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The crumpling transition of three-dimension&BD) lattice vesicles subject to a bending fugacity
p=-exp(—«/kgT) is investigated by Monte Carlo methods in a grand canonical framework. By also exploiting
conjectures suggested by previous rigorous results, a critical regime with scaling behavior in the universality
class of branched polymers is found to exist for p.. For p<p. the vesicles undergo a first-order transition
that has remarkable similarities to the line of droplet singularities of inflated 2D vesicles. At the crumpling
point (p=p.), which has a tricritical character, the average radius and the canonical partition function of
vesicles with n plaquettes scale as’c and n~ %, respectively, with v,=0.4825-0.0015 and
0.=1.78+0.03. These exponents indicate a new class, distinct from that of branched polymers, for scaling at
the crumpling point[S1063-651X%96)10705-4

PACS numbg(s): 64.60.Fr, 05.50+q, 36.20-r, 82.65.Dp

[. INTRODUCTION generally, surface models have been addressed succesfully in
recent years, especially with the aid of efficient Monte Carlo
Models of membranes and vesicles have been investalgorithms. Today, e.g., there is no doubt that a spherical
gated extensively in recent years. Such models are presum& RS with no bending rigidity and no pressure difference
to describe large-scale fluctuation properties of molecular agsehaves like a branched polym@&®P) asymptotically, as the
gregates such as those forming the interfaces of microemuiumber of plaquettes approaches infinf§,10-13. This
sions or the lipid bilayers of biological membrangk2]. property also persists after one removes the topological con-
These are highly flexible, topologically two-dimensional straint of requiring zero genus and so allows the SAS to form
structures with fixed area, the conformations of which arean unrestricted number of handlgs4]. The effects of an
primarily controlled by bending rigidity. In the case of osmotic pressureXp) are also rather well understood in the
closed shape&.g., spherical vesiclgsa pressure difference absence of bending rigidity. Under deflatiod §<0) the
Ap between the interior and the exterior may also influencevesicles maintain the BP critical behavior of the flaccid,
the shape and its fluctuations. Ap=0, regime[15,16. However, any inflation, no matter
In many instances, such as the above examples, moleculesw small, causes maximal-volume configurations to be-
are able to diffuse within the aggregate and do not take fixedome dominant. The transition between flacadpE0) and
relative positions forming a lattice. Such fluid membranesinflated (Ap>0) regimes is first order and has been inter-
are often described by tethered surfafEs with (annealeyl  preted[17] in terms of droplet singularitielsl8,19. Another
tethers that can be suitably cut and rejoii@ These mod- process that is by now well understood in many respects is
els should be distinguished from solid tethered surfacesyesicle adsorption by an attracting plar2g].
where(quenchefitethers form a fixed networjd]. Another A central issue in the statistics of membrane and vesicle
way to describe fluid vesiclef.e., those with zero shear models is the effect of bending rigidi21], even in the
elasticity is to use lattice surfaces made of elementaryabsence of pressure incremefi8&22-24. By introducing
plaquetteg5—9]. Here we adopt this description and deal local bending rigidity in a closed-surface model, one expects
with a model of self-avoiding plaquette surfacgAS) of  that sphericalcubic in the lattice cageconfigurations will
spherical topology on a cubic lattice. dominate at very high rigidity. For low rigidity, on the other
Many important issues concerning lattice SAS and, moréhand, the highly ramified, crumpled BP behavior should be
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recovered for fluid vesicles, while a different, but still elementary plaquettdsinit squares oZ°) in such a way that
crumpled regime could possibly prevail for solid tetheredneither overlaps nor intersections occur. Each lattice
surfaces. Whether the rigid and crumpled regimes are sepglaquette can enter only once to form the SAS, and each
rated by a crumpling transition occurring at intermediate ri-lattice edge of the vesicle can be shared by only two
gidity and, if so, the nature of this transition are important,plaquettes. Moreover, we shall confine our attention to
unresolved, and controversial questions in the statistical meresicles that are homeomorphic to the sphere: our vesicles
chanics of random surfaces: While many theoretical apare connected and have no handles. The generating function
proaches do predict such transitiof25—27), their nature of vesicles with curvature interaction can be written as
remains rather obscure, and numerical work casts doubt on

