearest-neighbor
separation. They make several simplifying assumptions:
1) The substrate is rigid and the adatoms sit exactly
at high-symmetry sites. 2) The core-core repulsion is
the same for all the adsorbates. 3) The one-electron,
“band” contribution comes solely from broadening of the
adsorbate levels. Thus, the dominant interaction is di-
rectly between adsorbates rather than through the sub-
strate. This ansatz is only reasonable at short spacings.
(ES explicitly neglected these direct effects in their tight-
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binding calculations.) 4) The local density of states in-
creases with coordination number (as one would expect
from tight-binding theory) and is taken to be constant
over an energy range (as for a 2-d band). 5) The Coulomb
integral U is the same for adatom, dimer, or trimer and
independent of Na, the number of d-electrons on the
adatom. The band contribution to the dimer interaction
energy E1is

Eband
1 = −10

(
Na

10

) (
1− Na

10

)
(w1 − w∞) , (11.35)

where w1 - w∞ is the increase in the width of the
rectangular local density of states due to bringing the
adatoms to neighboring sites. This contribution alone
would produce the expected but incorrect result of max-
imum binding at Na = 5. The additional contribution
from correlation,

Ecor
1 = −90U2
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)]2

(11.36)
is positive and tends to destabilize the dimer. They also
consider trimer energies, adjusting U first to produce the
experimental dimer pair energy. The estimated trio en-
ergies are (with a small exception) attractive and range
from the same magnitude as the pair energy down to be-
low an order of magnitude smaller. Olès et al. (1988)
consider the magnetic contribution, which they find to
be repulsive by a similar amount because the magnetic
moment on the Re atoms decreases considerably when
the dimer forms. Bourdin et al. (1987) find that on more
open bcc surfaces (viz. W(211) and Ta(211)), on which
the adatoms can increase their coordination number by
additional bonding to subsurface atoms, the repulsive
contributions decrease or disappear, and the maximum
bonding of 5d dimers occurs near half filling. In this
study the local density of states for the calculation of
the band contribution comes from a continued-fraction
expansion of the Green’s function. Desjonquères et al.
(1988) also apply their approach to compute potential
energy curves for adsorption of gas dimers on bcc sub-
strates.

Desjonquères and Spanjaard (1993) present an appeal-
ing, simple argument stemming from this work that pre-
dicts that a repulsive interaction between adatoms close
enough to share N common substrate bonding partners
but too far apart to interact directly. When the (z-
coordinated) adatoms are far apart, there are 2z sub-
strate atoms which gain an extra bond to an adatom;
their band energy is proportional to -(µ + β2)1/2, where
µ is the centered second moment of the density of states
of an atom on the clean surface and β ∝ V. When
adatoms share N host atoms, their band energy ∝ -(µ +
2β2)1/2while the energy of the other 2(z–N) substrate

atoms is unchanged. Finally, at close range only 2z–N
surface atoms are coupled to adatoms, N fewer than at
large separation. Hence, in this second-moment picture,
the pair energy E(N)

E(N) ∝ −N
√

µ + 2β2 − 2(z −N)
√

µ + β2 −N
√

µ

+2z
√

µ + β2 (11.37)

∝ N
(
2
√

µ + β2 −
√

µ + 2β2 −√µ
)
≥ 0

This generic result was noted above for EAM in con-
junction with eq. (11.31). In a more sophisticated study,
Dreyssé et al. (1986) find similar results for Re/W(110).
Also considering only d-electrons, they consider the same
three contributions, treating the one-electron energy us-
ing 5-fold degenerate tight-binding bands, the correlation
energy using second-order perturbation theory (but with
local atomic densities computed from their Green’s func-
tions), and the repulsion using Born-Mayer interactions.
They also take some account of self-consistency by shift-
ing atomic levels. (Cf. §11.2.4.) They compute interac-
tion energies for the three trimer configurations, L, P,
and O, as well as the six shortest-separation pairs. For
the pairs, including correlation energytwith intra-atomic
Coulomb integral U = 1.6eVthas a considerable effect, in
most cases reversing the sign of the interaction; U is taken
as just big enough to make the nearest-neighbor pair in-
teraction repulsive, to reproduce experiment. Making use
of an effective coordination number, they obtain for Re
on W(110) the nearest-neighbor pair interaction

E1 = −
(
2
√

2.8 + ζ − 3.35
) Ebulk

coh√
10.4

(11.38)

and for the L trimer interaction (lamentably called
”trio”), i.e. trio plus 3 constituent pairs

E(L) = −
(
2
√

2.8 + ζ +
√

2.8 + 2ζ − 5.04
) Ebulk

coh√
10.4
(11.39)

Here ζ is related to the square of the interadatom hop-
ping. With no direct interactions (ζ = 0), both energies
vanish. With direct interactions (ζ = 1), they estimate
E1 = -1.5 eV and E(L) = -2.9 eV. Additional correlation
effects (since some are seemingly included in the total
energies leading to the formulas) counteract these un-
physically large numbers. The correlation contribution
is about 10% of the band contribution and is most im-
portant for the half-filled band. If local charge neutrality
is invoked (Bourdin et al. 1985), the P-trimer is favored,
inconsistent with experiment (Fink and Ehrlich 1984a,b).
This configuration is destabilized by correlation energies
computed in first-order perturbation theory, stemming
from charge transfer.
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Very recently Xu and Adams (1994, 1995) have devel-
oped a semiempirical scheme for treating bcc transition
metals with minimal non-d bonding (i.e. with about half-
filled d-bands). In the spirit of the Finnis-Sinclair (1984)
discussed after eq. (11.32), they seek to approximate a
tight-binding model. However, rather than using just a
second moment (so square root) approximation to de-
scribe the d-band width, they follow Carlsson’s (1991)
approach and also include third and fourth moments to
describe the band shape, in particular three- and four-
site contributions. (Recall that the n’th moment of a
nearest-neighbor tight-binding model counts paths that
return to the origin after n nearest-neighbor steps.) For
each metal (W, Mo, and V were studied), the model con-
tains 10 adjustable parameters: one to weight each of
three computed moment terms, five to characterize the
pair potential [i.e. the U(Rij) of eq. (11.31)], and a pair of
radial cut-offs for the pair potential and for the moment
terms. These are determined by fitting to 12 bulk prop-
erties, 2 calculated energy differences with other lattice
structures and 10 measured properties: sublimation en-
ergy, lattice constant, relaxed vacancy formation energy,
3 elastic constants, and 4 zone-edge phonon frequencies.
The model differs from a similar one by Foiles (1992) by
including the third-moment term and by using different
fitting criteria, demanding in particular that W(100) and
Mo(100) reconstruct. To test the model, Xu and Adams
computed surface properties. The relaxations agreed well
with experiments and larger-scale computations, and the
surface energies did not suffer the great underestimation
well known to occur for EAM. On the other hand, the
calculations required two orders of magnitude more CPU
time than EAM.

