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In recent observations of Brownian motion of islands of adsorbed atoms and of vacancies with mean radius
R, the cluster diffusion constantDc varies asR

21 andR22. From an analytical continuum description of the
cluster’s steplike boundary, we find asingleLangevin equation for the motion of the cluster boundary, rather
than three special cases. From this we determineDc and the correlation functionGsh for fluctuations of the
shape around an assumed equilibrium circular shape. In three limiting cases we find the scaling relations
Dc;R2a and, at early elapsed timet, Gsh;t1/(11a), wherea51, 2, and 3, corresponding to the three generic
surface mass-transport mechanisms of straight steps. We thereby provide a unified treatment of the dynamics
of steps and of clusters. To check how well the continuum results describe clusters of the size in experiments,
we perform Monte Carlo simulations of simple lattice gas models. Further, we estimate atomic diffusion
parameters from the available experimental data on diffusion of large clusters.@S0163-1829~96!06239-X#

I. INTRODUCTION

Characterizing the mechanisms of atomic mass transport
on surfaces is crucial to the understanding of many important
processes, such as epitaxial growth. A notable manifestation
of surface transport is the diffusion of single-layer
clusters.1–9 Of the few experimental studies relating the dif-
fusion of clusters to their size, most have considered islands
of no more than a few tens of atoms.2,3 For such small clus-
ters, the details of the geometry of the structure and the in-
terplay of the many energy barriers for single-atom diffusion
lead to complicated size dependence, which can confound
interpretation in terms of atomic processes. Using scanning
tunneling microscopy~STM! Trevoret al.7 made one of the
first direct observations of the diffusion of large vacancy
and/or adatom clusters that are found on Au~111! in electro-
lyte solution by scanning tunneling microscopy~STM!.
These clusters were in the range of 2 to 10 nm in diameter.
Trevor et al. observed that the cluster diffusion constantDc

decreases with the mean cluster radiusR. Limited by their
speed of observation, they were unable to characterize the
decrease quantitatively. Recently, however, there have been
three studies4–6 in which the diffusion constant of the islands
Dc was measured as a function of large approximate island
radiusR. Morgensternet al. ~MRPC! ~Ref. 4! studied single-
layer vacancy clusters on Ag~111!. Wen et al. ~WCBET!
~Ref. 5! studied adatom islands of Ag on Ag~001!. Figueraet
al.6 ~FPOM! observed the motion of monolayer-deep va-
cancy islands on a Cu~111! surface covered with submono-
layer amounts of Co. In all three experiments the number of
vacancies~atoms! in the island ranged from 102 to 103. For
such sizes it becomes meaningful to describe the step edge
position by a continuous variable. We derive results here that
show how the same processes that govern step fluctuations in
the continuum limit also produce adatom and vacancy cluster
diffusion, deriving a general expression for the cluster-size
dependence of the diffusion constantDc of the cluster. Three
limiting cases of this result were reported earlier in a Letter

by Bartelt and us.10 We also define and analyze an expres-
sion for a shape fluctuation correlation function; its scaling
with time of observation of the clusters is found in the three
limiting cases. These equilibrium fluctuations of steps on
vicinal surfaces have been experimentally observed and ana-
lyzed in detail.11–13 Their spatial and temporal correlations
have also been characterized in the continuum limit using
Langevin dynamics.14–18From the similar, but more general,
Langevin analysis of clusters that follows, we show how the
various mechanisms of atomic transport across the surface
underlie the Brownian motion of clusters. By comparison
with experiment, we check that this unification of coarse-
scale and atomic motion presents a fully consistent picture
that is richer than the one obtained by scaling arguments4,5

alone or other theoretical attempts.19–21We describe the con-
tinuum approach to the problem in Sec. II. The results of
simulations are presented in Sec. III. We discuss the rel-
evance of the results to experiment in Sec. IV and summarize
in Sec. V.

II. LANGEVIN ANALYSIS

Consider an isolated adatom and/or vacancy island whose
center of mass undergoes random fluctuations. We assume
that the fluctuations are entirely the result of the motion of
the boundary of the island, defined in cylindrical coordinates
by

r5 r̃ ~u,t !, ~1!

wherer andu are the radial and azimuthal coordinates and
t is the time. We assume that the lowest-energy configuration
of the cluster is a circle of radiusR. Under these conditions
we can define a dimensionless variableg(u,t) for the cluster
boundary by

g~u,t ![„r̃ ~u,t !2R…/R. ~2!

The diffusion constantDc of the cluster is defined as
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Dc[
^r¢CM

2 ~ t !&
4t

, ~3!

wherer¢CM(t) is the position vector of the island’s center of
mass, andr¢CM(0) is taken as the origin. Expanding the cen-
ter of massr¢CM(t) to first order ing(u,t), one can show that

Dc5
R2^ug1~ t !u2&

t
, ~4!

where Dc is simplified by the Fourier representation
g(u,t)5(ngn(t)exp(inu), with n50,61,62 . . . The re-
striction thatg2n(t)5gn* (t) guarantees thatg(u,t) is real.

