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The crumpling transition of three-dimensional~3D! lattice vesicles subject to a bending fugacity
r5exp(2k/kBT) is investigated by Monte Carlo methods in a grand canonical framework. By also exploiting
conjectures suggested by previous rigorous results, a critical regime with scaling behavior in the universality
class of branched polymers is found to exist forr.rc . For r,rc the vesicles undergo a first-order transition
that has remarkable similarities to the line of droplet singularities of inflated 2D vesicles. At the crumpling
point (r5rc), which has a tricritical character, the average radius and the canonical partition function of
vesicles with n plaquettes scale asnnc and n2uc, respectively, with nc50.482560.0015 and
uc51.7860.03. These exponents indicate a new class, distinct from that of branched polymers, for scaling at
the crumpling point.@S1063-651X~96!10705-4#

PACS number~s!: 64.60.Fr, 05.50.1q, 36.20.2r, 82.65.Dp

I. INTRODUCTION

Models of membranes and vesicles have been investi-
gated extensively in recent years. Such models are presumed
to describe large-scale fluctuation properties of molecular ag-
gregates such as those forming the interfaces of microemul-
sions or the lipid bilayers of biological membranes@1,2#.
These are highly flexible, topologically two-dimensional
structures with fixed area, the conformations of which are
primarily controlled by bending rigidity. In the case of
closed shapes~e.g., spherical vesicles!, a pressure difference
Dp between the interior and the exterior may also influence
the shape and its fluctuations.

In many instances, such as the above examples, molecules
are able to diffuse within the aggregate and do not take fixed
relative positions forming a lattice. Such fluid membranes
are often described by tethered surfaces@1#, with ~annealed!
tethers that can be suitably cut and rejoined@3#. These mod-
els should be distinguished from solid tethered surfaces,
where~quenched! tethers form a fixed network@4#. Another
way to describe fluid vesicles~i.e., those with zero shear
elasticity! is to use lattice surfaces made of elementary
plaquettes@5–9#. Here we adopt this description and deal
with a model of self-avoiding plaquette surfaces~SAS! of
spherical topology on a cubic lattice.

Many important issues concerning lattice SAS and, more

generally, surface models have been addressed succesfully in
recent years, especially with the aid of efficient Monte Carlo
algorithms. Today, e.g., there is no doubt that a spherical
SAS with no bending rigidity and no pressure difference
behaves like a branched polymer~BP! asymptotically, as the
number of plaquettes approaches infinity@8,10–13#. This
property also persists after one removes the topological con-
straint of requiring zero genus and so allows the SAS to form
an unrestricted number of handles@14#. The effects of an
osmotic pressure (Dp) are also rather well understood in the
absence of bending rigidity. Under deflation (Dp,0) the
vesicles maintain the BP critical behavior of the flaccid,
Dp50, regime@15,16#. However, any inflation, no matter
how small, causes maximal-volume configurations to be-
come dominant. The transition between flaccid (Dp50) and
inflated (Dp.0) regimes is first order and has been inter-
preted@17# in terms of droplet singularities@18,19#. Another
process that is by now well understood in many respects is
vesicle adsorption by an attracting plane@20#.

A central issue in the statistics of membrane and vesicle
models is the effect of bending rigidity@21#, even in the
absence of pressure increments@3,22–24#. By introducing
local bending rigidity in a closed-surface model, one expects
that spherical~cubic in the lattice case! configurations will
dominate at very high rigidity. For low rigidity, on the other
hand, the highly ramified, crumpled BP behavior should be
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recovered for fluid vesicles, while a different, but still
crumpled regime could possibly prevail for solid tethered
surfaces. Whether the rigid and crumpled regimes are sepa-
rated by a crumpling transition occurring at intermediate ri-
gidity and, if so, the nature of this transition are important,
unresolved, and controversial questions in the statistical me-
chanics of random surfaces: While many theoretical ap-
proaches do predict such transitions@25–27#, their nature
remains rather obscure, and numerical work casts doubt on
their very existence@3#. For example, in the case of both
‘‘solid’’ and fluid tethered surfaces, the existence of the tran-
sition seems to be ruled out when the self-avoidance con-
straint is enforced@3,22,28,29#. The situation appears differ-
ent for self-avoiding lattice surfaces. Monte Carlo methods
in both the grand canonical@24# and canonical@23# en-
sembles provide evidence of such a transition. There are also
indications, albeit not definitive, that the transition is con-
tinuous@23#. In any case, the scaling properties at this pos-
sibly continuous transition have not been determined to date;
the state at the crumpling threshold has not been character-
ized precisely.The essence of this work is to confirm defini-
tively the crumpling transition in lattice SAS and to provide
a systematic and accurate characterization of the associated
scaling properties.