Xu and Adams (1995) recently applied their model
to the pair interaction between W atoms on W(110).
As observed in some previous studies of bcc (110) sub-
strates [cf., e.g., Williams et al. (1978), Roelofs and Bel-
lon (1989)], the pair of quasi-three-fold sites have lower
energy (in this study by a mere 8.8 meV) than the bridge
site between them, where the next layer would grow.
The main findings are that the interactions are strongly
anisotropic (consistent with the highly anisotropic band
structure) and oscillatory in any particular direction. At
large separations, the interaction is slightly repulsive.
The authors attribute this effect to strain fields, which
might well mask electronic effects at large separations;
this notion could be confirmed with a calculation of in-
teractions with the strains prohibited by hand (“frozen
out”). In comparing with Watanabe and Ehrlich’s (1989)
data for Ir pairs on this surface, the authors find general
agreement, particularly when one allows for the experi-
mental error bars. A detailed comparison between cal-
culated W pairs and measured Ir pairs seems risky, since
Re pairs differ notably from Ir pairs on this substrate,
and Re is closer to W on the periodic table. The authors
fret that their computed interaction for nearest-neighbor

W pairs along the 〈111〉 direction is too strongly attrac-
tive at -2.633 eV, while for Ir the measured attraction is
just -0.082 eV. Recalling Burke’s (1976) result that the
strong attraction between neighboring W’s is due to di-
rect interaction, one would expect the Ir attraction to be
at least somewhat weaker since Ir atoms are smaller than
W’s. Xu and Adams present a discussion of the signs of
short-range interactions in terms of bond coordination
numbers and changes in bond strength with bond length
(again, with no frozen-lattice calculations to quantify the
effects); such effects are discussed at length in the next
subsection.

For H/Pd(100) EAM calculations (Einstein et al.
1990) found that the minimum for H atoms to be slightly
below the top Pd plane rather than slightly above. The
magnitudes of the lateral interactions are more consis-
tent with experiment, viz. 87 [94], 54, and -9 meV for
the first-, second-, and third-neighbor interactions, E1,
E2, and E3, respectively. [The bracketed value for E1

was obtained from analysis of ordered overlayers. By
symmetry, local distortions that plague the isolated pair
are removed.] However, since the second is more than
half the first, a p(2×1) ordering is predicted rather than
the c(2×2) observed by Behm et al. (1980). (This prob-
lem as well as the too-low binding site may be due to use
of rather primitive EAM functions which were readily
available for Pd.) The smallest area right-triangle con-
figuration has a trio energy ERT = -25 meV; it plays no
role in the balance between these two ordered states but
does affect the phase diagram, as we will see shortly. It
may not be a coincidence that the placing of H lower into
the surface than in reality leads to more realistic bind-
ing energies: for H/Pd(111) (Felter et al. 1986, Daw et
al. 1987) as noted above, the interactions producing the
ordering come from the subsurface H’s; those on top of
the surface have little interaction, as for Ni(111).

For comparison, Stauffer et al. (1990) have used
a state-of-the-art tight-binding approach to present a
wealth of information on H atoms near Pd(100). The
H atoms are only allowed to sit in lattice planes of the
substrate lattice, so the results for the center site of the
top layer are the ones of most interest. Then E1, E2,
and E3 are +14, -182, and +41 meV, respectively. Re-
moving the constituent pair interactions from their tabu-
lated trimer energies, I find that ERT = -32 meV and the
“linear-triangle” configuration ELT = -72 meV. It would
be interesting to know how these numbers would change
if the H’s were moved slightly above the surface; since
the dependence on layer index is not monotonic, there is
no obvious interpolation. In comparison with our EAM
numbers, the tight-binding ERT is quite similar but ELT

is much bigger than expected even in crude calculations
and certainly in EAM. Moreover, the pair interactions
are starkly different. While their pair energies do lead
to the observed c(2×2) ordered phase, the enormous size
of E2/E1 would produce a broad coexistence region of
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c(2×2) + “gas” that persists to a temperature close to
Tc of the pure c(2×2) phase (Roelofs et al. 1986). Binder
and Landau (1981) had in fact conjectured such regions
(of more modest size) on the basis of Monte Carlo simula-
tions. Such a stable coexistence region would presumably
have been observed in experiment (Behm et al. 1980). It
is my understanding that subsequent experimental inves-
tigation of the low-T, low-coverage region produced no
evidence of islands, and so nothing was published. On
the other hand, it is conceivable that the islands could
be the stable phase at so low a temperature that the
adatoms cannot diffuse adequately to achieve the equi-
librium configuration.

Motivated by FIM measurements, Wright et al. (1990)
applied EAM to Pt, Pd, and Ni on [center sites of un-
reconstructed] Pt(001). Their main goal was to study
whether, for small clusters of adatoms, linear chains or
compact islands were more stable by computing the clus-
ter binding energy, i.e. the difference between the total
energy of the slab plus cluster of adatoms and the same
number of adatoms isolated from each other. For Pt clus-
ters, chains are preferable for clusters of 3 and 5 atoms;
otherwise (up to 9 atoms) compact islands are favored, by
a small but ever greater amount as size increases. These
preferences are consistent with experiments by Schwoebel
et al. (1989). For Pd the results are nearly the same (ex-
cept for 5-atom clusters); in sharp contrast, for Ni the
compact configurations of the clusters are usually not
bound, so chains are favored by a considerable amount.
[Presumably relatedly, Chen and Tsong (1991) find with
FIM that Ir trimers form chains on Ir(100) but clusters
on Ir(111).] Wright et al. (1990) find that substrate re-
laxation is a key factor in these interactions. On a frozen
slab, compact islands are always preferable for Pt and Pd,
and by a more substantial margin for larger clusters; even
for Ni, the compact shape is favored for several sizes. For
each type of adatom and each size, the relaxation con-
tribution (the difference between total energy and that
with a rigid substrate) favors the island configuration.
The essence of this difference is that most of the relax-
ation occurs in the top layer along the circumference of
the cluster, which for given size is clearly longer for the
chain shape. Specifically, around an isolated Pt adatom,
the four substrates relax laterally outward by 0.18 Å and
upward by 0.08 Å. For an atom next to the center of a
4-atom chain, these numbers roughly double to 0.39 Å
and 0.13 Å, respectively, while for an atom at the side
of a 4-atom square, they scarcely increase, rising to 0.23
Å and 0.09 Å, respectively. Furthermore, the substrate
atom at the center of the square cannot [by symmetry]
relax laterally and sinks inward by 0.21 Å. There is no
discussion of the heights of the adatoms when close to-
gether compared to when isolated.

If one allows for these relaxations, it becomes difficult
to define the sorts of lateral interactions we have been
discussing. Nearest neighbors near the center of a chain

will have a different E1from those near the end; moreover,
the size of these interactions will depend on the length
of the chain. Except for Ni, the energies associated with
the relaxations are smaller by a factor of about 1/2 or
1/4 than the energies for a frozen substrate. While the
relaxation issue becomes crucial when we try to distin-
guish between configurations, it may not be paramount
for other properties such as phase boundaries. For frozen
Pt (100), Wright et al. (1990) tabulate the E1to be -299,
-263, and -64 meV for Pt, Pd, and Ni adatoms; E2to
be +59, +4, and +97 meV, respectively, for the three
kinds of adatoms; and ERT to be -76, -12, and -40 meV,
respectively. Thus, the sign of the interaction does not
depend on the kind of adatom. The small E1 attraction
and large E2 repulsion for Ni are important factors in its
preference for the chain configuration, in addition to the
large relaxation difference between the two configurations

For weaker adsorbates than transition metals, the sub-
strate relaxations should be less dramatic or important.
E.g, for H on Ni(111), discussed above, Einstein et al.
(1990) found a negligible contributions from substrate
relaxations: Ni atoms moved by roughly 0.01 Å or less,
and contributed 1/2 meV per adatom in a test calcula-
tion. Furthermore, when the adatoms are in the inter-
mediate (and certainly in the asymptotic range), there
should be little “cluster” shape dependence on the lateral
energies or on the off-diagonal Green’s function Gon. On
the other hand, presumably the local coupling parame-
ter would need to be recalibrated to take such effects into
account, unless it were obtained semi-empirical from fits
to adsorption energies of low-density clusters. More gen-
erally, for stronger adsorbates one must worry seriously
about this problem, as discussed at the end of §11.2.5.
11.3.6. Scattered-Wave Theory

