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Brownian motion and shape fluctuations of single-layer adatom and vacancy clusters on surfaces:
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In recent observations of Brownian motion of islands of adsorbed atoms and of vacancies with mean radius
R, the cluster diffusion constaf varies asR~* andR™2. From an analytical continuum description of the
cluster’s steplike boundary, we findsingle Langevin equation for the motion of the cluster boundary, rather
than three special cases. From this we deterrbigeand the correlation functios, for fluctuations of the
shape around an assumed equilibrium circular shape. In three limiting cases we find the scaling relations
D.~R™* and, at early elapsed timeGg,~t"(1*) wherea=1, 2, and 3, corresponding to the three generic
surface mass-transport mechanisms of straight steps. We thereby provide a unified treatment of the dynamics
of steps and of clusters. To check how well the continuum results describe clusters of the size in experiments,
we perform Monte Carlo simulations of simple lattice gas models. Further, we estimate atomic diffusion
parameters from the available experimental data on diffusion of large cluss&63-18206)06239-X]

. INTRODUCTION by Bartelt and us® We also define and analyze an expres-
sion for a shape fluctuation correlation function; its scaling
Characterizing the mechanisms of atomic mass transpowith time of observation of the clusters is found in the three
on surfaces is crucial to the understanding of many importarfimiting cases. These equilibrium fluctuations of steps on
processes, such as epitaxial growth. A notable manifestatiovicinal surfaces have been experimentally observed and ana-
of surface transport is the diffusion of single-layer lyzed in detail:'~** Their spatial and temporal correlations
clusterst—® Of the few experimental studies relating the dif- have also been characterized in the continuum limit using

: :.d4-18 L
fusion of clusters to their size, most have considered islands@ngevin dynamllcé. From the similar, but more general,
of no more than a few tens of atorddFor such small clus- L-angevin analysis of clusters that follows, we show how the

ters, the details of the geometry of the structure and the ir]\_/arious mechanisms of atomic transport across the surface

terplay of the many energy barriers for single-atom diffusionur.]derlle th_e Brownian motion of c_Iuster;. B_y comparison
lead to complicated size dependence, which can confoun‘e{Ith experiment, we (;heck that this umflcatlor_n of coarse-
' scale and atomic motion presents a fully consistent picture

|nterpr'etat|o.n in terms of atomic proce$ses. Using SCanniNg, ot is richer than the one obtained by scaling arguniénts
tunneling microscopySTM) Trevor et al.” made one of the 5,16 o1 ther theoretical attempts2*We describe the con-
first direct observations of the diffusion of Ia}rge vacancyinuum approach to the problem in Sec. II. The results of
and/or adatom clusters that are found on(#d) in electro- i jations are presented in Sec. Ill. We discuss the rel-
lyte solution by scanning tunneling microscof3TM).  eyance of the results to experiment in Sec. IV and summarize
These clusters were in the range of 2 to 10 nm in diamete, gec. V.
Trevor et al. observed that the cluster diffusion constént

decreases with the mean cluster radiusLimited by their

speed of observation, they were unable to characterize the
decrease quantitatively. Recently, however, there have been Consider an isolated adatom and/or vacancy island whose
three studies®in which the diffusion constant of the islands center of mass undergoes random fluctuations. We assume
D. was measured as a function of large approximate islanthat the fluctuations are entirely the result of the motion of
radiusR. Morgensterret al. (MRPC) (Ref. 4 studied single- the boundary of the island, defined in cylindrical coordinates
layer vacancy clusters on Apll). Wen et al. (WCBET) by

(Ref. 5 studied adatom islands of Ag on AiP1). Figueraet

al.® (FPOM) observed the motion of monolayer-deep va- r=r(6,t), (1)
cancy islands on a Qu11) surface covered with submono-

layer amounts of Co. In all three experiments the number ofvherer and # are the radial and azimuthal coordinates and
vacanciegatoms in the island ranged from £Go 10°. For  tis the time. We assume that the lowest-energy configuration
such sizes it becomes meaningful to describe the step ed@é the cluster is a circle of radiuR. Under these conditions
position by a continuous variable. We derive results here thatve can define a dimensionless variah(@,t) for the cluster
show how the same processes that govern step fluctuationsliroundary by

the continuum limit also produce adatom and vacancy cluster

diffusion, deriving a general expression for the cluster-size g(6,H)=(F (6,t)—R)/R. )
dependence of the diffusion constént of the cluster. Three

limiting cases of this result were reported earlier in a LetterThe diffusion constanb of the cluster is defined as