their very existencé3]. For example, in the case of both _ no n

“solid” and fluid tethered surfaces, the existence of the tran- Gq(K'p)_g v(n,lp)n%K"p p—; nK"Zy(p), (1)
sition seems to be ruled out when the self-avoidance con- P

straint is enforced3,22,28,29. The situation appears differ- wherev(n,lp) is the number of vesicles with plaquettes
ent for self-avoiding lattice surfaces. Monte Carlo methodsand|, edges joining two mutually perpendicular plaquettes.
in both the grand canonicdR4] and canonical23] en-  In v andG, a normalization per lattice site in the thermody-
sembles provide evidence of such a transition. There are alsgamic limit is implicit. The parametdf is a plaquette fugac-
indications, albeit not definitive, that the transition is con-ity (perhaps more precisely, an absolute actjvigsociated
tinuous[23]. In any case, the scaling properties at this poswith the grand canonical ensemble in equilibrium with a
sibly continuous transition have not been determined to datgjlaquette reservoir. The facto® in the summand is intro-
the state at the crumpling threshold has not been charactegiuced to allow an analysis of entropic exponenjs@/2 is
ized preciselyThe essence of this work is to confirm defini-needed, and we choose=3 as a rulg and generally to
tively the crumpling transition in lattice SAS and to provide enhance the sampling of surfaces with large qfgd. The

a systematic and accurate characterization of the associategarametep is the Boltzmann factor related to the stiffness

scaling properties. energyx by
Our results are based on a Monte Carlo algorithm in the
grand canonical ensemble, introduced earlier for lattice SAS K
[12]. This ensemble allows easier study of both entropic and P=9XP< - kB_T) 2

metric scaling properties, which are key ingredients in the

characterization of scaling at the crumpling point. Moreoverciearly the smallerp, the stronger the tendency of the
in this ensemble we can exploit easily some previous rigoryesicle to assume flat configuratiorg, is a canonical par-
ous results for SA$30], which aid our search dramatically. tjtion function at fixedn. Typically in polymer statistics one
Thus, we combine the high efficiency and precision of ourgypects various canonical and grand canonical quantities to
Monte Carlo algorithm with analytic information to obtain gpey asymptotic laws characterized by entropic or thermal
the most convenient and natural path to our objectives.  eyponents, if the asymptotics themselves are consistent with
The study of the crumpling transition in a lattice context second-order, continuous critical behavior. This situation oc-
offers a unique opportunity to explore nontrivial relations ¢;,rs often. However, there are exceptions, as we will find

between apparently distinct and unconnected aspects @f|ow, in which first-order, discontinuous behavior occurs.
vesicle physics. One such relation is indeed established here The canonical partition function in a critical regime

between the phase diagram of pressurized, rigid vesicles ighould behave like

two dimensiong2D) [17] and that of our flaccid and rigid

vesicles in 3D. This relationship proves essential in locating

the crumpling point and in characterizing its critical behav- Zo(p)=2 v(nlppe ~ n~[K(p)]™", (€)
ior, and might offer a hint towards understanding the very 'o n—e

existence of a crumpling transition for lattice surfaces. . . .
ping where#@ is the entropic exponent. Fpr=1, Z,, is the number

This paper is organized as follows: In Sec. Il the model is f distinct icl p i ith ol ttes. Eval
introduced, and the grand canonical formalism is set up. (7 distinct vesicie connigurations with plaquettes. evalua-

Sec. Il we also give a summary and partial reinterpretation of N Of ¢ by glrecgy fitting Monte ?alrI%data r\:vgh Ed3) is
previously obtained rigorous limits and bounds related to th@%t_ ehxpect]? ”to ; Ivery Success uf. muct ?tter str:ategy,
model. In Sec. Ill we present the results of a first globalW ich we Tollow below, consists of extracting from the

analysis of the phase diagram of the model. We determin@ehavior of the gr_and canonical average area of the vesicle
the nature of the different critical and first-order lines andP!otted as a function oK [12]. An example of a grand ca-

estimate exponents and other asymptotic properties. In Segonical average yielding the thermal exponers
IV, making use of results of the previous analysis, we carry

qk "R2
out a systematic study of entropic and conformational scal- RY(K,p)= 2nZn(P)NK"RA(p) [Ko(p)—K] 2"
ing properties at the crumpling transition. Section V contains ' Gy(K,p) K—K(p)~ ¢ '
further discussion and some concluding remarks. ¢ (4)