Feibelman (1991) notes that scattering-theory meth-
ods are designed to take advantage of the rapid screening
by metallic-substrate electrons of the potential associated
with defects, specifically adatoms. Because of the screen-
ing, the wavefunctions related to the adatoms can be de-
scribed as solutions to a scattering problem involving in-
cident and scattered Bloch waves of the clean surface. If
N basis orbitals are needed to describe the spatial region
where the potential is unscreened, then one must numer-
ically solve N×N sets of linear equations. This focus on
orbitals in the adsorption region has philosophical simi-
larities to the tight-binding picture explored at the out-
set: one isolates the changes due to adsorption from the
otherwise perfect, semiinfinite substrate. However, here
both the background substrate and the adsorption area
are described with far greater sophistication, without re-
course to simple model parameters. To date, though,
only pairs of adatoms in the near region have been inves-
tigated, and there is no attempt to focus on Gon , i.e. a
propagator between the adsorption sites. Both adatoms
are part of the same cluster, and the heritage is from clus-
ter methods. Here, though, the adsorbate region is not
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so much a cluster to be embedded into an indented sub-
strate but a scattering zone that perturbs the substrate
Bloch states.

Specifically, this approach builds on the local-density-
approximation (LDA) description of surface electronic
structure (Lundqvist and March 1983), solving the Kohn-
Sham (1965) energy-minimization problem, and uses
state-of-the-art expressions for exchange-correlation po-
tentials and [norm-conserving] pseudopotentials. The
equations are solved self-consistently: from a guessed
scattering potential, the electronic density is obtained
from Dyson’s equation, and an iteration-relaxation
scheme (Johnson 1988) is invoked. Feibelman (1989b,
1989c, 1988) applied this self-consistent, matrix Green’s-
function (MGF) scattering theory (Williams et al. 1982,
Feibelman 1987a) extensively to adsorption on Al (001).
Most of these papers involved single adatoms, but Feibel-
man (1987b, 1988) discusses Al-Al, Al-S, and Al-Te
dimers. For Al dimers, Feibelman (1987b) finds that
because of the direct bond between the adatoms, their
bonds to the substrate weaken, consistent with Pauling’s
(1960) bond-order–bond-length correlation, and so they
sit farther (by 0.16Å) from the substrate than a single Al.
(The most dramatic consequence is that the diffusion bar-
rier for dimers is lower than for monomers!) From naive
counting of bonds, the strength of which are deduced
from the bulk coherence energy, one might guess that
E1 ≈ -0.556 eV. From the EAM work cited earlier, and
more directly from our summary of Nørskov’s (1993) dis-
cussion of cohesive energy vs. coordination number, we
would already guess this estimate to be much too high.
Careful calculation shows the interaction to be just -0.07
eV. In addition to the vertical relaxation, this result in-
cludes lateral relaxation of each Al toward each other by
0.05Å from the center site. If the separated Al adatoms
are not allowed to relax back toward the substrate, their
pair attraction would be -0.18 eV. Feibelman does not
specify how much the attraction would decrease if the
neighboring adatoms were fixed in the high-symmetry
positions, with lateral relaxation forbidden. Note also
that the relaxations are of the adatoms relative to their
isolated-adsorption positions. There is no discussion of
any distortion of the substrate neighbors on this fcc (100)
surface, which we just saw play a major role in the EAM
study of Ni, Pd, and Pt on Pt(100). (However, since
Feibelman (1990) later shows that Al diffuses by an ex-
change mechanism on Al(100), such distortions presum-
ably to occur.) In later papers, perhaps to keep computa-
tions manageable, Feibelman (1988, 1991) fixes adatoms
at their ideal “isolated” positions and just computes the
force acting on each member of the dimer, in addition to
the pair energy, to monitor the sort of corrections which
would enter if the second-order relaxations were allowed.
Recapping, Feibelman’s (1987b, 1989a) key physical idea
is that E1 is small because, as pairs of Al adatoms are
separated, the rupturing of their direct interaction is par-

tially compensated by an increase in their bonding to the
substrate. This viewpoint provides a fuller picture than
the usually reliable insight (Desjonquères 1980), cited in
a footnote, that the [fractional] “disposition of adatoms
toward lateral interaction” (i.e. |EAA/EAS |, presumably)
decreases as the strength of their bonds to the substrate
increases.

Stumpf (1993) found rather similar results for Al(111)
using a different self-consistent total-energy calculation.
His slab was 5 layers thick, with the top two (and
adatoms) allowed to relax. He found for Al dimers on
hcp sites that E1= -0.58 eV, attractive again because of
the low coordination of the separated adatoms; the Al
adatoms again relaxed toward each other. Similarly, if
one Al is replaced by Si, E1= -0.56 eV. Motivated by the
discovery of Na-induced vacancy structures (Schmalz et
al. 1991), and bearing on the preadsorption problem, he
found that there was an attraction (-0.21 eV) between
an Al adsorbate and an Na in a surface vacancy. On
the other hand, if the Na were in a step vacancy, there
was a repulsion of 0.06 eV; this change was attributed to
the stronger binding of the Na and especially the Al at
the step, so that they were more stable in their isolated
configuration.

Motivated by evidence of surface poisoning by chalco-
gens, Feibelman (1988) next considers the interaction of
an Al adatom with an S or Te adatom, again at adja-
cent center sites on Al(001). The E1 repulsions are 0.25
eV and 0.22 eV, respectively. From the force calcula-
tion, he finds that the pairs would relax outward as for
Al dimers, but away from each other. (With such re-
laxations, the repulsions would decrease somewhat.) He
shows that these interactions cannot come from hard-core
or charge-transfer (dipolar) mechanisms and describes his
numerical findings in terms of bond-order–bond-length
ideas. Feibelman (1988, 1989a) focuses on the two sub-
strate Al’s to which both adatoms bind. The bond to
each adatom weakens when the other adatom is adja-
cent. Feibelman asks how the electrons rehybridize to
optimize their energy. The chalcogens, with valence two,
can simply shift away and strengthen their bond with the
two farther substrate atoms; the Al dimer, each with va-
lence three, shift toward each other to form a direct bond,
achieving an attraction rather than a repulsion. The sit-
uation is reminiscent of the simple argument sketched in
the preceding section in eq. (11.37), but the behavior of
the Al dimer would require an extension to include the
direct coupling. To distinguish these cases a priori, with-
out the reliable numerical output, would be a formidable
task. The simple chemical arguments are really com-
pelling only when joined with solid numerical evidence,
as Feibelman often remarks.

Feibelman (1991) reports the first application to dimer
[viz. H-H and H-S] adsorption on a transition-metal sub-
strate, Rh(001). The adatoms are placed in nearest-
neighbor center sites, sharing two Rh neighbors, at the
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positions they would take if widely separated. Since the
H atoms sit close to the surface (0.65 Å above the outer
Rh plane), they are well screened and there is scant in-
teraction between them. This result is consistent with
Richter and Ho (1987)’s observation that the desorption
energy of H from Rh(001) is independent of coverage up
to 0.8 monolayers. In contrast, the S sits much farther
out (at 1.47 Å) and so is less well screened. Conse-
quently there is an H-S E1 repulsion of 0.17 eV, con-
sistent with Brand et al. (1988)’s observation that H on
Rh(001) avoids regions where S has been preadsorbed.