II. LANGEVIN ANALYSIS
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(F%M(t» make the linear kinetic assumption, which means that this
=——""" (3) incoming flux islinearly proportional to the change in con-
centration on the upper and lower terrace due to the presence
whereFCM(t) is the position vector of the island’s center of of the step edge. The first tW.O terms on the Ieft-hand'5|de of
= . . . the following equation describe the flux from the periphery
mass, andEM(O) is taken as the origin. Expanding the CeN-and the terrace, respectively. The right-hand side indicates
ter of masg ¢ y(t) to first order ing(6,t), one can show that the attachment rate of this flux to the boundary; the propor-
tionality constant” is the mobility. Thus, the boundary con-

¢ 4t

2 2
= RX19:(O[%) (4) ditions for the concentration are given by
t 7
where D, is simplified by the Fourier representation 5 c(t *,6) ac(r *,0)
9(6,t) ==ngn(t)exp(ne), with n=0,£1,x2... The re- WoOR “Dg— 7 +O0Dgyy————
striction thatg _,(t) =gj (t) guarantees tha(6,t) is real.
In analogy with the analysis for the single isolated step on . Mg
a surfac&>1%?2we define the cluster edge free energy as =*T.|c(r=,0)—|1+ KaT Csu- 9
B (2r(dF)\? _ _ .
F[r(6,t)]= >R Y] de, (5) For vacancy clusters, the right-hand side must be multiplied
0

by an additional factor of-1. The+ (—) region is outside

where the cluster-edge stiffnegsis assumed to be isotropic. (insid® the closed step, ie., where>r (r<r).
It can be viewed as an “effective” surface tension of the!'+ (I'-) is the step mobility due to the attachments onto
cluster edge. Details of the derivation and how it differs fromth€ cluster edge from the+ (—) region. Similarly,
that of a straight step are sketched in the Appendix. c(r *,0) refer to the concentrations just outsidieside the
The thermodynamic definition of the chemical potential€dge. Witha, an effective lattice constant in the radial di-
w is u=SF/SN, whereN is the number of particles in the rection perpendicular to the cluster edyé, =a, for ada-
system. Similarly, Herring, Mullins, and oth&?#s?® further ~ tom clusters whilew_=0; for vacancy clustersV, =0
defined a chemical potential that depends on surface georMthile W_=a, . Itis assumed here that the motion along the
etry. Analogous to such a definition of the chemical potentiacluster edge happens only along the lower terrace. If this
s for vicinal step edge&*?> we assume that the chemical Were not the case, the.=*a, for adatom clusters and

potential us due to the cluster edge is given by W.==a, for vacancy clusters. In this situatidy, in Eqs.
(23), (26), (27), (31), and(32) should be replaced by2;.
SFE\/sN) Tt Q is the area of the surface unit celDg, is the (trace)
MHs= —) (—) ) (6) diffusion constant of a single atom diffusing along the cluster
o)\ or [sted edge.Dg, is the (tracep diffusion constant of a single
whereN is now the number of atoms and/or vacancies in the2datom diffusing on a flastep-fre¢ surfacec,, is the equi-
cluster and can be written in terms of the cluster area: librium surface concentration of adatoms far away from the
cluster edge. The conservation of mass at the cluster edge
27T 2 implies that the velocity of the cluster edge should be pro-
N= Jo Edﬁ- (7 portional to the incoming flux from both terraces, combined.

The incoming flux is given by the left hand side of Ef).
Here Q is the area of the surface unit cell. Performing theThus using Eq(9) the cluster edge velocity is given by
functional minimizations in Eq(6) (Ref. 22 from the forms
of F given by Eq.(5) andN in Eg. (7), one gets, to linear

: ag(6,t) M
order ing(6,t), - 0= kT
9(6,1) ) R ~T|c(™.0) (”kBT Cou
QB d’g

This ug is the driving potential for the mass transport of the

cluster, as shall be seen shortly through E9). Caveats \ye solve the Laplace’s equation fofr,6) in two dimen-
regarding the definitions df and us are given in the Ap-  sjons with the boundary conditions of E) and with other
pendix. We apply the so-called radiation boundary conditiorypyious restrictions such as the boundednessc(of 6),

in the adiabatic or quasistatic approximati¢®ee, e.g., Refs. ¢(0,6) = (=, 8) =cCq,, ande(r, 8+ 2m) =c(r,d) and substi-
26-28) We assume a steady-state concentration of adatomgie it into Eq.(10) to get

on the upper and on the lower terraces of the cluster. Hence,

the concentration does not depend explicitly on time. The

diffusion equation for the adatom concentratim, §) then dg(,t) il . imo

becomes Laplace’s equation. The incoming flux at a given pr :—m;_x Tm Im(t)e™”. (11)

point on the cluster edge consists of a normal component

coming from the upper and the lower terrace and another

contribution from motion along the cluster periphery. We Here ;! is given by
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Equation(11) is a breakup of the cluster edge velocity into
its Fourier components. Each term in the summation corre-
sponds to a particular Fourier component with a characteris-
tic relaxation timer,,. To convert Eq(11) into a Langevin
equation, we add an appropriate noise terfé,t)
=3,.¢n(D)expnd), with n=0,=1,=2.... We caneasily
solve the resulting equation for the Fourier components,