Il. MODEL, EXACT RESULTS,

whereR2(p)=2Z.(p) "=, v(n,l,)R%(n,l,)p'r is the canoni-
AND MONTE CARLO APPROACH n(P)=Zn(p) 'p (IR p)p

cal mean-square radius of gyration, with respect to the center

In order to describe a 3D vesicle, one can consider ®&f mass, of surfaces with areaand arbitraryl,. Equation
closed self-avoiding surface constructed by gluing togethef4) is also equivalent to the canonical law
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Ri(p) ~ n?. 5
n(p) ~ 1 5 Gkp= S

2D vesicles

(K?)AxPp, (10

In a recent paper, Baumgaer studied the crumpling transi-
tion in a canonical context, i.e., starting from a canonical
partition such a<,(p) [23]. However, he did not consider

where A and p are the area and the perimeter of the 2D
vesicle, respectively, whila, is the number of consecutive-

entropic exponents, and his analysis of metric properties di dge pairs at right angles along the ring. So we are clearly

not provide clear conclusions, especially about the nature otfra:;t”ivr;/ ith Zrm;ilr O;nde;gf \/Seiilgtlaesth;msrllagjg;cr:?ieirgct)ir;-ns
the crumpling transitiof31]. gp : 9

The main goal of our study, which extends earlier, Iore_form a subset of the total, the generating function for the 2D

liminary efforts[24], is to determine how quantities such as vesicles cannot exceemq. On the other hand, we know that

K. or v and ¢ depend orp. Of course, we are mostly inter- w§>ilj(c\éfrseus:leor?;2erflatﬁmg>I)unctlon 'S n|nf|n|tenas sfo(;)rn "f‘s
ested in the casp<<1, where the tendency to crumple and P g tdp=>0), as a consequence of drop

ramify spontaneously is opposed by the bending rigidity. Foﬁf:é%%glfrgheil?é;géll?r:;:sgzseor\:v'g;gf'sgs’utze rearciirl:est-er
v and # we expect some degree of universality. It is possible 9 P

for these exponents to remain constant over whole intervalterms) in Eq. (10) follows straightforwardly from arguments

of p values. Such intervals would correspond to universalityig)v el\?v%edc(')nngﬁgg]t::;grei’ﬁ;?ii;g;'c%ze?n?ilsi(t)eR?;'r
domains of critical behavior. : q y

For the model described by Eq.1—(2), Whittington K>1,i.e.,K.<1. Since there is no well-defined phase above

recently studied the limit of the canonical free energy as hia(rfl) )‘: xv;seuiiut:éaa:ax,[’)resaon singularity curve” rather
function of p and, on the basis of rigorous inequalities and In oFr)der to gain mo);é insight into the crumpling transition
concatenation arguments, established upper and Iow%r 9 9 ping

souncs for the il curk () [30, 0 partcar ey SIEE UESCIES, we L o e numerica spproach o
found that, for all real values qgf, the free-energy limit : 9 P

configurations of vesicles from a Markov chain having as its
1 limiting distribution the one considered in E@.). The main
F(p)=Ilim =InZ,(p) (6) innovation of our algorithm is an oct-tree data structure,
n—e N which allows satisfactory control of the statistics, even when
the model is very close to criticality. Details of the sampling
method, the error estimates, and the data analysis have been
described thoroughly in Ref12], and so are not discussed

converges to a finite value:

F(p)=—InK.(p)<e, D ere
which is a convex function of m The bounds oK (p) are
given by Ill. NUMERICAL RESULTS AND PHASE DIAGRAM
Ke(D)=Kc(p)=<1, p=1, ®) In this section we report data on the dependence of