Our results are based on a Monte Carlo algorithm in the
grand canonical ensemble, introduced earlier for lattice SAS
@12#. This ensemble allows easier study of both entropic and
metric scaling properties, which are key ingredients in the
characterization of scaling at the crumpling point. Moreover,
in this ensemble we can exploit easily some previous rigor-
ous results for SAS@30#, which aid our search dramatically.
Thus, we combine the high efficiency and precision of our
Monte Carlo algorithm with analytic information to obtain
the most convenient and natural path to our objectives.

The study of the crumpling transition in a lattice context
offers a unique opportunity to explore nontrivial relations
between apparently distinct and unconnected aspects of
vesicle physics. One such relation is indeed established here
between the phase diagram of pressurized, rigid vesicles in
two dimensions~2D! @17# and that of our flaccid and rigid
vesicles in 3D. This relationship proves essential in locating
the crumpling point and in characterizing its critical behav-
ior, and might offer a hint towards understanding the very
existence of a crumpling transition for lattice surfaces.

This paper is organized as follows: In Sec. II the model is
introduced, and the grand canonical formalism is set up. In
Sec. II we also give a summary and partial reinterpretation of
previously obtained rigorous limits and bounds related to the
model. In Sec. III we present the results of a first global
analysis of the phase diagram of the model. We determine
the nature of the different critical and first-order lines and
estimate exponents and other asymptotic properties. In Sec.
IV, making use of results of the previous analysis, we carry
out a systematic study of entropic and conformational scal-
ing properties at the crumpling transition. Section V contains
further discussion and some concluding remarks.

II. MODEL, EXACT RESULTS,
AND MONTE CARLO APPROACH

In order to describe a 3D vesicle, one can consider a
closed self-avoiding surface constructed by gluing together

elementary plaquettes~unit squares ofZ3) in such a way that
neither overlaps nor intersections occur. Each lattice
plaquette can enter only once to form the SAS, and each
lattice edge of the vesicle can be shared by only two
plaquettes. Moreover, we shall confine our attention to
vesicles that are homeomorphic to the sphere: our vesicles
are connected and have no handles. The generating function
of vesicles with curvature interaction can be written as

Gq~K,r!5(
n,l p

v~n,l p!n
qKnr l p5(

n
nqKnZn~r!, ~1!

wherev(n,l p) is the number of vesicles withn plaquettes
and l p edges joining two mutually perpendicular plaquettes.
In v andGq a normalization per lattice site in the thermody-
namic limit is implicit. The parameterK is a plaquette fugac-
ity ~perhaps more precisely, an absolute activity! associated
with the grand canonical ensemble in equilibrium with a
plaquette reservoir. The factornq in the summand is intro-
duced to allow an analysis of entropic exponents (q.3/2 is
needed, and we chooseq53 as a rule!, and generally to
enhance the sampling of surfaces with large area@12#. The
parameterr is the Boltzmann factor related to the stiffness
energyk by

r5expS 2
k

kBT
D . ~2!