In analogy with the analysis for the single isolated step on
a surface15,16,22we define the cluster edge free energy as

F@ r̃ ~u,t !#5
b̃

2RE0
2pS dr̃du D 2du, ~5!

where the cluster-edge stiffnessb̃ is assumed to be isotropic.
It can be viewed as an ‘‘effective’’ surface tension of the
cluster edge. Details of the derivation and how it differs from
that of a straight step are sketched in the Appendix.

The thermodynamic definition of the chemical potential
m is m[dF/dN, whereN is the number of particles in the
system. Similarly, Herring, Mullins, and others23–25 further
defined a chemical potential that depends on surface geom-
etry. Analogous to such a definition of the chemical potential
ms for vicinal step edges,24,25 we assume that the chemical
potentialms due to the cluster edge is given by

ms5S dF

d r̃
D S dN

d r̃
D 21

, ~6!

whereN is now the number of atoms and/or vacancies in the
cluster and can be written in terms of the cluster area:

N5E
0

2p r̃ 2

2V
du. ~7!

HereV is the area of the surface unit cell. Performing the
functional minimizations in Eq.~6! ~Ref. 22! from the forms
of F given by Eq.~5! andN in Eq. ~7!, one gets, to linear
order ing(u,t),

ms52
Vb̃

R

d2g

du2
. ~8!

This ms is the driving potential for the mass transport of the
cluster, as shall be seen shortly through Eq.~9!. Caveats
regarding the definitions ofF andms are given in the Ap-
pendix. We apply the so-called radiation boundary condition
in the adiabatic or quasistatic approximation.~See, e.g., Refs.
26–28.! We assume a steady-state concentration of adatoms
on the upper and on the lower terraces of the cluster. Hence,
the concentration does not depend explicitly on time. The
diffusion equation for the adatom concentrationc(r ,u) then
becomes Laplace’s equation. The incoming flux at a given
point on the cluster edge consists of a normal component
coming from the upper and the lower terrace and another
contribution from motion along the cluster periphery. We

make the linear kinetic assumption, which means that this
incoming flux is linearly proportional to the change in con-
centration on the upper and lower terrace due to the presence
of the step edge. The first two terms on the left-hand side of
the following equation describe the flux from the periphery
and the terrace, respectively. The right-hand side indicates
the attachment rate of this flux to the boundary; the propor-
tionality constantG is the mobility. Thus, the boundary con-
ditions for the concentration are given by

W6VR22Dst

]2c~ r̃ 6,u!

]u2
1VDsu

]c~ r̃ 6,u!

]r

56G6Fc~ r̃ 6,u!2S 11
ms

kBT
D csuG . ~9!

For vacancy clusters, the right-hand side must be multiplied
by an additional factor of21. The1 (2) region is outside
~inside! the closed step, i.e., wherer. r̃ (r, r̃ ).
G1 (G2) is the step mobility due to the attachments onto
the cluster edge from the1 (2) region. Similarly,
c( r̃ 6,u) refer to the concentrations just outside~inside! the
edge. Witha' an effective lattice constant in the radial di-
rection perpendicular to the cluster edge,W15a' for ada-
tom clusters whileW250; for vacancy clustersW150
whileW25a' . It is assumed here that the motion along the
cluster edge happens only along the lower terrace. If this
were not the case, thenW656a' for adatom clusters and
W657a' for vacancy clusters. In this situationDst in Eqs.
~23!, ~26!, ~27!, ~31!, and~32! should be replaced by 2Dst .
V is the area of the surface unit cell.Dst is the ~tracer!
diffusion constant of a single atom diffusing along the cluster
@step# edge.Dsu is the~tracer! diffusion constant of a single
adatom diffusing on a flat~step-free! surface.csu is the equi-
librium surface concentration of adatoms far away from the
cluster edge. The conservation of mass at the cluster edge
implies that the velocity of the cluster edge should be pro-
portional to the incoming flux from both terraces, combined.
The incoming flux is given by the left hand side of Eq.~9!.
Thus using Eq.~9! the cluster edge velocity is given by

R
]g~u,t !

]t
5G1Fc~ r̃ 1,u!2S 11

ms

kBT
D csuG

1G2Fc~ r̃ 2,u!2S 11
ms

kBT
D csuG . ~10!

We solve the Laplace’s equation forc(r ,u) in two dimen-
sions with the boundary conditions of Eq.~9! and with other
obvious restrictions such as the boundedness ofc(r ,u),
c(0,u)5c(`,u)5csu , andc(r ,u12p)5c(r ,u) and substi-
tute it into Eq.~10! to get

]g~u,t !

]t
52 (

m52`

`

tm
21gm~ t !eimu. ~11!