To make progress on surface problems, improved scat-
tering theories are being developed. Feibelman (1992)
notes that the MGF approach requires that the num-
ber of equations N that must be solved simultaneously is
larger than one would suspect solely from the size of the
scattering length, because the kinetic-energy component
of the adsorption coupling is not limited by screening
but depends of the choice of basis. Accordingly, Schef-
fler et al. (1991) have developed an alternative scheme in
which they include the full kinetic energy in the initial de-
scription of the electronic wavefunctions, but must conse-
quently perform a taxing real-space integration. Feibel-
man (1992), in turn, has found a way to simplify the
MGF method, eliminating much of the extra computa-
tion due to the kinetic-energy matrix.

It is now becoming possible to compute total ener-
gies using scattering theories to assess interactions. In
the bulk, Dederichs et al. (1991) used a KKR approach
to study vacancy-vacancy interactions at nearest neigh-
bor, and in some cases next nearest neighbor, sites in
Cu, Ni, Ag, and Pd. (Vacancy-vacancy interactions are
essentially the same problem as adatom-adatom inter-
actions, but with fewer parameters. Yaniv (1981) ap-
proached the problem using an approach identical to that
in ES. Feibelman (1989a) remarks that these are all ex-
amples of problems involving point defects.) The calcu-
lations were rather demanding, requiring, e.g., that they
forgo the usual muffin tin description of charge density.
This approach is being extended toward surface prob-
lems involving spin interactions (Dederichs et al. 1993).
[Note that the indirect interaction between spin impu-
rities via hyperfine coupling to the conduction electrons
had earlier been considered: With an infinite-barrier jel-
lium substrate, Gumbs and Glasser (1986) generalize the
results of Lau and Kohn (1978). Zheng and Lin (1987)
start from Kalkstein and Soven’s (1971) tight-binding
substrate, similar to §11.2.2, and apply second-order per-
turbation theory.]
11.4. Implications of Pair Interactions
11.4.1. Ordered Overlayers and Their Phase
Boundaries

As noted late in the introduction and discussed in more
detail in chap. 14, the lateral interactions we have been
discussing can lead to the formation of ordered superlat-
tices of adatoms. Such ordered structure can be mea-

sured readily by diffraction techniques, especially LEED,
and much of a temperature vs. coverage phase diagram
can be mapped out. There are typically problems at
low temperatures due to slow equilibration and at high
coverages due to breakdown of the lattice-gas approxima-
tion. Also it is not readily possible to measure the phase
boundary between a pure phase and an adjacent island
phase (e.g. a coexistence regime of the pure phase and the
(1×1) gas phase). It is generally very difficult to deduce
uniquely lateral interactions by fitting to phase diagrams.
The typical approach is to choose the minimum number
of interactions necessary to produce the correct topog-
raphy of the phase diagram, and then to adjust their
sizes to mimic optimally the available boundaries; such
boundaries can be computed accurately using Metropolis
[equilibrium] Monte Carlo methods (Roelofs 1980, 1982,
1995, Binder and Landau 1989) or transfer-matrix finite-
size scaling (Kogut 1979, Kinzel and Schick 1981, Rikvold
et al. 1984, Bartelt et al. 1986, Roelofs et al. 1986,
Rikvold et al. 1988, Roelofs and Bellon 1989, Nightingale
1990, Myshlyavtsev and Zhdanov 1993). Other meth-
ods, particularly mean field, but also quasi-chemical and
cluster-variation, are ill suited for two-dimensional com-
putations, for which fluctuations play a far greater role
than in three-dimensional systems.

In fitting a phase diagram, it is important to consider
the entire range of coverages, not just the saturation cov-
erage of the first ordered structure. This point was il-
lustrated for H/Ni(111) near the end of §11.3.2 and for
H/Pd(100) in 11.3.3. In the simple case of a c(2×2)
one can get some idea of the effect of additional interac-
tions from the case study of Cl/Ag(100) by Hwang et al.
(1988). In an earlier paper Taylor et al. (1985) found that
the phase diagram of this system is rather well approx-
imated by the hard-square model: a square lattice gas
with nearest-neighbor exclusion (E1 = +∞). However,
the critical coverage for ordering at 300 K was measured
(by LEED) as 0.394 ± 0.007 ML, higher than the 0.368
ML of the simple hard-square model. They concluded
that a second-neighbor repulsion E2 in the range 20-26
meV could account for the experimental result. Hwang
et al. (1988) found that this critical coverage θcdid not
change even if the sample temperature was increased to
as much as 600 K. With only E2 (and infinite E1) there
should be substantial variation in θc. The simplest ex-
planation was an additional small E3repulsion. A plot
of possible values of E2and E3 was produced: if 0.387
≤ θc ≤ 0.401 ML, then E3 ≈ 4 meV if E2 ≈ 20 meV, and
E3 ≈ 3.5 meV if E2 ≈ 24 meV. If 0.386 ≤ θc ≤ 0.401 ML,
the range of possible interactions more than doubles for
both E2 and E3.

Near the other limit of complexity are studies of
ordering of multiple phases on close-packed surfaces,
with adsorption in both kinds of center sites. Such
models invoked up to 5 pair interactions, were applied
to O/Ni(111) (Roelofs 1982), O/Ru(0001) (Piercy et
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al. 1992), H/Ru(0001) (Sandhoff et al. 1993), and
S/Ru(0001) (Sandhoff 1994). In the latter cases, trio
energies were also included (3 distinct ones for O/Ru!).
Nonetheless, the fit of S/Ru was not fully satisfactory
in that 1) the disordering temperature of the (

√
3×√3)

was comparable to that of the c(2×4), rather than nearly
twice as high, the experimental result (Sokolowski and
Pfnür 1995) ; 2) no hint of the observed complex defect
structure on the high-cover side of the (

√
3 × √

3) was
found.

For the problem of catalytic poisoning on Pt(111),
Collins et al. (1989) applied transfer-matrix and Monte
Carlo techniques to a two-species (H and S) lattice gas
model. They used successively more sophisticated mod-
els and were able to account for the dependence of the H
coverage on S coverage for several temperatures.

The role of trio interactions was included in a review
of them not long ago by Einstein (1991); see also Roelofs
(chap. 14). The presence of such an interaction in a
lattice gas Hamiltonian will break up-down symmetry
in the associated Ising model. Accordingly, it is widely
expected that such interactions will ipso facto produce
gross asymmetries in the phase diagram. For a single
trio interaction, this expectation is often misguided. The
crucial aspect is not whether there is an asymmetry in the
ground state energy but rather whether there is an asym-
metry in the [lowest] excitation energy from the ground
state, which leads to disordering and so determines the
phase boundary. If there are several distinct trio interac-
tions, however, asymmetry in the phase boundary is usu-
ally unavoidable. A second key idea is that if one wishes
to gauge the size of the trio interaction from a fit to the
skewed phase boundary, it is important that one include
all such interactions of comparable magnitude in the fit,
or else one is likely to strongly overestimate the physical
size of this multisite interaction. This problem was dis-
cussed in the context of O/W(110) by Einstein(1979b).
11.4.2. Local Correlations and Effects on Chemi-
cal Potential

Until recently, most experimental probes of ordering
on surfaces provided only statistical averages of corre-
lation functions, convoluted with some instrument re-
sponse function. In diffraction measurements, one can
measure (subject to deconvoluting this response func-
tion) the long-range order parameter below the transi-
tion and its fluctuations above it, or in a different limit,
an ill-defined sum over short-range correlation functions
(Bartelt et al. 1985). Vibrational probes similarly give
information about long-range order parameter, but with
a far shorter range instrument response. Only in the
FIM experiments cited earlier is use made of a sequence
of real-space atomic-scale images. In those experiments,
there were typically just two adatoms, so that it was not
hard to find the degeneracy (or configurational entropy)
of each possible energy state and so to work backwards
to the interaction energies, as noted by Meyer (1993).