several grand canonical quantities. Based on our estimates of
K(L)p 2<K (p)=min[K(1),p" %], p=1, (9 the singularity curve,K.=K.(p), and on the rigorous
bounds mentioned in the previous section, we conjecture that
whereK (1) is the critical fugacity of vesicles with no ri- the singularities in the high-rigidity regimep& p.) have a
gidity [12]. first-order, dropletlike naturgl7]. The crumpling-transition
Unfortunately, the rigorous techniques used by Whitting-point (p=p.) is thus interpreted as a sort of tricritical point
ton are not sufficiently powerful to establish whether, and forlocated at the end of the droplet line. As a matter of fact, it
which value ofp, a crumpling transition, i.e. a drastic change turns out that the previously discussed boukgd(p)=<1
in the exponents, might occur. Neither can they estimate thplays a key role in the determination of the phase diagram
exponents at that transition. However, as we shall discuskecause numerical evidence clearly locates the droplet line
below, the above inequalities can be used to formulate playprecisely atk .= 1. The physics of 2D pressurized vesicles,
sible conjectures that help us greatly in the numerical invesfrom which this bound originates, is somehow connected to
tigations. the rigidity-driven transition in our system. The line of first-
The inequality(8), which holds particular significance for order (essential singularities we find here does seem to be
us, can be justified easily: Suppose we restrict the vesiclsterpretable in terms of the similar line existing for vesicles
configurations contributing t&, to those having the shape in 2D at zero pressure difference. In spite of the strong nu-
of a (flat, rigid) wafer of unit thickness. When projected onto merical evidence supporting the scenario described above,
some arbitrarily chosen principal plane, such wafer configuwe cannot entirely rule out the possibility that(p) <1, for
rations can be described as self-avoiding rifgs a square all p [32]. This alternative picture would still be consistent
nef). The statistics of such configurations are in fact the samavith the presence of a transition corresponding to a change
as for 2D vesicles with disk topology. Each plaguette en-of convexity inK.(p).
closed by the ring has weight?, while each boundary edge In our numerical investigation we proceeded as follows:
has weightx=Kp?. An additional bending fugacity has to  For each chosen value pfwe performed long Monte Carlo
be associated with each pair of consecutive links on the peMC) runs at several values df. For each value of the
rimeter that meet at right angles. In terms of generating funcplaquette fugacity we estimated grand canonical averages of
tions we have the form
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TABLE I. Estimates of some grand canonical averages coming

from Monte Carlo sampling gi=0.7 for various values oK. T S -
1+ 'Y 4
K (S)q (Vg (R%)q I .

0.850 41.490.1 12.03:0.1 3.008-0.04 o.e_— ]
0.860 53.0%0.2 16.08-0.1 3.855-0.04 - hd .
0.870 69.480.3 21.99-0.2 5.038-0.05 : r o 1
0.875 85.5&0.5 28.02-0.2 6.184-0.06 __oslL ]
0.880 103.1¢0.7 37.1%0.3 8.006-0.07 \;5 - * .
0.882 118.320.8 41.49-0.4 8.771-0.08 : i i
0.884 133.650.9 46.15-0.4 9.668-0.08 | 0.4 . i
0.888 160.66:1.5 69.170.8 14.14-0.20 ! - .
0.890 204.742.7 77.7%1.0 15.33:0.23 I |
0.892 260.033.7 113.36:1.8 22.570.35 . o2k * _
0.894 340.535.0 135.22=25 25.96-0.38 r

0 o|5 ' — ‘1 ' — 1|5 — é

<A>q=Gq(P:K)7lEI v(n,1 AN, 1,)NK ple,  (12)
Mlp

FIG. 1. Numerical estimate of the critical curig, for various

whereA(n,|,) indicates the average of the generic quantityvalues of the bending fugacity.

A at fixedn andl .

For illustrative purposes quantities estimated for fixedis the one withp<1. The estimates of the relevant extrapo-
p=0.7 are reported in Table I. Thexindicates the volume lated quantities are reported in Table II.
enclosed by the vesicle. Proceeding as in REZ], we esti- From the data in Table I, we can draw some preliminary
mated the exponent by fitting to Eg. (4). In the case re- conclusions. Asp decreasesK.(p) increases and ap-
ported in Table I, we obtained=0.501*+0.004 (two stan-  proaches the value 1 quite rapidly, the maximum value al-
dard deviations K(p) and @ are best determined from plots lowed by the rigorous bound8). The limiting value,
of (S>q‘1 versusk, noting that K.=1, is first attained fop=p.~0.635. The numerical es-

timates ofK(p) suggest thaK.(p) is a convex function of

Ko(p)(q+1—6) p for p.<p=<2.0(see Fig. L It is thus natural to conclude

(S)g~ — for K—K; . (120  that K. should reach the value 1 at some finite vape
Ke(p)—K Once this is assumed, the rigorous bouBrtogether with

monotonic variation 30] imply that, for allp<p., K;=1.
Again, the case p=0.7 (see Table ) gives The estimated values of and 6 reported in Table Il