Heretm
21 is given by
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1/tm5F csuV2b̃umu3

kBTR
3 S Dsu1

uW1uDstumu
R

11
DsuVumu

G1R
1

uW1uDstVm2

G1R
2

1

Dsu1
uW2uDstumu

R

11
DsuVumu

G2R
1

uW2uDstVm2

G2R
2

D G . ~12!

Equation~11! is a breakup of the cluster edge velocity into
its Fourier components. Each term in the summation corre-
sponds to a particular Fourier component with a characteris-
tic relaxation timetm . To convert Eq.~11! into a Langevin
equation, we add an appropriate noise termz(u,t)
5(nzn(t)exp(inu), with n50,61,62 . . . . We caneasily
solve the resulting equation for the Fourier components,

]gn~ t !

]t
52

gn~ t !

tn
1zn~ t !, ~13!

to get

gn~ t !5e2t/tnFgn~0!1E
0

t

et8/tnzn~ t8!dt8G . ~14!

We choose the noise such that

^zn~ t !z2m~ t8!&5 f ndn,md~ t2t8!. ~15!

If one starts at timet50 with a perfectly circular cluster,
then the correlations ofg at future timet are given by com-
bining Eqs.~14! and ~15!:

^ugn~ t !u2&[^gn~ t !g2n~ t !&5
f ntn~12e22t/tn!

2
. ~16!

We note here that the right-hand side of Eq.~16! vanishes as
required att50, when the cluster is perfectly circular. If we
express the free energy due to the cluster edge, Eq.~5!, in
terms ofgn(t)’s, it follows from the equipartition of energy
among the capillary modesgn(t) in equilibrium29 that

^ugn~ t !u2&5kBT/~2pb̃Rn2!. ~17!

Under these conditions

f n5kBT/~pb̃Rtnn
2!. ~18!

This result with Eq.~12! determines the second-order noise
correlations completely. Whent/t1!1 the exponential in
Eq. ~16! for the casen51 can be expanded to first order in
t. With Eq. ~4! and Eq.~18! this gives

Dc5R2f 15kBTR/~pb̃t1!. ~19!

The above result with Eq.~12! for m51 gives the value of
Dc for t/t1!1. Now suppose thatt/t1!” 1. We argue that
the diffusion constant remains the same as given above,
based on the following reasoning. Let us write the center of
mass position vector at some arbitrarily large timetM , as

r¢CM(tM)5( i51
M @r¢CM(t i)2r¢CM(t i21)#, where 0[t0,t1

,t2,•••,tM21,tM . We assume thatr¢CM(0) is the ori-
gin. Hence, we get

^r¢CM
2 ~ tM !&
4tM

5~4tM !21S (
i51

M

^@r¢~ t i !2r¢~ t i21!#
2&

12(
i51

M

(
j5 i11

M

^@r¢~ t i !2r¢~ t i21!#•@r¢~ t j !

2r¢~ t j21!#& D . ~20!

We choose the time intervals such that (t i2t i21)/t1!1 and
alsoM@1. We assume that displacements at different times
are uncorrelated if separated by time intervals greater than a
few atomic events. Then the contribution from the double
summation becomes negligible compared to the first sum.
Thus even at long times,Dc is given by the first sum, which
evaluates to the ‘‘short times’’ expression in Eq.~19!.

Having foundDc , we now calculate the shape fluctua-
tions of the cluster. We define a shape fluctuation correlation
functionGsh(t,t8) with t82t.0 as

Gsh~ t,t8!5^@d~ t !2d~ t8!#2&, ~21!

whered(t)[X(t)2Y(t). X(t) andY(t) are defined pictori-
ally in Fig. 1 and are evaluated asX(t)5 r̃ (0,t)2 r̃ (p,t) and
Y(t)5 r̃ (p/2,t)2 r̃ (3p/2,t). We assume that we begin with
a cluster for which the fluctuations of its boundary have al-
ready reached their equilibrium value given by Eq.~17! at
time t50. One gets, after some algebra and using
t2m5tm , the relation

FIG. 1. Schematic representation of a vacancy cluster undergo-
ing fluctuations of its boundary.C is the center of mass of the
cluster at timet. X(t) andY(t) are dimensions of the cluster in an
orthogonal coordinate system passing throughC, defined to be the
origin.
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Gsh~ t,t8!5
16RkBT

pb̃
(
m50

` F12exp„2~ t82t !/t2m11…

~2m11!2 G .
~22!

Equations~11!, ~12!, ~19!, and~22! hold in general, i.e.,
when mass transport on the surface takes place along the
cluster boundary as well as on the terraces. As is the case of
‘‘straight’’ steps ~or the decay of surface profiles25,30!, three
limiting cases are of special interest, corresponding to three
distinct mechanisms of mass transport occurring at the clus-
ter boundary. These limiting cases lead to the scaling ofDc
with R and ofGsh(t,t8) with the elapsed timet82t. These
are illustrated schematically in Fig. 2 and their description is
now given.