For STM “ snapshots” there are too many adatoms for
analytic insertion of degeneracies and regression to inter-
action energies. Instead, one must tune estimated val-
ues of these energies until the configurations generated in
Monte Carlo simulations adequately reproduce the STM
images, as he illustrates for O/Cu(110) (Kuk et al. 1990);
similarly, Schuster et al. (1991) estimate values for seven
distinct lateral interactions for K/Cu(110).

The full power of STM and FIM as quantitative probes
of atomic positions is that they allow experimental obser-
vation of specific (not just combinations of) short-range
correlation functions. Meyer (1992) was the first to pub-
lish a way to exploit this potentiality by measuring corre-
lation functions at two [or more] different temperatures.
As in most methods, one must still posit at the outset
which interactions to include. Then, he shows how to
extract directly from a large number of snapshots the in-
teraction energy associated with a particular correlation;
the error varies as C−1/2, where C is the adlayer spe-
cific heat. He further discusses how best to choose the
difference between the two temperatures: too close and
there will not be enough difference; too far apart, and
there will be inadequate relationship between the two cor-
relation functions. Meyer (1993) subsequently proposes
a way to extract the interaction energy directly from a
set of STM “snapshots” without collateral Monte Carlo
simulations: the presumed energy (in terms of a model
Hamiltonian) is evaluated for each configuration and for
other configurations created by moving each adatom in
turn according to allowed kinetics. The interaction ener-
gies are obtained by best satisfying a steady-state crite-
rion. Neither of these schemes have yet been applied to
actual experimental data.

Adsorption or desorption data is another more indi-
rect way to look at lateral interactions. For example,
Urbakh and Brodskii (1984, 1985) apply their ATA ex-
pression for ∆ρ(ε) (cf. §11.2.3.2) to data for the isosteric
heat of adsorption [and the change in work function] for
H/Pt(111), achieving good agreement with experiments
(Christmann et al. 1976, Norton et al. 1982). Braun
et al. (1980) compute these quantities for a system in
which charge transfer dominates the interaction, Cs/W,
and find good agreement with experiment (Bol’shov et al.
1977), at least until the coverage at which metallization
occurs. More generally, the adsorption/desorption rate
depends intimately on the overlayer chemical potential µ,
which in turn depends subtly on the interactions as the
coverage varies. In considering the effect of lattice-gas
repulsions on temperature-programmed desorption spec-
tra, Payne et al. (1991) consider just this issue. Starting
with the relation

q(θ, T ) =
5
2
kBT + kBT 2 ∂µ/kBT

∂T

∣∣∣∣
θ

(11.40) (11.40)

for the isosteric heat of adsorption q, they conclude
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that computations using transfer matrices do not show
the anomalous behavior found in calculations using ap-
proximate techniques. In recent years Kevan’s group has
devoted considerable effort to trying to extract interac-
tion energies from adsorption and desorption data, as re-
viewed by Wei et al. (1994,1995). While some of this work
uses the virial expansion or the quasi-chemical method,
they, too, recognize transfer matrices as the method of
choice. For example, they consider the desorption of CO,
measured by time-resolved EELS (electron energy loss
spectroscopy), from the three principal facets of Cu. On
Cu(100) Wei et al. (1995) find a strong repulsive E1, E2

= -2.8 meV, and E3 = +1.1 meV (or E2 = -1.3 meV
and E3 = -0.9 meV in their first report (Wei et al. 1994):
E2 and E3 are correlated, and both pairs give comparable
fits; both energies are much below kBT, impeding greater
precision). On the other two faces E1 is also strongly re-
pulsive (” kBT); on (110) E2 = -10.3 meV and E3 = +8.2
meV, while on (111) E2 = +9.2 meV, E4 = +13.4 meV,
but, surprisingly, E3 > 69 meV. On Pt(111), the interac-
tions between CO’s (in atop sites) are purely repulsive,
with E1 again effectively an exclusion and non-monotonic
decay since E2 < E3(Skelton et al. 1994). In order to pro-
duce sensible strengths, they must also include E4(< E3);
they discuss consequent difficulties in extracting three in-
teractions from fits to isotherms and the inability to do
transfer matrix computations that include all the E4 in-
teractions.

Applying the random-phase approximation (RPA) in
a tight-binding formalism to EELS Brenig (1993) shows
that for high-symmetry, low-mass-adsorbate overlayers
the single-particle dispersion and the phonon dispersion
decouple: One first determines the band structure of the
excited vibrational states (assuming a localized, zero-
bandwidth ground state) and then finds the vibrational
frequencies using standard lattice dynamics. The scatter-
ing intensity is proportional to the resulting RPA suscep-
tibility. As a corollary, he notes that when indirect cou-
plings are strong, then translation invariance of the inter-
adatom interactions is likely to be lost, causing the zone-
center wave vector to vary with adsorbate concentration.
Applying this formalism to EELS data (Voigtländer et
al. 1989) of high-coverage (1.5 ML) H on Ni(110), he
analyzes the two low-lying optical modes with in-plane
polarization using up to third-neighbor force constants.
He finds that the lateral interaction between H atoms
at the three shortest separations differs strongly from
the “bare” [direct] interaction and has a [local] maxi-
mum near the H-H second-neighbor separation (viz. the
Ni nearest-neighbor spacing). While he can deduce much
information about the interactions, e.g. evidence of multi-
site interactions, he discusses the non-uniqueness of his
fit and the consequences of various assumptions about
the tight-binding-like force constants. Unfortunately (cf.
first paragraph of 11.3.5), the potential—assumed to be
isotropic—is plotted as a continuous function of R.

Kang and Weinberg (1994) review the kinetic model-
ing of surface rate processes in terms of four levels of
sophistication: 1) In the Langmuir picture of adsorption
and desorption, adatoms are assumed to be randomly
distributed. 2) Neglecting lateral interactions, one can
approach precursor-mediated adsorption and desorption
from kinetic and statistical perspectives. 3) Lateral inter-
actions (typically just nearest neighbors) can be included
in Langmuirian and precursor-mediated processes using
a quasi-chemical approximation. 4) For reliable results,
one must, as noted repeatedly above, turn to a more ex-
act method, in this case Monte Carlo simulations rather
than transfer matrices; the review describes several ap-
plications, mostly with the generic lateral interactions as
arbitrary input parameters.