Kc(0.7)=0.901=0.009 and§=1.51+0.03. We also esti- suggest that over the entire range considered
mated the asymptotic behavior of the surface-to-volume rati¢0.64< p=<2.0), the vesicle critical behavior belongs to the
(S)q/(V)q and the ratio of the average number of edge pairsiniversality class of BP iml=3. In fact, the determinations
joining two plaquettes perpendicular to each offtke quan-  of the entropic exponert and the metric exponent agree,
tity conjugate to the bending enengto the surface area, to within error bars, with the value$ and 3, respectively,
(Ip)q/(S)q- We find that these ratios approach constant valexpected for 3D BR33]. The only exceptions are the deter-
ues (~2.597 and~1.111, respectivelyasK—K_ . minations atp=0.64, where we can see, at least fér

All the steps described above were repeated for varioustrong deviations from the BP value; we will consider this
values ofp ranging from 0.64 to 2.0. Since we are interestedproblem below.
in the crumpling transition, the most interesting region for us  Further evidence that ramified tubular configurations

TABLE II. Numerical estimate of the critical curvE (p) and of various universal quantities as a
function of the bending fugacity.

P Kc(p) 0 v <S>q/<v>q <|p>q/<s>q
2.0 0.209-0.010 1.530.08 0.518-0.020 3.64-0.010 1.5920.001
15 0.326-0.008 1.530.08 0.512-0.010 3.530.011 1.47%0.001
1.3 0.402-0.007 1.490.07 0.514-0.008 3.46:0.014 1.43%30.001
1.0 0.580-0.005 1.56:0.05 0.506:0.005 3.2740.014 1.33%0.001
0.9 0.664+0.006 1.510.06 0.5070.005 3.11*0.014 1.2930.002
0.8 0.77G3:0.007 1.5%*0.05 0.505:0.005 2.9¢0.015 1.2250.002
0.7 0.899-0.009 1.530.03 0.50%0.004 2.6@:0.015 1.111#+0.004
0.64 0.9870.010 1.7¢0.03 0.488-0.003 2.14-0.013 0.97&0.002
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dominate the statistics of vesicles in this range a$ given K A
by the asymptotic behavior of the surface-to-volume ratio.
The limit of this ratio being a constant means that the volume
enclosed by the vesicle grows to infinity like the surface area
of the vesicle. Another result consistent with BP behavior is . - - «a = = = = 1,
that asymptotically the average number of edges joining two
mutually perpendicular plaquettgk,), varies linearly with
the average surface ar¢8), . y

At fixed p<p., as we try to approach the lineé=1 from
below, we see no trace of critical behavi@uch as the di- \
vergence of(S),, for examplg. On the other hand, if we .
chooseK slightly above one, we find a system out of equi- e
librium in which the plaquette number and the size of the
sampled vesicle configurations grow without bound as a run FIG. 2. Schematic plot of th& vs p phase diagram. Along the
proceeds. These configurations are like maximal area diskgashed horizontal segmemis p., K=1, there is a locus of droplet
or thin “wafers.” Their thickness is close to unity for singularities.
p=<p. and increases gradually with decreasjng

This situation is similar to that occurring in the 2D vesicle fings with step fugacityx and vanishing stiffness energy.
model with pressure differencep when one crosses the line 'ndeed, for a 2D ring without rigidity, the critical step fugac-
of essential singularities separating the region of the finitd®y Should bex.(p=1)=0.3790,...; for aring subject to
ramified deflated vesiclAp<<O from the nonequilibrium re- some rigidityp~0.63, we can only say that the critical step