Periphery or edge diffusion(PD). When the mass trans-
port occurs only along the edge of the boundary~and the
number of atoms and/or vacancies in the island are pre-
served!, we takeDsu50. Also if the rate limiting step is
diffusion along the boundary, then the term of unity in the
denominator of Eq.~12! is taken to be the dominant term to
get 1/tn as

1/tn5DstcstV
2b̃n4/~kBTR

4!, ~23!

wherecst is defined bycst[csua' .
Terrace or surface diffusion(TD). Suppose that the

boundary of the island can emit atoms very rapidly, but at-
oms diffuse away slowly from the boundary. The rate-
limiting step in mass transport is then the diffusion on ter-
races. We takeDst50 with the term of unity in the
denominator to be dominant to get 1/tn as

1/tn52DsucsuV
2b̃unu3/~kBTR3!. ~24!

Furthermore, if carriers attach and/or detach from only one
side, as is believed to be the case4,8 for Ag~111!, one must
remove the factor of 2 in Eq.~24!. This scaling behavior has
also been derived analytically from a different atomistic per-
spective by Van Siclen19 and also by Soler,31 for ‘‘corre-
lated’’ evaporation-condensation.

Evaporation and condensation limited diffusion(EC). In
this case the rate-limiting step for mass transport is the ran-
dom attachment and/or detachment of adatoms~or vacan-
cies! at the edge of the boundary~from and/or to a reservoir
of adatoms on the terraces or, in principle, in the vapor!.
Then one can ignore the constant term in the denominator
and defineG5„csuV(G11G2)…/2 to get 1/tn of the form

1/tn5Gb̃n2/~kBTR
2!, ~25!

where G, the step mobility, is proportional to the rate of
random attachments~detachments!.13,29

The cases PD and EC are examples of models B and A,
respectively, in dynamical critical phenomena.32 From Eqs.
~19!, ~20!, ~23!, ~24!, and~25! we see that in all three cases
the diffusion constantDc of the island or cluster is given by
a relation of the form

Dc5Dc0R
2a, ~26!

wherea53,2,1 for the case of PD, TD, and EC, respec-
tively, and the corresponding expressions forDc0 are
DstcstV

2/p, 2DsucsuV
2/p, andG/p.

Also the summation forGsh(t,t8) can in these three lim-
iting cases be converted into an integral by taking a large-
R limit, giving rise to the scaling witht82t. This yields

Gsh~ t,t8!5
8

p
@G„a/~11a!…#

3~kBT/b̃ !2@pDc0~ b̃/kBT!a12ut82tu#1/~11a!.

~27!

@Note that theG appearing in Eq.~27! is a gamma function
and not the mobility.# This large-R leading term corresponds
to an early-time expansion; there is no equivalent to Eq.~20!
by which it can be extended to later times. Gruber33 found an
expression forDc corresponding to Eq.~26! for a three-
dimensionalvoid diffusing in a solid in the case of PD. Gen-
eralizing his arguments to two dimensions, we obtained the
same expression forDc as in our Langevin analysis of the
PD case. In the three limiting cases, the Langevin equations
for the velocity of the cluster boundary also simplify consid-
erably. The expressions fortn from Eqs.~23!, ~24!, and~25!
can be substituted back into Eq.~13! and the inverse Fourier
transform performed. In these limits Eq.~13! then takes the
real space form,

]g~u,t !

]t
5F@g~u,t !#1z~u,t !, ~28!

whereF@g(u,t)# is in general a functional ofg(u,t). The
second-order noise correlations ofz(u,t)) can also be calcu-
lated by taking the inverse Fourier transform of Eq.~15! with
the use of Eqs.~18!, ~23!, ~24!, and~25!.

For the case of EC,

FIG. 2. Schematic representation of the three types of diffusion
mechanisms considered here. The large circle represents the aver-
age circular shape of a vacancy island on the surface. The solid line
shows a fluctuation giving rise to a shift of the center of mass to the
right. Two paths of the adatom motion marked TD~for terrace
diffusion! and PD~for periphery diffusion! for the same initial and
final position of the migrating atom are depicted with arrows. The
atoms markedE andC represent the third mechanism of evapora-
tion and condensation from the vacancy edge. The atom marked
C is one that has just condensed onto the vacancy edge. The one
markedE is the one that will soon evaporate from the edge.
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F@g~u,t !#5
Gb̃

R2kBT

]2g~u,t !

]u2
~29!

with

^z~u,t !z~u8,t8!&5
G

pR3 d~u2u8!d~ t2t8!. ~30!

For the case of PD, the conservation of carriers along the
steps adds the operator2]2/]u2, so that

F@g~u,t !#5
2DstcstV

2b̃

R4kBT

]4g~u,t !