Clearly the smallerr, the stronger the tendency of the
vesicle to assume flat configurations.Zn is a canonical par-
tition function at fixedn. Typically in polymer statistics one
expects various canonical and grand canonical quantities to
obey asymptotic laws characterized by entropic or thermal
exponents, if the asymptotics themselves are consistent with
second-order, continuous critical behavior. This situation oc-
curs often. However, there are exceptions, as we will find
below, in which first-order, discontinuous behavior occurs.

The canonical partition function in a critical regime
should behave like

Zn~r!5(
l p

v~n,l p!r
l p ;

n→`

n2u@Kc~r!#2n, ~3!

whereu is the entropic exponent. Forr51,Zn is the number
of distinct vesicle configurations withn plaquettes. Evalua-
tion of u by directly fitting Monte Carlo data with Eq.~3! is
not expected to be very successful. A much better strategy,
which we follow below, consists of extractingu from the
behavior of the grand canonical average area of the vesicle
plotted as a function ofK @12#. An example of a grand ca-
nonical average yielding the thermal exponentn is

R2~K,r!5
(nZn~r!nqKnRn

2~r!

Gq~K,r!
;

K→Kc~r!2

@Kc~r!2K#22n,

~4!

whereRn
2(r)5Zn(r)

21( l p
v(n,l p)R

2(n,l p)r
l p is the canoni-

cal mean-square radius of gyration, with respect to the center
of mass, of surfaces with arean and arbitraryl p . Equation
~4! is also equivalent to the canonical law
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Rn
2~r! ;

n→`

n2n. ~5!

In a recent paper, Baumga¨rtner studied the crumpling transi-
tion in a canonical context, i.e., starting from a canonical
partition such asZn(r) @23#. However, he did not consider
entropic exponents, and his analysis of metric properties did
not provide clear conclusions, especially about the nature of
the crumpling transition@31#.

The main goal of our study, which extends earlier, pre-
liminary efforts @24#, is to determine how quantities such as
Kc or n andu depend onr. Of course, we are mostly inter-
ested in the caser,1, where the tendency to crumple and
ramify spontaneously is opposed by the bending rigidity. For
n andu we expect some degree of universality. It is possible
for these exponents to remain constant over whole intervals
of r values. Such intervals would correspond to universality
domains of critical behavior.

For the model described by Eqs.~2.1!–~2!, Whittington
recently studied the limit of the canonical free energy as a
function of r and, on the basis of rigorous inequalities and
concatenation arguments, established upper and lower
bounds for the critical curveKc(r) @30#. In particular he
found that, for all real values ofr, the free-energy limit

F~r![ lim
n→`

1

n
lnZn~r! ~6!

converges to a finite value:

F~r!52 lnKc~r!,`, ~7!

which is a convex function of lnr. The bounds onKc(r) are
given by

Kc~1!<Kc~r!<1, r<1, ~8!

Kc~1!r22<Kc~r!<min@Kc~1!,r22#, r>1, ~9!

whereKc(1) is the critical fugacity of vesicles with no ri-
gidity @12#.

Unfortunately, the rigorous techniques used by Whitting-
ton are not sufficiently powerful to establish whether, and for
which value ofr, a crumpling transition, i.e. a drastic change
in the exponents, might occur. Neither can they estimate the
exponents at that transition. However, as we shall discuss
below, the above inequalities can be used to formulate plau-
sible conjectures that help us greatly in the numerical inves-
tigations.

The inequality~8!, which holds particular significance for
us, can be justified easily: Suppose we restrict the vesicle
configurations contributing toGq to those having the shape
of a ~flat, rigid! wafer of unit thickness. When projected onto
some arbitrarily chosen principal plane, such wafer configu-
rations can be described as self-avoiding rings~on a square
net!. The statistics of such configurations are in fact the same
as for 2D vesicles with disk topology. Each plaquette en-
closed by the ring has weightK2, while each boundary edge
has weightx5Kr2. An additional bending fugacityr has to
be associated with each pair of consecutive links on the pe-
rimeter that meet at right angles. In terms of generating func-
tions we have

Gq~K,r!> (
2D vesicles

~K2!Axprnp, ~10!