The effect of lateral interactions on diffusion has gen-
erated interest for quite some time (Bowker and King
1978). Excellent reviews of adsorbate diffusion by Nau-
movets and Vedula (1985) and by Gomer (1990) provide
a wealth of information. The dependence of diffusion on
these interactions also comes through the chemical po-
tential; specifically, the ratio of the chemical diffusion
coefficient D to the jump diffusion Dj is the “thermody-
namic driving force” (Gomer 1994) (µ/kT)/ θ|T , where
Dj is a complicated average that is essentially a frequency
factor times an Arrhenius factor and is generally similar
to the tracer diffusion D∗ of single adatoms. [Note that
jump rates ought also to depend on lateral interactions,
although this complication is typically neglected.] Us-
ing Monte Carlo simulations, Uebing and Gomer (1991)
study the effects on the three diffusion constants of sev-
eral generic sets of lateral interactions on a square lattice.
Except for a case with E1 < 0 and E2 > 0, the fluctua-
tion method and the Kubo-Green approach give similar
results. Using the transfer-matrix technique to calcu-
late µ, Myshlyavtsev and Zhdanov (1993) consider simi-
lar problems on a rectangular lattice with anisotropic in-
teractions. Tringides and Gomer (1992) show that lateral
interactions could produce anomalous behavior diffusion
constants measured by laser-induced diffusion compared
with fluctuations around equilibrium, in contrast to their
similar behavior in the absence of such interactions.
11.4.3. Surface States on Vicinal and Recon-
structed fcc(110) Surfaces

The same mechanisms which underlie the interaction
between atoms chemisorbed on flat surfaces should also
play a role in the interactions between steps on vicinal
surfaces. For most semiconductors the interaction po-
tential between steps, U(`), is repulsive and decays as
`−2, where ` denotes the distance between steps, as re-
viewed by Bartelt and Williams (chap. 2). This form de-
scribes energetic interactions expected from both dipole-
dipole (Voronkov 1968) and elastic effects (Marchenko
and Parshin 1980). As noted in §11.2.5, this result can
be argued from a very general Green’s function perspec-
tive (Rickman and Srolovitz 1993). Poon et al. (1990)
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found such behavior in a study of steps on Si(100) using
the Stillinger-Weber (1985) inteactomic potential. Us-
ing EAM to study vicinal Au (100) and (110), Wolf and
Jaszczak (1992) assess how well Marchenko and Parshin’s
expression for two interacting steps [or another expres-
sion (Srolovitz and Hirth 1991) for a periodic array of
steps, which differs by just a numerical factor of order
one] accounts for the computed step-step repulsion. They
find first that the amplitude Gel of the `−2 decay, which
depends on Poisson’s ratio, Young’s modulus, and com-
ponents of the linear force densities or stress factors, is
nearly independent of ` for large `. The Gel’s for steps on
the two surfaces are 50% and 70% of the value deduced
directly from the orientational dependence of the surface
free energy. The discrepancy is attributed to 1) the fact
that the expression for Gel assumes isotropic continuum-
elasticity theory, while the environment near the step is
highly anisotropic; 2) the bulk elastic moduli in the for-
mula should be replaced by local responses near the sur-
face, which have not been computed; 3) the treatment
should be based on a fully relaxed flat surface with un-
relaxed steps. I.e., doing the calculation correctly would
require Gordian unraveling reminiscent of the comments
near the end of §11.2.5. Extending EAM calculations
to six of the late transition/noble fcc metals, Najafabadi
and Srolovitz (1994) also found `−2 repulsions for ` ¿
3a0; inclusion of a higher-order `−3 term improved the
χ2 of the fit by over an order of magnitude. Simple con-
tinuum elastic theory is thus deemed to fail at small `
because it neglects the discrete atomistic nature of steps
and surfaces and because the elastic field of a step can-
not be adequately described by a surface force dipole
alone. Detailed comparison shows that modeling steps
as in-surface-plane dipole line forces in an isotropic elas-
tic medium predicts elastic fields qualitatively different
from those simulated. In both studies, it is important
to remember that the EAM calculations are incapable,
ipso facto, of including long-range electronic interactions
since there is no Fermi-surface singularity.

Recently, microscopic probes of surface structure, par-
ticularly the scanning tunneling microscope (STM) and
reflection electron microscope, have permitted detailed
measurements of the configuration of steps on single crys-
tal surfaces. Specifically, the terrace-width distribution
function P(` ) provides a sensitive probe of step-step
interactions. The simple `−2 potential describes inad-
equately the terrace-width distributions which Frohn et
al. (1991) have measured on vicinal Cu(100) surfaces: Al-
though P(` ) for Cu(1,1,7) has the shape expected for a
simple repulsive potential, the width and asymmetry of
P(` ) for Cu(1,1,19) suggests attractive interactions be-
tween steps. Similarly, Pai et al. (1994) have recently
reported STM measurements of vicinal Ag(110) surfaces
in which steps appear noninteracting for 〈`〉=22 Å, re-
pulsive for 〈`〉=30Å, and attractive for 〈`〉=40 Å.

While attractive interactions may result from surface

stress relaxation in the vicinity of steps (Jayaprakash et
al. 1984) or from dipole-dipole interactions (Wolf and Vil-
lain 1990) (if dominated by the in-plane orientation), the
most likely explanation is an indirect interaction between
steps mediated by substrate electron states which can
produce attractions at some step separations (Frohn et
al. 1991, Redfield and Zangwill 1992). In terms of the for-
malism in §11.2.2.2, we can imagine the relaxation of each
atom along the step edge as producing a localized pertur-
bation on the substrate analogous to the chemisorption
bond. In this perspective, we view the `−2 repulsion as
arising from a naive integration along one of the steps
of an r−3 point-point repulsion, thereby approximating
the steps as lines of independent points (Redfield and
Zangwill 1992), although the result is more general.

At small separations, the r-dependence of indirect
interactions is usually quite complicated; however, for
the nearest-neighbor tight-binding model, the asymptotic
regime for indirect interactions via bulk states is reached
in ∼4 lattice spacings (Einstein 1978). In this asymp-
totic limit, we saw in §11.2.6 (cf. eq. (11.27) that the
indirect interaction reduces to r−pcos(ykF r), where kF is
the Fermi wavevector pointing in the r̂direction, p = 5
for mediation by bulk states near a surface, and we have
assumed the phase factor φ is negligible. The integra-
tion along the step edge is complicated by the oscillatory
factor.12 Redfield and Zangwill (1992) point out that,
given site-site interactions of the form r−pcos(κr), the in-
terrow interaction has the form r−mcos(κr+δ), with m =
p - 1/2 and δ = π/4.13 For bulk electronic states, p=5,
so m=9/2. As noted in 11.2.6, when mediated by [2-d-
isotropic] surface states, Lau and Kohn (1978) showed
that the interaction decays like r−2 leading similarly to
m=3/2.

To decide which case is appropriate for a particular
substrate, one obviously must know something about
the electronic structure of the surface. On the highly
anisotropic (110) faces of noble metals, there apparently
are surface states that are promising candidates to me-
diate interactions in the [001] direction. However, these
states‡14 exist only [in a gap] near Y , (the intersection of

12 Redfield and Zangwill (1992) point out that this summation pro-
cedure is strictly valid only in the [weak] limit, when the local
perturbation due to each site is independent of its neighbors.

13 The essence of the derivation is taking the lead-
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14 One state has been observed often for (110) late-transition/noble
fcc metals, about 2 eV above EF (Bischler and Bertel 1994).
These states are probably too far from EF to play an impor-
tant role. However, Liu et al. (1984) calculated on Au(110) a
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the [001] direction and the surface Brillouin zone bound-
ary), which would suggest m=2 rather than m=3/2. In
Monte Carlo (MC) simulations relying on a terrace-step-
kink (TSK) model of surface structure, Pai et al. (1994)
used a rather ad hoc potential embodying these ideas:
it contains an oscillatory term at ` > 6 lattice spacings
and a repulsive `−2-like form at smaller step separations.
While there is insufficient data to warrant confidence in
the specific potential, it is nonetheless noteworthy that
this potential, with reasonable parameters, can account
for the three measured distributions.

In summary, vicinal Ag(110) provides the first evidence
of an indirect interaction mediated by a surface state. It
also illustrates that when such effects occur, the long-
range interaction is by no means negligible.

We also note that Xu et al. (1996) are applying their
method using a modified fourth moment approximation
to tight binding, discussed in the latter part of §11.3.5,
to consider step interactions. They fit their results to the
form of a monotonic inverse-square law repulsion plus an
oscillatory term as discussed above. It will interesting to
see how these promising calculations turn out.