]u4
~31!

with

^z~u,t !z~u8,t8!&5
DstcstV

2

pR5 d9~u2u8!d~ t2t8!. ~32!

For the case of TD,F is nonlocal:

F@g~u,t !#5
DsucsuV

2b̃

pR3kBT
E
0

2pF]2g~f,t !

]f2 G
f

S~u2f!df

~33!

with

^z~u,t !z~u8,t8!&5
22DsucsuV

2

pR4 S~u2u8!d~ t2t8!.

~34!

HereS(x) is given by

S~x!5
12cosh~v!cos~x!

@cosh~v!2cos~x!#2
~35!

andv is a convergence factor to account for the nonvanish-
ing lattice constant:v'ai /R, whereai is a lattice constant
along the cluster boundary.

Since we have produced a general formalism not limited
to the three special cases, we can examine the crossover from
one regime to another. The crucial question is how narrow
the crossover regions are, and thus how likely one is to ob-
serve them in experiments. DefiningRsu[DsuV/G1 and
Rst[(a'DstV/G1)

1/2, and using Eqs.~12! and ~19!, we
write for an adatom cluster where mass transport is only in
the lower terrace,

Dc5
csuVG1

pR S ~Rsu /R!1~Rst /R!2

11~Rsu /R!1~Rst /R!2D . ~36!

The expression in large parentheses is essentially identical to
that presented in an appendix by Bonzel and Mullins25 in
conjunction with the straightening of an isolated step.34 The
effective exponenta defined by

a~R![2
] lnDc

] lnR
~37!

can be written as

a~R!521S 1

11~R/Rst!~Rsu /Rst!
D

2S 21~R/Rst!~Rsu /Rst!

11~R/Rst!~Rsu /Rst!1~R/Rst!
2D . ~38!

Hence, if R!max(Rst ,Rsu), then a51. If
R@max(Rsu ,Rst

2 /Rsu), thena52. If Rst!R!Rst
2 /Rsu , then

a53. In principle, then, for a large enough cluster one
should always finda52, although this may well be unphysi-
cally large. The contour plot ofa in Fig. 3 illustrates all
these ideas and demonstrates that the crossover region occu-
pies a rather narrow portion of parameter space and so is
unlikely to occur in an experiment. Moreover, if it does, one
should see noticeable changes in the effective exponent as
R is increased. Good scaling withaÞ1,2,3 for over a decade
suggests either experimental problems or physics beyond
what is discussed in our analysis.

III. MONTE CARLO SIMULATIONS

The results of the continuum analysis demonstrate that the
exponenta is a signature of the microscopic mechanisms of
mass transport involved in the diffusion of the island. To
check how these results appear in lattice systems with real-
istic dimensions, we also performed Monte Carlo simula-
tions of three simple lattice-gas models of the three types of
mass transport. The goal in these simulations was not to
replicate any real system; instead we formulated simple
models tailored to exhibit the three kinds of behavior, and
then tested~i! whether the appropriate scaling was achieved
and ~ii ! if the prefactor was the predicted transport coeffi-
cient. The latter aspect involved computing this coefficient in

FIG. 3. Contour plot, with gray-scale shading, of the effective
exponentaeff[2] lnDc /]lnR as a function of the common loga-
rithms log10, of R/Rst and Rsu /Rst . Note that plateaus at the
limiting-case, integer values 1~gray!, 2 ~light gray!, and 3
~white!—indicative of EC, TD, and PD, respectively—consume
most of the parameter space; the crossover regions are rather nar-
row.
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the same model from a different perspective, by applying an
external force and observing the response.

We used the standard Metropolis algorithm35 on a square
lattice with an ~attractive! nearest-neighbor~NN! energy
2e. Square lattices of dimensions (L140)3(L140) were
studied. An initially square vacancy cluster of dimensions
L3L was made by removing atoms around the center of the
lattice ~soR5L/Ap). The sides of this cluster were chosen
parallel to those of the larger square. In all three modelsL
was chosen to be 10, 20, 40, and 80 atomic spacings. Data
were not taken until the energy of the cluster had dropped to
near its steady-state value, implying that the shape had
equilibrated.

In the model for PD, Kawasaki dynamics@i.e., single-
atom hops to a neighboring~vacant! site#34 was used with the
restriction that adatoms were allowed to diffuse only along
the edge of the island via next-nearest-neighbor~NNN! ex-
change between a vacancy and an adatom. The temperature
was set atT50.6e/kB , high enough so that the equilibrium
shape of the cluster was nearly circular and so that adatoms
had good mobility, but well below what would be the rough-
ening temperature in an SOS model with the samee. For
present purposes we define an isolated adatom~vacancy! site
as one which has all four NN sites empty~occupied by at-
oms!. On a perfectly straight step, a NN hop of an edge atom
~by necessity normal to the step! causes the formation of an
isolated vacancy and an isolated adatom. This process costs
an energy 3e and hence is very slow. If the isolated adatom
now hops along the edge to remove the isolated vacancy-
adatom pair just generated, then it can do so with unit prob-
ability since the energy decreases~by e). However, if the
isolated adatom created does not hop along the edge before
the vacancy penetrates the bulk, then we get bulk vacancy
diffusion, which is prohibited in PD.~If an isolated vacancy
were created, its hops in the surrounding area would happen
with unit probability since they involve no energy change.!
Also, most atoms on an equilibrated vacancy-island edge can
make NNN hops but not NN hops without generating an
isolated vacancy. The exclusively NNN-hop dynamics
avoids these problems of very slow PD diffusion with NN
hops and penetration of isolated vacancies into the bulk.36