7901 __nlV)

g = n(t), (13 FIG. 1. Schematic representation of a vacancy cluster undergo-
n ing fluctuations of its boundaryC is the center of mass of the
to get cluster at timet. X(t) andY(t) are dimensions of the cluster in an
orthogonal coordinate system passing thro@hdefined to be the
t origin.
gn(t)=e""m gn(0)+foet'””én(t’)dt’} (14 ’

Fem(ti) ==La[Fem(t) —Fem(ti-1)].  where  O=to<t;
<t ,<---<ty_1<ty. We assume thatc(0) is the ori-
(D m(t)) =By md(t—t'). (15 ~ 9in- Hence, we get

We choose the noise such that

If one starts at timé=0 with a perfectly circular cluster, (Fém(tm»
then the correlations aj at future timet are given by com- TR

M
= (4tM)l( 21 ([F(t)—Tr(t-1)]%)

bining Egs.(14) and (15): Atu
MM
for(1—e 2Um) +2 F(t)—r(t_p)]-[r(t;
(a0 =(an(Dg_(0)= "= (19 21,3, @160 IT)
We note here that the right-hand side of ELp) vanishes as _F(t'—l)]> . (20)
required at =0, when the cluster is perfectly circular. If we )

express the free energy due to the cluster edge(&gqin
terms ofg,(t)’s, it follows from the equipartition of energy We choose the time intervals such thgt(t;_;)/7;<1 and

among the capillary modeg,(t) in equilibriun?® that alsoM>1. We assume that displacements at different times
_ are uncorrelated if separated by time intervals greater than a
{lgn(1)|?)=kgT/(2BRI?). (170  few atomic events. Then the contribution from the double
N summation becomes negligible compared to the first sum.
Under these conditions Thus even at long time§),. is given by the first sum, which
- evaluates to the “short times” expression in Ed9).
fo=kgT/(mBR7,N?). (18) Having foundD., we now calculate the shape fluctua-

tions of the cluster. We define a shape fluctuation correlation

This result with Eq.(12) determines the second-order noise ¢ ~tion Ger(t,t') with t' —t>0 as

correlations completely. Whet/ 7;<<1 the exponential in
Eq. (16) for the casen=1 can be expanded to first order in , o
t. With Eq. (4) and Eq.(18) this gives Gsn(t,t")=([8(t)— 8(t")]%), (21)

Dc:szlszTR/(WETl)- (19 where §(t)=X(t) — Y(t). X(t) andY(t) are defiﬁrlled pictori-
ally in Fig. 1 and are evaluated %§t)=r(0;t) —r(,t) and
The above result with Eq12) for m=1 gives the value of Y(t)=T(#/2,t)—T(37/2,t). We assume that we begin with
D, for t/7;<<1. Now suppose that/7;«1. We argue that a cluster for which the fluctuations of its boundary have al-
the diffusion constant remains the same as given aboveeady reached their equilibrium value given by Efj7) at
based on the following reasoning. Let us write the center ofime t=0. One gets, after some algebra and using
mass position vector at some arbitrarily large titge, as  7_,=7,, the relation
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Furthermore, if carriers attach and/or detach from only one
side, as is believed to be the ch8éor Ag(111), one must
remove the factor of 2 in Eq24). This scaling behavior has
also been derived analytically from a different atomistic per-
spective by Van Sicléfd and also by Solet for “corre-
lated” evaporation-condensation.