- . . fugacity x.(p) should not be lowefx.(p)=x.(1)]. While
ion of the inflated square-shaped vesicléspt0) (see c . ) C\F/ 7 e
gRef. [17)). In our rederic\llation of tﬁe bounﬂc(p)il)at the We suspect the shift of this step fugacity from the value

end of the previous section, we established that this bounéc(l) to be small, we cannot provide a g_uantitative estimate.
follows from the fact that the generating function for 2D | n€ remarkable closeness pf to the critical step fugacity
vesicles with area fugacitit?, perimeter fugacity= p2K of 2D rings seems to suggest a deeper link between critical
and rigidity p is always a lower bound @&, . Forp<p. and 595!"”9 of 3D v_eS|cIes a_\t the crumpling point an_d 2D m_ult|-
K=1. the statistics of our 3D vesicles T’;\ppear to be domicritical pressurized vesicles. However, as we discuss in the
nated by finite configurations similar to the waferlike onesneXt sec.tlons,.t_hls. approximate coincidence does not imply
providing the lower bound o6 that the instability is identical in the two cases. The 3D char-
The analogy to the drople? transition of the 2D vesicle&Cter of our vesicles at the crumpling threshold is unambigu-

model with osmotic pressure and rigidity can be made eveQusly manifested and cannot be §|mply traced bag:k to some
stronger: fork>1 we observe that the surface ag&grows model, such as 2D self-avoiding rings, embedded in a lower-
indefinitely with time while the number of edgésgrows as dimensional space.

the square root db. This behavior translates into the perim-

eter growing like the square root of area for inflated 2D IV. MORE PRECISE CHARACTERIZATION

vesicles. Further evidence of the waferlike configurations is OF THE CRUMPLING TRANSITION

provided by the observation that the volume of the vesicles . S . L
From the discussion in the previous section, it seems natu-

grows proportionally to the area. rfal to try to locate more precisely the tricritical point by

From these considerations we conjecture that the model chxmg the plaguette fugacitk at 1 and performing runs at
3D vesicles with rigidity displays the same type of phase everal differenp<<p.. Our results are reported in Table III.

diagram as the 2D vesicle model with pressure. In particular? _ 1. . . .
we claim that the semi-infinite linKk=1 andp<p. consti- A plot of <S>q © versusp 1 gives linear behavior with
tutes a locus of droplefirst-orde) singularities for the prob- SIOP€ @=0.258£0.002 and intercepb=—0.411+0.002.
lem (see Fig. 2 Thus, the point §.,1), which governs the From the ratio—a/b, we can estimate
crumpling transition of the model should correspond to a
tricritical point, i.e., a point where a first-order line joins a
second-order one. _ i )
There is support for the intriguing possibility of an even TABLE I_II. Numer_lcal estimate of the mean area as a function
deeper connection between the droplet-singularities line off (e bending fugacity for p<pe.
rigid 3D vesicles found here and that of pressurized, rigid 2D

1 2 p

w° @

pe=0.63+0.01, (13)

vesicles: Recalling thaK (p)=1 so thatXC=p§, we find P (S
p§20.40, quite close to the best estimate of the critical 0.600 47.3%0.76
boundary step fugacity for the 2D self-avoiding rings in the 0.610 72.182.34
flaccid regime %.=0.379 0526-0.000 0005[35]). We al- 0.620 138.1+16.83
ready observed that along the droplet lipesp., K=1, our 0.623 194.8422.26
3D vesicles appear to behave similarly to minimal-thickness 0.624 238.1847.90
wafers, with boundary perimeter weigkt= p2 and rigidity 0.625 264.26:45.03
fugacity p. The critical instability of the 3D vesicles occurs 0.627 397.08 48.48

very close to that of the strictly 2D model of self-avoiding
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TABLE IV. Numerical estimate of different grand canonical averageg-alp. and for several values of the surface fugadity
approaching the suggested critical vakig p;) = 1.