Any NNN hop which creates an isolated vacancy is also
explicitly forbidden. So long as the diffusion is restricted to
the periphery and is local, the exponenta should be inde-
pendent of the specific choice of dynamics.

In the model for TD, the lattice gas Hamiltonian was
slightly modified so that the energy of an isolated adatom on
the terrace within the vacancy island was assigned an energy
of e rather than 4e. The modification allows the vacancy
cluster edge to emit atoms very rapidly, thereby facilitating
adatom motion across the vacancy island. An initial density
of adatoms in the vacancy of about 5% was introduced to
reduce the time needed for equilibration. Kawasaki
dynamics35 was again used, but now diffusion of adatoms
was allowed only via nearest-neighbor exchange between a
vacancy and an adatom. Furthermore, single vacancies were
not allowed to break away from the vacancy cluster, thus
preventing its breakup into parts.37 The temperature was set
at T50.5e/kB .

In the model for EC, Glauber dynamics~i.e., removal or
addition of single atoms! was used with random attachment

and/or detachment of adatoms allowed only along the edge
of the island, atT50.6e/kB . In this dynamics the number of
vacancies in the cluster fluctuates. For each value ofL, the
chemical potential of the reservoir was adjusted so that the
mean number of vacancies comprising the cluster remained
approximately the same as in the initial square configuration.

From the vacancy island simulations, plots of log10Dc ver-
sus log10L were made in all the three cases. These plots with
their best linear fits are shown in Fig. 4. The slopes of the
linear fits gave the three values ofa53.1, 2.03, and 0.97,
respectively. These values confirm the predictions of the
Langevin analysis and the correspondence of the mass-
transport mechanisms with the different values ofa. The y
intercepts of these fits gave the values ofDc0, which in turn
give Dst , Dsu , and G in the three cases. Plots of
logGsh(t,t8) versus log(t82t) were also made. These plots
with their best linear fits are shown in Fig. 5. The slopes

FIG. 4. Log-log plot~with common logarithms log10! of Dc vs
L obtained from simulations of the three cases: EC~asterisks!, TD
~diamonds!, and PD~triangles! is shown along with the best linear
fits. L5RAp is the linear dimension of the initial square shape of
the vacancy.Dc is the diffusion constant of the cluster defined by
Eq. ~3!. The arbitrary constantS shifts they intercepts to allow
display of all three cases together.

FIG. 5. Log-log plot @with common logarithms~log10!# of
Gsh(0,t) vs t, both in arbitrary units. The triangles~PD!, diamonds
~TD!, and asterisks~EC! are the data from Monte Carlo simulations.
The solid lines are the best linear fits. The slopes are close to the
predicted values 1/4, 1/3, and 1/2, respectively. See text for details.
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were 0.26, 0.31, and 0.51 for the PD, TD, and EC cases,
respectively, corresponding very well with the continuum
Langevin analysis predictions of 1/4, 1/3, and 1/2.

One can deduceDc}R
2a from scaling arguments~cf.

Sec. V!. Thus, to corroborate our physical picture, it is im-
portant to be able to calculate the prefactors independently to
verify that we are actually obtaining the relevant atomistic
diffusion constantsDst , Dsu , and G/ai in the prefactors.
ai is a lattice constant along the step. In each case, to check
the derived value ofDc0, we used the same Hamiltonians
and dynamics, but instead of considering clusters, we applied
a weak potential gradientF to straight steps~for PD and EC!
or a flat terrace with adatoms~for TD! to compute the con-
stituent diffusion constantDst , G/ai , or Dsu , respectively.
The average velocityv̄ of the diffusing species was calcu-
lated as a function ofF, and the carrier diffusion constant
obtained by applying the Einstein-Nernst relation
D5kBTuv̄u/uFu. For PD,F was applied along~parallel to! the
initial straight edge of a step with widthw540. For the TD
case,F was applied along one direction of a flat step-free
square terrace with an adatom densitycsu . For EC,F was
applied perpendicular to an initial straight step of width
w540; in this casev̄ refers to the average velocity of the
whole step. The three diffusion constantsDst , Dsu , and
G/a calculated from the set of simulations withF agreed to
within 25% with their values obtained from they intercepts
(Dc0) in Fig. 4. The vacancy islands are finite in size. Also
the Langevin analysis was done only to first order ing. Con-
sidering this finite size effect of the simulations and the lin-
ear approximation in the Langevin approach, we see that the
agreement between diffusion constants obtained in the two
ways is good. This agreement supports the appropriateness
of the Langevin analysis of the simulations and, by implica-
tion, of the physical systems.