Evaporation and condensation limited diffusiGBC). In
this case the rate-limiting step for mass transport is the ran-
dom attachment and/or detachment of adatqorsvacan-
cies at the edge of the boundatfrom and/or to a reservoir
of adatoms on the terraces or, in principle, in the vapor
Then one can ignore the constant term in the denominator
and defindl’ = (¢, Q(I", +1"_))/2 to get 1f, of the form

U7, =T Bn?/(kgTR?), (25)
FIG. 2. Schematic representation of the three types of diffusion e .

mechanisms considered here. The large circle represents the aviéfiere ', the step mobility, is prg)g)gortlonal to the rate of

age circular shape of a vacancy island on the surface. The solid lif2ndom attachmentgletachments™

shows a fluctuation giving rise to a shift of the center of mass to the 1h€ cases PD and EC are examples of models B and A,

right. Two paths of the adatom motion marked Tfr terrace  respectively, in dynamical critical phenomeliaFrom Egs.

diffusion) and PD(for periphery diffusion for the same initial and ~ (19), (20), (23), (24), and(25) we see that in all three cases

final position of the migrating atom are depicted with arrows. Thethe diffusion constanD, of the island or cluster is given by

atoms markedE andC represent the third mechanism of evapora- a relation of the form

tion and condensation from the vacancy edge. The atom marked

C is one that has just condensed onto the vacancy edge. The one D.=D,R™ ¢, (26)

markedE is the one that will soon evaporate from the edge.
where «=3,2,1 for the case of PD, TD, and EC, respec-

" . tively, and the corresponding expressions fr, are
Go(tt)= 16RksT o | 1—exp(—(t' —1)/7om+ 1) DCeiQ?/ 7, 2D Cs 2/, and T/ ar.
sht WE m=0 (2m+1)? ' Also the summation foGg(t,t") can in these three lim-
(22) iting cases be converted into an integral by taking a large-

R limit, giving rise to the scaling with’ —t. This yields

Equations(11), (12), (19), and(22) hold in general, i.e., 8
when mass transport on the surface takes place along theG t1)= —[T(al(1+
cluster boundary as well as on the terraces. AI%%I% the case of st 77[ (@/(1+a))]
“straight” steps (or the decay of surface profi , three ~ ~ Wt Dl N
limiting cases are of special interest, corresponding to three X (kgT/B)*[ Dol BIkgT)* 2|t —t[]H1 <.
distinct mechanisms of mass transport occurring at the clus- (27)
ter boundary. These limiting cases lead to the scalinB of o _ .
with R and of Gg(t,t") with the elapsed time¢' —t. These [Note that thel” appearing in Eq(27) is a gamma function
are illustrated schematically in Fig. 2 and their description isand not the mobilityl. This largeR leading term corresponds
now given. to an early-time expansion; there is no equivalent to(6).
Periphery or edge d|foS|0(|P D) When the mass trans- by Wh|Ch |t can be eXtended tO |ater timeS. Gr&BﬁDund an
port occurs only along the edge of the boundéamd the —expression forD corresponding to Eq(26) for a three-
number of atoms and/or vacancies in the island are préjlmen5|0nak/0|d dlfoS|ng in a solid in the case of PD. Gen-
served, we takeD¢,=0. Also if the rate limiting step is e€ralizing his arguments to two dimensions, we obtained the
diffusion along the boundary, then the term of unity in theSame expression fdD. as in our Langevin analysis of the

denominator of Eq(lz) is taken to be the dominant term to PD case. In the three ||m|t|ng cases, the LangeVin equations
get 1k, as for the velocity of the cluster boundary also simplify consid-

erably. The expressions faf, from Egs.(23), (24), and(25)
can be substituted back into Eg.3) and the inverse Fourier
transform performed. In these limits E(.3) then takes the
real space form,

1/7,=DgCs22Bn% (ks TR), (23)

wherecg, is defined bycg=cga, .
Terrace or surface diffusion(TD). Suppose that the

) , . ag(o,t)
boundary of the island can emit atoms very rapidly, but at-
oms diffuse away slowly from the boundary. The rate-
limiting step in mass transport is then the diffusion on ter-
races. We takeDg,=0 with the term of unity in the
denominator to be dominant to getrl/as

S = Flaa.n]+ o), (28
where F[{g(#6,t)] is in general a functional of(#6,t). The
second-order noise correlations{gfd,t)) can also be calcu-
lated by taking the inverse Fourier transform of ELp) with
_ the use of Eqs(18), (23), (24), and(25).

1Ur,=2D¢ Cs2%B|n|3/ (kg TR®). (24 For the case of EC,
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I'B dg(6,t
AY001= s o 29

with

r
(L0040, )=—36(0—0")6(t—t"). (30

For the case of PD, the conservation of carriers along the

steps adds the operaterd?/ 962, so that

- DstcstQZE 0”49( aat)
R*kgT a6

HAg(o,t)]= (31)
with

DeCsi2?
(LO.0L(0", 1) =——25—8"(6—-0")o(t—t"). (32)

For the case of TDF is nonlocal:

7*g(.t)
ap?