K (S)q Mg (R%)q {Ip)q A Dis Sis|
0.960 52.%0.2 17.30.1 3.86£0.02 60.1-0.2 1.01G6:0.006 0.295%0.006 0.0410.003
0.970 70.30.3 24.3:0.1 5.12:0.02 77.200.3 0.970-0.006 0.2930.007 0.0410.003
0.980 105.«0.7 39.6:0.3 7.670.05 112.6:0.6 0.930-0.006 0.292-0.011 0.0410.005
0.984 132.60.8 51.8:0.4 9.52:0.06 127.80.8 0.92G-0.006 0.2850.035 0.035%0.006
0.990 217.43.2 92.44-1.7 15.43-0.23 217.6:2.9 0.89G-0.009 0.284-0.025 0.034-0.008
0.992 263.24.0 115.9-2.5 18.42-0.26 260.223.5 0.880-0.008 0.27%0.023 0.029-0.006
0.993 304.24.9 136.9-2.8 21.26:0.35 298.0:4.4 0.87G-0.010 0.2920.026 0.046:0.009
0.994 340.24.9 155.1%2.8 23.69-0.36 331.6:4.4 0.86G-0.010 0.292:0.026 0.0410.009
0.995 394.854 183.3:3.0 27.370.40 382.6:4.9 0.86G-0.010 0.293%0.026 0.046:0.011
0.997 556.87.2 269.8-4.4 38.12:0.50 531.56.4 0.860-0.010 0.296:0.028 0.046:0.013

consistent with the value 0.635 of the previous section obthree standard deviations for the error bars, the estimate of
tained from runs at constapt the entropic exponent at the crumpling transition is definitely
In order to study the crumpling transition more closely, larger than the corresponding val#e=2 of 3D branched
we setp to the last estimated value @f.=0.63 and per- polymers.
formed several long runs for different values of A determination of the exponemtby fitting Eq.(4) gives
K<K(pc)=1 to get precise estimates of the exponents. In
addition to the grand canonical averages of the area, volume,
squared radius of gyration, and number of edges with per-
pendicular plaguettes, we computed three different, suppogternatively, » can be estimated from data collected over
edly universal, quantities related to the eigenvaluesealizations of vesicles for several runs at different values of
(M1<\2<<A3) of the inertial tensor of the vesicles. More K. | etNy(n) be the number of vesicles of sirerealized in
precisely if ¢(",r{?,r’)) are the components of the posi- a run with fugacityK. Let (R2), « be the canonical mean
tion Fk locating the center of thith plaquette, we define the square radius of gyration over this sample. Then over all the
inertial tensor of a configuration with plaquettes as runs (at various values oK), we compute

2v.=0.972+0.001. (19

-~ EKNK(n)<R2>n,K
(R2>n—w, (20)

1 n n
= (@) _ ((a)y(r(B)_((B)
Gep= B2 2 (K T ) =), (14
The asymmetry measure$, D, and S are then defined

which is a weighted average over the averages from the in-
[36] as

dividual runs: the weights are proportional to the sample

A= lim A, sizes. The data are displayed in Fig. 3. To computee

with Ag=(\1/\s)q, (15
ERe

(TH[G—TTr(G)/3]%}), 2t
(Mg I ’
(16) I

. (TH[G—TTH(9)/3]%})q
B (R (7] P
(17)

whereZ is the unit tensor. Our estimates of all seven aver- |
ages for 10 values df are displayed in Table IV. Also in -
these computations we determiniéd(p.) andé by plotting I
(S)gt versus K™' [see Eg. (12]. The result
K¢(pe) =1.0004=0.0100 is in very good agreement with the r .
value 1 conjectured in the previous section, while for the r
entropic exponent we estimate Foe

1 1.5 2 2.5 3
Logy, n

3 . ,
D= z‘ lim Dy, with Dig=

Slﬂoc

2 lim S
=3 Im Sy,
2|80

Log,, < R®>,

.=1.78+0.03, (18)

where the error bars are obtained by taking into account the FIG. 3. Log-log plot(with common logarithmisof the canonical
estimates off and v at p=0.62 and 0.64. Even if we take mean-squared radius of gyrationt p. .
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assume the scaling form given by E®), ignoring higher- tation of the upper bound oK. suggest a close relation

order corrections. A linear least-squares fit gives between the rigidity-driven droplet line here and the inflation
B threshold of 2D vesicles. It is certainly intriguing that we
2v,=0.96500.0030, (22) found pﬁ close to x,(1)=0.37,.... We know that