In a separate~Kawasaki35 type! simulation, at each time
step we removed an atom from one position along the
boundary and immediately reattached it to the boundary at a
random~with respect to the azimuthal angle! position, so that
area is constantly conserved:rz(u,t)du50. The resulting
log-log plot had a slope of 1.97. However, this straightfor-
ward Monte Carlo approach assumes random sampling of
periphery sites with~fixed! time interval. In fact, as the pe-
riphery grows, the chance of a move per site should stay
constant, so the chance of a move per time should be pro-
portional to the circumference, leading to another factor of
R. Hencea50.97, as for EC~see Ref. 38!. For small adatom
islands~but not vacancy pits! another diffusion mechanism is
possible on such faces, more generally on$111% fcc or $0001%
hcp faces with adsorption in either threefold site. Here dif-
fusion can occur rapidly by the passage through the island of
a dislocation line between domains in each of the two kinds
of sites.39

For PD diffusion WCBET~Ref. 5! cite values ofa from
early simulations40,41 in the range of 3 to 4. In these simula-
tions the number of single atoms and/or vacancies in the
islands was less than 102. We believe that these values
should converge toa53 for larger island sizes. WCBET
~Ref. 5! also present heuristic arguments for obtaining the
value ofa for EC and PD diffusion. Stimulated by the work
of Pimpinelli et al.,42 MRPC ~Ref. 4! give a similar explana-
tion of the phenomenon. Though this approach predicts the

correct exponents for the PD and TD mechanisms of diffu-
sion, it does not readily provide precise quantitative informa-
tion, such as the single atom diffusion constants and the step
stiffness. While Shaoet al.43 have also studied the approach
to the equilibrium shape of two-dimensional clusters on sur-
faces using Monte Carlo simulations, their emphasis is dif-
ferent. They probe the dependence of the time of equilibra-
tion of the cluster shape on the temperature and on the
energy barriers for the motion of kink and corner atoms.

IV. ESTIMATES OF ENERGIES IN EXPERIMENT

This paper demonstrates that the phenomenon of surface
diffusion of large islands can be viewed in a broader perspec-
tive: the cluster diffusion is a natural byproduct of the fluc-
tuations of the bounding step. Observations of step fluctua-
tions can then be used to make predictions about island
diffusion. This approach also gives quantitative predictions
for tracer diffusion constants from the observations of large
island diffusion, as we illustrate for the three experiments at
hand. The approximation that the ground state of the clusters
is circular should be decent for temperatures at which the
clusters diffuse, when they appear in STM images4–6as quite
rounded polygons. The presence or absence of corners
should be particularly important for PD, which has not been
observed to date in quantitative experiments involving ada-
tom or vacancy islands. While the activation barriers esti-
mated in what follows are crude, they provide some confi-
dence that the physical picture underlying the preceding
formalism is sensible. It is not feasible to extract more pre-
cise values without independent information about quantities
such ascsu . Without independent information about the mi-
croscopics, any extracted energies should be viewed as ef-
fective rather than physical parameters.

In their study of adatom islands on Ag~001!, WCBET
~Ref. 5! found a51. UsingDc'1023 nm2/s for an island
of 100 atoms, we findG/a'1.831022 nm2/s for the diffu-
sion of a step on Ag~001! at room temperature, wherea is
the surface lattice constant on the Ag~001! surface. Approxi-
mating the diffusion prefactor by 1011 nm2/s,2 we obtain an
activation energy of about 0.7 eV, which is a reasonable
magnitude for a single atom detaching from a close-packed
step on this surface.44 In their study of vacancy clusters
on Ag~111!, MRPC ~Ref. 4! found a52. Using
Dc0'1.3 nm4/s, we estimate the surface mass diffusion co-
efficient of Ag adatoms on Ag~111!, Dsucsu'750 s21. We
then writecsuV5exp(2Ef /kBT), whereEf is the formation
energy of an adatom in the vacancy clusters, and
Dsu51011exp(2Ed /kBT) nm

2/s , whereEd is the diffusion
barrier for an atom to hop on the Ag~111! surface. Hence,
with kBT50.025 eV we getEf1Ed50.53 eV. If we assume
Ed50.1 eV,45–51 we getEf50.43 eV, which has a reason-
able order of magnitude.44 Clearly, although the sum
Ef1Ed may be obtained from fitting the Langevin-derived
expression to the experiment, the subsequent breakup into
two energies is problematic. From Fig. 3~b! of FPOM,6 who
also found a52, we useDc0'4.231022 nm4/s to get
DsucsuV'2.33 nm2/s. Now as before we getEf1Ed
50.61 eV, a plausible estimate.44

The extraction of microscopic energies from statistical
data such as the above needs some caution. As noted
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recently52 the energies so obtained are only as good as the
correspondence of the model proposed for analysis of the
data with the microscopic physical reality. In short, the con-
clusion of this section is that the numbers one extracts from
the simplest analysis are of plausible magnitude.