DsuCs 2B (2

} (60— ¢)do
’ 33

with

_ZDSUCSUQZ
(LD V) =— o —S(6-0") 3(t-1").
(34)

Here S(x) is given by

1—coshHw)cogx)

S(x)= (35

~ [cosKw)—cogx)]?
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IOg ( Rsu/Rst)

log(R/Rst)

FIG. 3. Contour plot, with gray-scale shading, of the effective
exponenta= —dInD./dINR as a function of the common loga-
rithms logy, of R/Rg; and Rg,/Rs;. Note that plateaus at the
limiting-case, integer values Igray), 2 (light gray, and 3
(white)—indicative of EC, TD, and PD, respectively—consume
most of the parameter space; the crossover regions are rather nar-
row.

1
1+(R/Rst)(Rsu/Rst))

2+ (R/Rs) (Rsyu/Rst)
1+ (R/Rgp)(Rsy/Rsp) + (R/Rgy)?

a(R)=2+

) . (38

Hence, if R<max(Rg,Rs), then a=1. If
R>max(Rey,RZ/Rsy), thena=2. If Rgy<R<RZ/Ry,, then
a=3. In principle, then, for a large enough cluster one

andw is a convergence factor to account for the nonvanishshould always findv= 2, although this may well be unphysi-
ing lattice constantw~a, /R, wherea, is a lattice constant cally large. The contour plot of in Fig. 3 illustrates all

along the cluster boundary.

these ideas and demonstrates that the crossover region occu-

Since we have produced a general formalism not limitechies a rather narrow portion of parameter space and so is
to the three special cases, we can examine the crossover framlikely to occur in an experiment. Moreover, if it does, one
one regime to another. The crucial question is how narrovshould see noticeable changes in the effective exponent as
the crossover regions are, and thus how likely one is to obR is increased. Good scaling with# 1,2,3 for over a decade

serve them in experiments. Definirgs, =D, Q/T", and
Rs=(a, DQ/T ;)2 and using Egs(12) and (19), we

suggests either experimental problems or physics beyond
what is discussed in our analysis.

write for an adatom cluster where mass transport is only in

the lower terrace,

c. QI
o Csf2l

¢ 7R

(Reu/R)+(Rgt/R)?

1+ (Rsy/R)+(Rg/R)?) (36

Ill. MONTE CARLO SIMULATIONS

The results of the continuum analysis demonstrate that the
exponentx is a signature of the microscopic mechanisms of
mass transport involved in the diffusion of the island. To

The expression in large parentheses is essentially identical ttheck how these results appear in lattice systems with real-

that presented in an appendix by Bonzel and Muffiria
conjunction with the straightening of an isolated stéfhe
effective exponentr defined by

dlnDy

RI=~ R 37

a

can be written as

istic dimensions, we also performed Monte Carlo simula-
tions of three simple lattice-gas models of the three types of
mass transport. The goal in these simulations was not to
replicate any real system; instead we formulated simple
models tailored to exhibit the three kinds of behavior, and
then testedi) whether the appropriate scaling was achieved
and (ii) if the prefactor was the predicted transport coeffi-
cient. The latter aspect involved computing this coefficient in
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the same model from a different perspective, by applying an
external force and observing the response.

We used the standard Metropolis algorithiron a square
lattice with an (attractive nearest-neighboKNN) energy
—e. Square lattices of dimensiong {40)X (L +40) were
studied. An initially square vacancy cluster of dimensions
L XL was made by removing atoms around the center of the
lattice (so R=L/ /7). The sides of this cluster were chosen
parallel to those of the larger square. In all three models
was chosen to be 10, 20, 40, and 80 atomic spacings. Data

S + log(D,)

were not taken until the energy of the cluster had dropped to —2f . . . . . ]
near its steady-state value, implying that the shape had 08 10 12 14 16 1.8 2.0
equilibrated. log(L)
In the model for PD, Kawasaki dynami¢se., single-
atom hops to a neighboririgacani site]** was used with the FIG. 4. Log-log plot(with common logarithms log) of D, vs

restriction that adatoms were allowed to diffuse only alongL obtained from simulations of the three cases: @6terisky TD
the edge of the island via next-nearest-neigh®N) ex-  (diamonds, and PD(triangles is shown along with the best linear
change between a vacancy and an adatom. The temperatuyite. L =R/ is the linear dimension of the initial square shape of
was set aflf =0.6e/kg, high enough so that the equilibrium the vacancyD. is the diffusion constant of the cluster defined by
shape of the cluster was nearly circular and so that adatonts. (3). The arbitrary constan® shifts they intercepts to allow
had good mobility, but well below what would be the rough- display of all three cases together.