whereA and p are the area and the perimeter of the 2D
vesicle, respectively, whilenp is the number of consecutive-
edge pairs at right angles along the ring. So we are clearly
left with a model of 2D rigid vesicles, with fugacities con-
trolling perimeter and area. Since the slab configurations
form a subset of the total, the generating function for the 2D
vesicles cannot exceedGq . On the other hand, we know that
the 2D vesicle generating function is infinite as soon as
K2.1 ~corresponding toDp.0), as a consequence of drop-
let singularities@18,19#. In this case with rigidity, the radius-
of-convergence reasoning~based on area versus perimeter
terms! in Eq. ~10! follows straightforwardly from arguments
developed in Ref.@17# for pressurized vesicles~see also Ref.
30!. We conclude thatGq must already be infinite for
K.1, i.e.,Kc<1. Since there is no well-defined phase above
Kc(r), we use the expression ‘‘singularity curve’’ rather
than ‘‘phase boundary.’’

In order to gain more insight into the crumpling transition
for lattice vesicles, we turn to the numerical approach of
Monte Carlo simulations. Our Monte Carlo strategy samples
configurations of vesicles from a Markov chain having as its
limiting distribution the one considered in Eq.~1!. The main
innovation of our algorithm is an oct-tree data structure,
which allows satisfactory control of the statistics, even when
the model is very close to criticality. Details of the sampling
method, the error estimates, and the data analysis have been
described thoroughly in Ref.@12#, and so are not discussed
here.

III. NUMERICAL RESULTS AND PHASE DIAGRAM

In this section we report data on ther dependence of
several grand canonical quantities. Based on our estimates of
the singularity curve,Kc5Kc(r), and on the rigorous
bounds mentioned in the previous section, we conjecture that
the singularities in the high-rigidity regime (r,rc) have a
first-order, dropletlike nature@17#. The crumpling-transition
point (r5rc) is thus interpreted as a sort of tricritical point
located at the end of the droplet line. As a matter of fact, it
turns out that the previously discussed boundKc(r)<1
plays a key role in the determination of the phase diagram
because numerical evidence clearly locates the droplet line
precisely atKc51. The physics of 2D pressurized vesicles,
from which this bound originates, is somehow connected to
the rigidity-driven transition in our system. The line of first-
order ~essential! singularities we find here does seem to be
interpretable in terms of the similar line existing for vesicles
in 2D at zero pressure difference. In spite of the strong nu-
merical evidence supporting the scenario described above,
we cannot entirely rule out the possibility thatKc(r),1, for
all r @32#. This alternative picture would still be consistent
with the presence of a transition corresponding to a change
of convexity inKc(r).

In our numerical investigation we proceeded as follows:
For each chosen value ofr we performed long Monte Carlo
~MC! runs at several values ofK. For each value of the
plaquette fugacity we estimated grand canonical averages of
the form
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^A&q5Gq~r,K !21(
n,l p

v~n,l p!A~n,l p!n
qKnr l p, ~11!

whereA(n,l p) indicates the average of the generic quantity
A at fixedn and l p .

For illustrative purposes quantities estimated for fixed
r50.7 are reported in Table I. ThereV indicates the volume
enclosed by the vesicle. Proceeding as in Ref.@12#, we esti-
mated the exponentn by fitting to Eq. ~4!. In the case re-
ported in Table I, we obtainedn50.50160.004 ~two stan-
dard deviations!. Kc(r) andu are best determined from plots
of ^S&q

21 versusK, noting that

^S&q;
Kc~r!~q112u!

Kc~r!2K
for K→Kc

2 . ~12!