V. DISCUSSION AND SUMMARY

There have been other approaches to this problem which
predict the form of the scaling of the cluster diffusion con-
stantDc with its size. One of the first such arguments was
given more than a decade ago by Binder and others53,54 in
light of their simulation results of kinetic Ising spin models.
Others have given similar arguments recently.4,5,20,21 They
all essentially give dimensional scaling arguments to obtain
the three values ofa5 1, 2, 3. In contrast to our approach, it
is not clear how these results can be used to yield exact
prefactors to extract microscopic energetics information from
the experiment. An exact analytical expression for the scal-
ing of the diffusion constant of the clusterDc with its size is
given by Ref. 19 for four distinct cases which yielda5 0, 1,
2, and 3. Our expression forDc given by Eq.~26! for the
case ofa51,3 agrees with that of Ref. 19. For the case
a52, ourDc differs from his by a factor of 2. This factor
arises because he considers adatoms attaching and/or detach-
ing from the cluster edge only from one side. Our unification
of the previously well-characterized step-edge fluctuations
and large-cluster diffusion is not so evident in any of these
alternative approaches. Moreover, the scaling of the shape-
fluctuations function with time emerges very naturally in our
presentation. It is not so obvious how one would obtain this
result from these alternative perspectives.4,5,19–21

In all our work we have neglected any role of defects. In
some cases, they evidently enhance the diffusion.6 More of-
ten we expect them to hinder the motion and cause problems
in comparing data for nearly straight and nearly circular
steps on the same surface. At least on non-close-packed sur-
faces, the diffusion along close-packed step edges is typi-
cally much greater than across terraces. Nonetheless, the
cluster motion may often be dominated by TD because the
diffusing atom cannot readily move around corners. This
barrier would likely be enhanced by impurities residing at
corners. More generally, impurities can pin steps,55 destroy-
ing locally the fluctuations that have dominated our attention
in this work.

In summary, we have shown how the diffusion of large
clusters is simply a corollary of the fluctuations of the cluster
boundary. We have developed a general Langevin analysis
of diffusion of large islands. In three limiting cases we can
give detailed predictions for the scaling of the diffusion con-
stantDc with the mean radius R. Furthermore, we can define
a shape correlation function and explore its scaling with the
time of observation in these cases. The scaling exponents
signify the rate-limiting mass-transport mechanism involved.
With Monte Carlo simulations we have illustrated the pre-
dictions of this continuum analysis in these limiting cases for
surface mass transport. Finally, we applied the analytical pre-
dictions to the experimental data available and extracted
single-atom diffusion constants. This approach allows us to
measure atomic diffusion constants from observations of
large-island diffusion.
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APPENDIX

As an alternative to Eq.~5!, the exact definition ofF can
be written as

F@ r̃ ~u,t !#5E
0

2p

@ r̃ 21 r̃̇ 2#1/2b„f~u!…du, ~A1!

whereb is the free energy per unit length of the cluster edge
and the dot onr̃ indicates differentiation with respect tou.
The anglef(u) is the direction of the local normal to the
cluster boundary at the point„r̃ (u),u…, so that for a circle
f(u)5u. In general, we find that

f~u!5tan21F r̃sinu2 r̃̇cosu

r̃cosu1 r̃̇sinu
G . ~A2!

Performing the functional minimizations in Eq.~6! using this
definition ofF of Eq. ~A1!, one obtains the exact result for
m given by

m5
Vb̃~f!~2 r̃ r̃̈12r̃̇ 21 r̃ 2!

r̃ 3@11~ r̃̇ / r̃ !2#3/2
, ~A3!

where the stiffnessb̃(f) is defined asb(f)1d2b(f)/

df2. Now ignoring the nonlinear terms inr̃̇ / r̃ and suppress-
ing thef dependence ofb̃ one gets

m5
Vb̃~ r̃2 r̃̈ !

r̃ 2
[

Vb̃~11g2g̈!

R~11g!2
'

Vb̃

R
~12g̈2g!,

~A4!

to lowest order ing. The first term is simply an additive
constant Gibbs-Thomson term56 that is not important for
studying cluster diffusion and just shifts the reference chemi-
cal potential. The second term is what is given in Eq.~8!.
The angular average of the third term is zero. Moreover, it
gives rise to cluster size instability: it causes the cluster ei-
ther to grow without bound or to evaporate completely.57–59

Experimentally the clusters are found to be stable over the
time of observation. Hence we omit this third term.
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