where the error bars are estimated as in @&). Evidently p§$XC(Pc), andX.(1)<xc(pc). Presumably.(pc) —Xc(1)
the two methods give comparable estimatesvpfat the IS also very small.
crumpling transition; these estimates are slightly, but decid- The above results and the clear features of the phase dia-
edly, lower than the expected valuemwfor BP ind= 3 [33]. gram established in our analysis allowed us to locate the
If »<1/2 then at crumpling the vesicle configurations cannotransition very precisely and to examine carefully the pecu-
remain strictly waferlike: we know that, for such disks, liar critical regime atp.. This crumpling point evidently
v=1/2 should apphyj34]. exhibits a tricritical nature and is characterized by axpo-
For the two ratios(S)q/(V)q and (l,)q/(S)q, we ob- nent that differs from the BP one. An unusual universality
tained 1.94-0.02 and 0.93@ 0.002, respectively. In particu- class is then realized at the crumpling transition. While
lar, the nonzero value of the latter asymptotic ratio is furtherdiffers less distinctly from the BP value, the fact that it ap-
evidence that we are not dealing with waferlike vesicles apears to be slightly lower than 1/2 is probably not an artifact
this crumpling threshold. Furthermore, for waferlike vesiclesof the analysis. In his attempt to assess the critical exponents
a surface-to-volume ratio exactly equal to 2 should be exof the transition for the same model, Bauntgar also re-
pected. Our value is close, but three standard deviationgorted values less than 1/2 fog [23].
smaller. An important aspect of our study was the assessment of
From Table IV it is also possible to extrapolate the uni-the extent to which crumpling point scaling deviates from

versal quantitiesd, D, andS asK —K(p.). The results are that to be expected from a simple 2D picture of slab configu-
rations. Our analysis showed that crumpling point scaling is

A=0.86+0.02, (220  associated with a genuinely 3D critical instability.
The notion that crumpling point scaling differs from that
D=0.29+0.03, (23)  of multicritical 2D vesicles is further supported by the fol-
lowing argument: If the critical rigid vesicle gi=p. be-
§=0.040+0.015. (24 haved as an essentially 2D object, the entropic exponent

) ) ) ) should be that appropriate to express the number of configu-
Comparing these estlmateslwn‘rexpansmn P=0.326 and rations of planar self-avoiding rings in terms of their en-
§=0.164, to order e) or series estimates closed area. This exponent is well knoy88], and its con-

(D=0.390+0.003 andS=0.27x0.01) for 3D BP[37], we  jectured exact value would imply.= 1, which is very far
see that these universal quantities are also different at thgom our estimate.

crumpling point from in the crumpled regime. In view of the aforementioned failure of various attempts
to establish the existence of a crumpling transition in models
V. SUMMARY AND DISCUSSION of tethered surfaces, we believe our results are certainly re-

i , markable. We still lack a complete understanding of what

From a systematic MC study of a plaquette vesicle mode} o« jjiar features of latticized surfaces could allow them to
subject to bending rigidity and self-avoidance, we have o display a crumpling point that is not present in the con-
tained strong evidence of the existence of three distinct singq, ,um [39]. However, our results suggest that a crucial in-
gular regimes as a function of the stiffness fugagityFor  gredient in rigid-lattice vesicles is the possibility of estab-
moderate rigidity 6> p), the vesicle maintains the asymp- lishing a direct link with 2D vesicles under pressure, which
totic scaling properties of a BP, as already well established e \vell known to possess a droplet line with a tricritical
for the zero-rigidity case. Here singular behavior exhibitspoint [17]. A similar relation in the context of tethered sur-

continuous, second-order character with BP exponent$ as t5ce models does not seem obvious to us. To establish it
approachesK(p). This critical fugacity is a decreasing \yould certainly imply substantial modifications of the exist-

function of p in this range and appears consistent with rig-ing models. Thus, we suspect that a major role in determin-
orous bound$30]. In the high-rigidity region p<pc), We  ing the very existence of a crumpling transition in our model

have strong numerical evidence that the singularity line ocig played by the evident relation found here between pressur-

curs at the upper-bound value for the fugacity, ike,=1.  jzed and rigid vesicles in the lattice context.
This result is again consistent with the rigorous bounds of

Ref.[30]. Along this line there is clear evidence that vesicles

undergo a first-order divergence very similar to that occur-

ring for 2D pressurized vesicles. Fit<K.(p)=1, the ACKNOWLEDGMENTS
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