ening temperature in an SOS model with the samé&or

present purposes we define an isolated addt@wancy site  ang/0r detachment of adatoms allowed only along the edge
as one which has all four NN sites empiigccupied by at- ¢ e igjand, aff =0.6e/kg . In this dynamics the number of
oms.Ona .perfectly straight step, a NN hop of an .edge atonQ/acancies in the cluster fluctuates. For each valuk,dhe

_(by necessity normal to the stepauses the formatlon of an hemical potential of the reservoir was adjusted so that the
isolated vacancy and an isolated adatom. '!'h|s PTOCESS COStRaan number of vacancies comprising the cluster remained
an energy & and hence is very slow. If the isolated adatomapproximately the same as in the initial square configuration.

now hops along the edge to remove the isolated vacancy- ; ; ;
adatom pair just generated, then it can do so with unit prob- From the vacancy island simulations, plots of i ver

ability since the energy decreasfisy €). However, if the sus loggL were made in all the three cases. These plots with
. y 9y € ’ their best linear fits are shown in Fig. 4. The slopes of the
isolated adatom created does not hop along the edge bef

the vacancy penetrates the bulk, then we get bulk vacan?:Iliﬁear fits gave the three values at=3.1, 2.03, and 0.97,
diffusion, which is prohibited in P,D(.If an isolated vacancy |yespectively. These values confirm the predictions of the

were created, its hops in the surrounding area would happetlﬁ"ngevln analysis and the correspondence of the mass-

. ) e ; ransport mechanisms with the different valuesaofThey
with unit probability since they involve no energy change. . i .
Also, most atoms on an equilibrated vacancy-island edge Caqutercerts othhese flgs gav_e thﬁ ValﬁeSDQB' which :Dnl trn f
make NNN hops but not NN hops without generating and've st Zsw an , In the three cases. Plots o
isolated vacancy. The exclusively NNN-hop dynamicslo.gGSh(t’t.) versus Iog(.—t) were also' ma_de. These plots
avoids these problems of very slow PD diffusion with NN with their best linear fits are shown in Fig. 5. The slopes
hops and penetration of isolated vacancies into the Hulk.
Any NNN hop which creates an isolated vacancy is also
explicitly forbidden. So long as the diffusion is restricted to
the periphery and is local, the exponentshould be inde-
pendent of the specific choice of dynamics.

In the model for TD, the lattice gas Hamiltonian was
slightly modified so that the energy of an isolated adatom on
the terrace within the vacancy island was assigned an energy
of e rather than 4. The modification allows the vacancy
cluster edge to emit atoms very rapidly, thereby facilitating
adatom motion across the vacancy island. An initial density
of adatoms in the vacancy of about 5% was introduced to I
reduce the time needed for equilibration. Kawasaki -1.5
dynamics® was again used, but now diffusion of adatoms -1.5 -1.0 -0.5 0.0
was allowed only via nearest-neighbor exchange between a log(t)
vacancy and an adatom. Furthermore, single vacancies were
not allowed to break away from the vacancy cluster, thus F|G. 5. Log-log plot[with common logarithms(log;o)] of
preventing its breakup into partéThe temperature was set G_,(04) vs t, both in arbitrary units. The triangl¢®D), diamonds
at T=0.5¢/kg. (TD), and asteriskéEC) are the data from Monte Carlo simulations.

In the model for EC, Glauber dynami¢se., removal or  The solid lines are the best linear fits. The slopes are close to the
addition of single atomswas used with random attachment predicted values 1/4, 1/3, and 1/2, respectively. See text for details.

0.0[ ' '

log(G(0,1))
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were 0.26, 0.31, and 0.51 for the PD, TD, and EC cases;orrect exponents for the PD and TD mechanisms of diffu-
respectively, corresponding very well with the continuumsion, it does not readily provide precise quantitative informa-
Langevin analysis predictions of 1/4, 1/3, and 1/2. tion, such as the single atom diffusion constants and the step