Very recently, Gumhalter and Brenig (1995) studied
the screening properties of quasi-one-dimensional states,
such as may arise in the troughs of reconstructed (110)
fcc metals such as Ni and Cu (but not Ag) and consid-
ered how such states might mediate the indirect interac-
tion between H atoms. They derive analytic expressions
for the consequent indirect interaction first from second-
order perturbation theory (as in Lau and Kohn (1978))
and then with non-linear screening as in §11.2.2, but with
overlap included, both explicitly (Anderson and McMil-
lan 1967) and as a proportionality factor for the adatom-
substrate eigenstate coupling (Gumhalter and Zlatić,
1980). The proportionality constant for the adatom-
substrate coupling and the adatom energy εa are re-
lated by the Friedel sum rule (cf. §11.2.4). The surface
states in question run along the localized chain states in
the close-packed troughs of (H-induced reconstructed) Ni
and along the step edges of similar metals. When trying
to parametrize the indirect interaction, the authors find
that unless they assume a very slow decay corresponding
to R−1 in eq. (11.27), the coupling parameter is unrea-
sonably large. However, the specific fit to the potential
in Brenig (1993) (cf. §11.4.2) is unconvincing since that
potential is 1) represented as isotropic (while the inter-

second surface state just below EF , over a narrower range near
Y , and there is some calculational evidence of a similar state on
Ag (K.-M. Ho, priv. comm.). Courths et al. (1984) reported
such a state in an angle-resolved photoemission (ARUPS) study
of Ag: it was found to be dispersionless at 0.1 eV below EF and
sharply peaked in intensity at Y , seemingly vanishing by 20% of
the distance to Γ. While the effect of steps and disorder are un-
clear, it is plausible that this state could be broadened or shifted
to cross EF in some small region near Y .

action is manifestly highly anisotropic); 2) interpolated
from interactions at three separations, all less than two
lattice constants (and so far from the asymptotic regime);
and 3) indicative of the total lateral interaction, includ-
ing the direct contribution (which is likely nonnegligible
at the shortest separation). They and Bischler and Bertel
(1993) [also Bertel and Bischler (1994)] suggest that this
chain state is similar to the state seen in inverse pho-
toemission by the latter pair. However, this particular
state SX is 6 eV above the Fermi energy, so presumably
completely empty and hence inactive.15

11.5. Discussion and Conclusions
Two decades ago at a Nobel Symposium (Lundqvist

and Lundqvist 1973) papers were presented on both the
Kondo problem and the pair interaction, both cloaked
in the Anderson model. In the conference summary, An-
derson quotes Harry Suhl as saying “Like South America,
the Kondo problem will always have a great future.” Not
only are such statements no longer “politically correct,”
in the mean time the Kondo model was instrumental
in the formulation of the renormalization group (Wilson
1975) and was solved exactly by Bethe ansatz methods
(Andrei et al. 1983); even the two-impurity problem has
been solved (Jones et al. 1989, Affleck and Ludwig 1992).

In contrast, consider what we have learned about the
pair interaction. The only exact results relate to the
asymptotic regime. Until recent evidence on vicinal Ag
(110) of indirect interactions via surface states, these re-
sults proved of purely academic interest. There have also
been exciting observations recently of standing waves on
surfaces (Crommie et al. 1993, Hasegawa and Avouris
1993); there may be some relationship between them and
the propagator which transmits the indirect interaction.
The Anderson picture developed earlier at length does
provide a convenient way to conceptualize the physics of
the interaction. The earlier model work gives a general
feeling for the relative size of the interactions associated
with adatoms in various configurations. On the other
hand, it has been difficult to improve the model or to
achieve quantitative accounting of actual experiments,
although there certainly have been several attempts in
this direction (Sulston et al. 1986, Dai et al. 1987, Zhang
et al. 1990, Cong 1994, Sun et al. 1994). The model

15 The main import of Bertel and Bischler’s (1994) work is to show
that a one-dimensional sp- derived state can exist on the sur-
face. It is curious that the dispersion of the state is flat in the
direction (in k-space) parallel to the chain (where one would ex-
pect considerable dispersion); Bertel (private comm.) points out
that this behavior arises because the state is antibonding in the
top layer of Ni but bonding in the second layer. (Cf. the LCAO
discussion in Bertel (1994).) Unfortunately, experimental com-
plications have so far prevented measurements in the perpendic-
ular direction (along which the dispersion should be flat if the
states are in fact quasi-one-dimensional along the close-packed
direction).
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seems more limited in dealing with the adsorption of sin-
gle adatoms than in the subsequent interactions between
pairs. Perhaps if there were a compelling way to eval-
uate adjustable parameters for the single-adatom case,
one might make progress in this direction.

Models leave out many important pieces of physics
which are particularly important in the “near” regime.
Local distortions, changes in bond strength with coordi-
nation, and rehybridization subtleties have been seen to
play a vital role in this regime. With scattering theory
methods, compelling results have been obtained in a few
simple cases. At present, progress seems to be computa-
tionally limited. It seems that in the foreseeable future,
advances will come from improvements in the code rather
than more powerful computers. In this regime, which is
certainly the most important from a practical or chemical
perspective, it is not necessary or perhaps even fruitful to
concentrate on the Green’s function carrying the distur-
bance produced by one adatom to the site of the second.
Once the adatoms separate sufficiently so that they nei-
ther couple directly nor interact strongly with the same
substrate atoms, the perspective stressing the propaga-
tion of disturbances should be the most appropriate.

The pair interactions of remarkably few physical sys-
tems have been computed successfully. More strikingly,
in many cases where two different methods have been
applied, inconsistent results are found. The case of
H/Pd(100) was discussed above. Consider now the case
of CO/Pt(111), not an ideal prototypical adsorbate from
a theory viewpoint due to the two active orbitals and the
complicated adsorption mechanism. [It is also an inter-
mediate case energetically, with a heat of adsorption of
1 1

2 eV (Toyoshima and Somorjai 1979) so neither in the
perturbative regime nor in the strong-adsorption regime
of, say, H, which has an adsorption bond strength 1-2 eV
greater (Christmann 1988) and forms bonding and anti-
bonding states during adsorption (Einstein et al. (1980).]
Persson (1989) [also Persson et al. (1990)] assumes that
pair interactions depend only on separation R. Explic-
itly, his pair interaction consists of a Pauli (hard-core)
[contributing 262 meV to E1 and negligible for larger
R] and an indirect term which is also repulsive and de-
cays (isotropically and rapidly) monotonically: (1.3 eV)
exp[-(0.8 Å−1)·R]. The two constants are chosen so that
1) the binding energy at half coverage is 0.25 eV less
than that at zero coverage, and 2) the frequency of the
frustrated translation at the atop site (preferred by 60
meV over bridge) decreases from 49 to 60 cm−1. With
this model potential he performs [off-lattice] Monte Carlo
simulations which apparently do well at accounting for
the experimental phase diagram. Joyce et al. (1987)
present a strikingly different picture, but also achieve
good agreement with [different] experimental data! They
separate the interactions into direct, indirect, and site
(atop vs. bridge, high-symmetry positions only) contri-
butions. The direct part is formulated in terms of gas-

phase Lennard-Jones potentials. The indirect part is as-
sumed to come from sp electrons and expressed in terms
of the asymptotic form, even at short range! They be-
lieve that the adatom-substrate coupling occurs via the
2π* orbital (3 eV above εF ) rather than the 5σ orbital (7
eV below). Their interaction is not purely repulsive, but
oscillates in sign. Nonetheless, the results apparently fit
desorption energies at four different fractional coverages
ranging from 1/3 to 2/3. Wong and Hoffmann (1991)
applied extended Hückel theory to CO on Ni, Pd, and
Pt(111). Unfortunately, they only report results for two
coverages (1/3 and 1/2), so it is unclear what the size and
the sign of the pair interactions are. Very recently Jenni-
son et al. (1995b), using a promising technique described
below, found that the CO-CO interaction on Pt(111) is
repulsive and decays monotonically (to at least 3 lattice
spacings), similar to Persson’s (1989) result. However,
their admolecules are placed only on bridge (not atop)
sites (favored by ∼0.1 eV); while the decay is sensibly
less rapid, their repulsions are somewhat too strong: E3=
25 meV vs. E3= 16 meV for Persson’s experimentally-
calibrated potential. Finally, both sets of interactions
differ from the non-monotonic repulsive decay deduced
by (Skelton et al. 1994) (cf. §11.4.2).