One can deduc®. <R ¢ from scaling argumentgcf.  stiffness. While Shaet al*® have also studied the approach
Sec. \J. Thus, to corroborate our physical picture, it is im- to the equilibrium shape of two-dimensional clusters on sur-
portant to be able to calculate the prefactors independently fiices using Monte Carlo simulations, their emphasis is dif-
verify that we are actually obtaining the relevant atomisticferent. They probe the dependence of the time of equilibra-
diffusion constants,, Dg,, andI'/a; in the prefactors. tion of the_cluster shape on the.temperature and on the
ay is a lattice constant along the step. In each case, to che@ergy barriers for the motion of kink and corner atoms.
the derived value oDy, we used the same Hamiltonians
and dynamics, but instead of considering clusters, we applied
a weak potential gradieft to straight stepgfor PD and EG
or a flat terrace with adatom{$or TD) to compute the con- This paper demonstrates that the phenomenon of surface
stituent diffusion constar;, I'/a, or Dg,, respectively. diffusion of large islands can be viewed in a broader perspec-
The average velocity of the diffusing species was calcu- tive: the cluster diffusion is a natural byproduct of the fluc-
lated as a function oF, and the carrier diffusion constant tuations of the bounding step. Observations of step fluctua-
obtained by applying the Einstein-Nernst relationtions can then be used to make predictions about island
D=kgT|V[/|F|. For PD,F was applied alongparallel tg the  diffusion. This approach also gives quantitative predictions
initial straight edge of a step with widtv=40. For the TD  for tracer diffusion constants from the observations of large
case,F was applied along one direction of a flat step-freeisland diffusion, as we illustrate for the three experiments at
square terrace with an adatom density,. For EC,F was hand. The approximation that the ground state of the clusters
applied perpendicular to an initial straight step of widthis circular should be decent for temperatures at which the
w=40; in this casev refers to the average velocity of the clusters diffuse, when they appear in STM im&géas quite
whole step. The three diffusion constarids,, D,, and rounded polygons. The presence or absence of corners
I'/a calculated from the set of simulations withagreed to ~ should be particularly important for PD, which has not been
within 25% with their values obtained from theintercepts ~ observed to date in quantitative experiments involving ada-
(Do) in Fig. 4. The vacancy islands are finite in size. Alsotom or vacancy islands. While the activation barriers esti-
the Langevin ana|ysis was done 0n|y to first OrdegjrCon- mated in what follows are crude, they provide some confi-
sidering this finite size effect of the simulations and the lin-dence that the physical picture underlying the preceding
ear approximation in the Langevin approach, we see that th®rmalism is sensible. It is not feasible to extract more pre-
agreement between diffusion constants obtained in the twéise values without independent information about quantities
ways is good. This agreement supports the appropriatene§§ch ass,. Without independent information about the mi-
of the Langevin analysis of the simulations and, by implica-Croscopics, any extracted energies should be viewed as ef-
tion, of the physical systems. fective rather than physical parameters.

In a separatéKawasaki® type) simulation, at each time  In their study of adatom islands on A1), WCBET
step we removed an atom from one position along théRef. 5 found a=1. UsingD,~10" nn?/s for an island
boundary and immediately reattached it to the boundary at &f 100 atoms, we find'/a~1.8x10"% nn/s for the diffu-
random(with respect to the azimuthal angleosition, so that ~ sion of a step on A@01) at room temperature, wheeeis
area is constantly conservedl{(6,t)dé=0. The resulting the surface lattice constant on the (891 surface. Approxi-
log-log plot had a slope of 1.97. However, this straightfor-mating the diffusion prefactor by b nm?/s? we obtain an
ward Monte Carlo approach assumes random sampling @ictivation energy of about 0.7 eV, which is a reasonable
periphery sites with(fixed) time interval. In fact, as the pe- magnitude for a single atom detaching from a close-packed
riphery grows, the chance of a move per site should stagtep on this surfac€. In their study of vacancy clusters
constant, so the chance of a move per time should be pren Ag(111), MRPC (Ref. 4 found a=2. Using
portional to the circumference, leading to another factor oDo~1.3 nnf/s, we estimate the surface mass diffusion co-
R. Hencea=0.97, as for EQsee Ref. 38 For small adatom efficient of Ag adatoms on Ag11), D¢, cs,~750 s 1. We
islands(but not vacancy pitsanother diffusion mechanism is then writecg Q) =exp(—E;/ksT), whereE; is the formation
possible on such faces, more generall{bhl} fcc or{000  energy of an adatom in the vacancy clusters, and
hcp faces with adsorption in either threefold site. Here dif-Ds,=10""exp(—Eq/ksT) n?/s , whereEy is the diffusion
fusion can occur rapidly by the passage through the island darrier for an atom to hop on the Abll) surface. Hence,
a dislocation line between domains in each of the two kindsvith kgT=0.025 eV we geE;+E4=0.53 eV. If we assume
of sites3® Eq=0.1 eV® >l we getE;=0.43 eV, which has a reason-

For PD diffusion WCBET(Ref. 5 cite values ofx from  able order of magnitud¥. Clearly, although the sum
early simulation®“?in the range of 3 to 4. In these simula- E;+E4 may be obtained from fitting the Langevin-derived
tions the number of single atoms and/or vacancies in thexpression to the experiment, the subsequent breakup into
islands was less than 10We believe that these values two energies is problematic. From FigbB of FPOM? who
should converge tax=3 for larger island sizes. WCBET also found a=2, we useD ~4.2Xx10"2 nm'/s to get
(Ref. 5 also present heuristic arguments for obtaining theD¢Cs,Q2~2.33 nnf/s. Now as before we geE;+Egq
value ofa for EC and PD diffusion. Stimulated by the work =0.61 eV, a plausible estimaté.
of Pimpinelli et al,*> MRPC (Ref. 4 give a similar explana- The extraction of microscopic energies from statistical
tion of the phenomenon. Though this approach predicts theata such as the above needs some caution. As noted

IV. ESTIMATES OF ENERGIES IN EXPERIMENT
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is not clear how these results can be used to yield exact
prefactors to extract microscopic energetics information from
the experiment. An exact analytical expression for the scal-
ing of the diffusion constant of the clustBr, with its size is As an alternative to Eq5), the exact definition oF can
given by Ref. 19 for four distinct cases which yield= 0, 1,  pe written as

2, and 3. Our expression fd. given by Eq.(26) for the

case ofa=1,3 agrees with that of Ref. 19. For the case 2 .

a=2, our D, differs from his by a factor of 2. This factor FLr(o,)]= J;) [T2+72]Y28(4(0))d0, (A1)
arises because he considers adatoms attaching and/or detach-

ing from the cluster edge only from one side. Our unificationyhereg is the free energy per unit length of the cluster edge
of the previously well-characterized step-edge fluctuationging the dot ofi indicates differentiation with respect #@
and large-cluster diffusion is not so evident in any of theserpe angleg () is the direction of the local normal to the

alternative approaches. Moreover, the scaling of the shap@q,ster boundary at the poit(6),d), so that for a circle
fluctuations function with time emerges very naturally in Our 4(g)= 4. In general, we find that

presentation. It is not so obvious how one would obtain this
result from these alternative perspectifég®-2

In all our work we have neglected any role of defects. In b(0)=tan !
some cases, they evidently enhance the diffuSibtare of-
ten we expect them to hinder the motion and cause problems
in comparing data for nearly straight and nearly circularPerforming the functional minimizations in E@) using this
steps on the same surface. At least on non-close-packed sufefinition of F of Eq. (A1), one obtains the exact result for
faces, the diffusion along close-packed step edges is typin given by
cally much greater than across terraces. Nonetheless, the
cluster motion may often be dominated by TD because the
diffusing atom cannot readily move around corners. This m _
barrier would likely be enhanced by impurities residing at To[1+(T/7)?]%?
corners. More generally, impurities can pin stépdestroy- _
ing locally the fluctuations that have dominated our attentionwhere the stiffnessd(¢) is defined aspB(¢)+d?B(¢)/
" tlrlllssxvrﬁ:‘lriéry we have shown how the diffusion of Iarged¢2' Now ignoring the nonlinear terms T and suppress-
clusters is simply a corollary of the fluctuations of the clusterIng the ¢ dependence of one gets
boundary. We have developed a general Langevin analysis -

APPENDIX

(A2)

Tsind—Tcosd ]

Tco9+Tsing

QB($)(-TT+2r2+7?)

(A3)

of diffusion of large islands. In three limiting cases we can B QBF-T) _ QB(1+g-§) B 1
give detailed predictions for the scaling of the diffusion con- m= T2 - R(1+9)? R (1=9-9)
stantD. with the mean radius R. Furthermore, we can define (A4)

a shape correlation function and explore its scaling with the

time of observation in these cases. The scaling exponents lowest order ing. The first term is simply an additive
signify the rate-limiting mass-transport mechanism involved constant Gibbs-Thomson tetfnthat is not important for
With Monte Carlo simulations we have illustrated the pre-studying cluster diffusion and just shifts the reference chemi-
dictions of this continuum analysis in these limiting cases forcal potential. The second term is what is given in ).
surface mass transport. Finally, we applied the analytical preFhe angular average of the third term is zero. Moreover, it
dictions to the experimental data available and extractegdives rise to cluster size instability: it causes the cluster ei-
single-atom diffusion constants. This approach allows us tdéher to grow without bound or to evaporate complefély®
measure atomic diffusion constants from observations oExperimentally the clusters are found to be stable over the
large-island diffusion. time of observation. Hence we omit this third term.
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