Until pair interactions can be computed readily and
reliably, our general picture and its evolution provide a
useful template with which to confront indeterminate in-
teractions needed to begin Monte Carlo simulations. We
have a good idea of which configurations should have
comparable size (Einstein 1979b). We can use phase
boundaries to estimate interactions. When subtleties ex-
ist (Bartelt et al. 1989), they may provide particularly
valuable insight into the size of small interactions. In
some cases semiempirical methods can help in gauging
interactions, but these usually only give significant inter-
actions in the near region and certainly fail by the asymp-
totic limit, since they lack Fermi surfaces; they are best
for late-transition and noble metals. Generalized tight-
binding models, including d-band degeneracy and corre-
lation effects, have been useful for mid-transition met-
als. Very recently Cohen et al. (1994) proposed a gen-
eral tight-binding total-energy scheme that improves on
previous similar schemes by adjusting the arbitrary zero
of energy to eliminate the need for pair potentials; like
EAM, it is in a sense an elaborate interpolation scheme,
since parameters are fit using first-principles calculations.
It has many times as many fitting parameters as the
fourth-moment approximation method discussed earlier
(Xu and Adams 1994). It has done better than EAM
in accounting for surface energies of late-transition and
noble metals. Perhaps it or a related method will allow
calculation of far more accurate Green’s functions and,
ultimately, interaction energies.

As this chapter was in its final stage, Jennison et al.
(1995) communicated noteworthy advances in computa-
tional capabilities. With a new Gaussian-based local-



37

density-approximation code for massively parallel com-
puters that uses Feibelman’s LCAO method discussed in
§11.3.6, they can treat systems (large clusters, molecules)
and elements (transition metals, oxygen) that pose dif-
ficulties for plane-wave methods. With a three-layer 91-
atom cluster of Pt, they reproduce well the details of
ammonia adsorption on a seven-layer slab of Pt(111).
The top layer is a hexagon 7 atoms across. Like the
CO molecules mentioned above, pairs of ammonia repel
each other at the close and intermediate separations that
can be computed on this cluster, decaying roughly like
R−3; the magnitude is somewhat greater. Specifically,
they find for a pair of NH3’s that E3= 85 meV, which
is much greater than the “through-space” dipolar repul-
sion, which they calculate to be 15 meV for two isolated.
Multisite terms are relatively small: by comparing a com-
pact cluster of seven molecules to a hexagonal ring of six,
they find the effective E3 drops to 75 meV, suggesting an
attractive trio energy (for the associated equilateral tri-
angles) of -10 meV. For the coadsorption case of CO at
bridge sites and NO at hcp sites, there is a weak at-
traction at the largest computable separations. For both
CO-CO and CO-NO (but not NH3-NH3) the LDA is ex-
pected to overestimate the adsorption energies and so
the interactions, consistent with the above-noted differ-
ence from Persson’s results; gradient corrections (Becke
1988, Perdew et al. 1992) are expected (Jennison et al.
1995a) to temper this overestimate.

All this work considers adatoms at or near stable sites
in the holding potential. The effects of interactions on
diffusion barriers, i.e. with one of the adatoms near a
saddle point in the holding potential, has not yet been
approached systematically. Typically some unconvincing
assertion is made about this contribution, which in some
cases may significantly affect the kinetics.

The generic problem we have considered has broad
ramifications. There are obvious extensions to defect in-
teractions. Many analogous features occur in adsorption
in electrochemical cells (Rikvold and Wieckowski 1992).
A more novel related situation is the oscillating interac-
tion of magnetic sandwiches of varying thickness (Her-
man and Schrieffer 1992, Stiles 1993). Hopefully syner-
gistic progress, lacking to date, will permit results from
one of these problems to impact on others.

In summary, there has been decent progress in under-
standing the general principles of lateral interactions but
limited progress in achieving detailed quantitative under-
standing. Interest has been rekindled recently in looking
for long-range effects mediated by surface or even quasi-
one-dimensional states. After a decade’s work, issues of
correlations and self-consistency that seemed particularly
troublesome earlier (Einstein 1979a) can be dealt with,
at least in simple systems in the near regime (Feibelman
1989a). The major issue today is the role of local re-
laxations and hybridizing effects. In the near regime,
we may well be on the verge of significant progress. In

contrast, it seems that advances in treatment of the in-
termediate regime will require some imaginative way to
incorporate the results of careful calculations of the clean-
surface (for the propagator) and single-adatom (for the
coupling) problems into a general framework that recog-
nizes that the interaction will perturb the single-adatom
solution weakly at most.
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Tománek, D., S.G. Louie and C.T. Chan, 1986, Phys.

Rev. Lett. 57, 2594.
Tosatti, E., 1976, in: Proc. 13th Int’l Conf. Semiconduc-

tors, ed. F.G. Fumi (Marves-North-Holland, Rome),
p. 21.

Tosatti, E., and F. Ercolessi, 1991, Mod. Phys. Lett. B
5, 413.

Toyoshima, I., and G.A. Somorjai, 1979, Catal. Rev.-Sci.
Eng. 19, 105.

Tringides, M., and R. Gomer, 1992, Surface Sci. 265,
283.

Truong, T.N., and D.G. Truhlar, 1990, J. Chem. Phys.
93, 2125.

Truong, T.N., D.G. Truhlar and B.C. Garrett, 1989, J.
Phys. Chem. 93, 8227.

Tserbak, C., H.M. Polatoglou and G. Theodorou, 1992,
Phys. Rev. B 45, 4327.

Tsong, T.T., 1973, Phys. Rev. Lett. 31, 1207.
Tsong, T.T., 1988, Rep. Prog. Phys. 51, 759.
Tsong, T.T., 1988, Surface Sci. Rep. 8, 127.
Ueba, H., 1980, Phys. Status Solidi(b) 99, 763.
Uebing, C., and R. Gomer, 1991, J. Chem. Phys. 95,

7626, 7636, 7641, 7648.
Urbakh, A.M., and M.I. Brodskii, 1984, Poverkhnost’ 1,

27.
Urbakh, A.M., and M.I. Brodskii, 1985, Russ. J. Phys.

Chem. 59, 671 [Zh. Fiz. Khim. 59, 1152].
Van Hove, M.A., G. Ertl, K. Christmann, R.J. Behm and

W.H. Weinberg, 1978, Sol. St. Commun. 28, 373.
Van Hove, M.A., S.W. Wang, D.F. Ogletree and G.A.

Somorjai, 1989, in: Adv. Quantum Chem., vol. 20,
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