Again, the case r50.7 ~see Table I! gives
Kc(0.7)50.90160.009 andu51.5160.03. We also esti-
mated the asymptotic behavior of the surface-to-volume ratio
^S&q /^V&q and the ratio of the average number of edge pairs
joining two plaquettes perpendicular to each other~the quan-
tity conjugate to the bending energy! to the surface area,
^ l p&q /^S&q . We find that these ratios approach constant val-
ues (;2.597 and;1.111, respectively! asK→Kc

2 .
All the steps described above were repeated for various

values ofr ranging from 0.64 to 2.0. Since we are interested
in the crumpling transition, the most interesting region for us

is the one withr,1. The estimates of the relevant extrapo-
lated quantities are reported in Table II.

From the data in Table II, we can draw some preliminary
conclusions. Asr decreases,Kc(r) increases and ap-
proaches the value 1 quite rapidly, the maximum value al-
lowed by the rigorous bound~8!. The limiting value,
Kc51, is first attained forr5rc'0.635. The numerical es-
timates ofKc(r) suggest thatKc(r) is a convex function of
r for rc<r<2.0 ~see Fig. 1!. It is thus natural to conclude
that Kc should reach the value 1 at some finite valuerc .
Once this is assumed, the rigorous bound~8! together with
monotonic variation@30# imply that, for allr,rc , Kc51.

The estimated values ofn and u reported in Table II
suggest that over the entire range considered
(0.64,r<2.0), the vesicle critical behavior belongs to the
universality class of BP ind53. In fact, the determinations
of the entropic exponentu and the metric exponentn agree,
to within error bars, with the values32 and

1
2, respectively,

expected for 3D BP@33#. The only exceptions are the deter-
minations atr50.64, where we can see, at least foru,
strong deviations from the BP value; we will consider this
problem below.

Further evidence that ramified tubular configurations

TABLE I. Estimates of some grand canonical averages coming
from Monte Carlo sampling atr50.7 for various values ofK.

K ^S&q ^V&q ^R2&q

0.850 41.4960.1 12.0360.1 3.00860.04
0.860 53.0760.2 16.0860.1 3.85560.04
0.870 69.4860.3 21.9960.2 5.03860.05
0.875 85.5860.5 28.0260.2 6.18460.06
0.880 103.1960.7 37.1760.3 8.00660.07
0.882 118.3260.8 41.4960.4 8.77160.08
0.884 133.6560.9 46.1560.4 9.66860.08
0.888 160.6061.5 69.1760.8 14.1460.20
0.890 204.7462.7 77.7761.0 15.3360.23
0.892 260.0363.7 113.3661.8 22.5760.35
0.894 340.5365.0 135.2262.5 25.9660.38

TABLE II. Numerical estimate of the critical curveKc(r) and of various universal quantities as a
function of the bending fugacityr.

r Kc(r) u n ^S&q /^V&q ^ l p&q /^S&q

2.0 0.20960.010 1.5160.08 0.51860.020 3.6460.010 1.59260.001
1.5 0.32660.008 1.5160.08 0.51260.010 3.5360.011 1.47960.001
1.3 0.40260.007 1.4960.07 0.51460.008 3.4660.014 1.43360.001
1.0 0.58060.005 1.5060.05 0.50660.005 3.2760.014 1.33960.001
0.9 0.66460.006 1.5160.06 0.50760.005 3.1160.014 1.29360.002
0.8 0.77060.007 1.5160.05 0.50560.005 2.9060.015 1.22560.002
0.7 0.89960.009 1.5160.03 0.50160.004 2.6060.015 1.11160.004
0.64 0.98760.010 1.7060.03 0.48860.003 2.1460.013 0.97860.002

FIG. 1. Numerical estimate of the critical curveKc for various
values of the bending fugacityr.
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dominate the statistics of vesicles in this range ofr is given
by the asymptotic behavior of the surface-to-volume ratio.
The limit of this ratio being a constant means that the volume
enclosed by the vesicle grows to infinity like the surface area
of the vesicle. Another result consistent with BP behavior is
that asymptotically the average number of edges joining two
mutually perpendicular plaquettes^ l p&q varies linearly with
the average surface area^S&q .

At fixed r,rc , as we try to approach the lineK51 from
below, we see no trace of critical behavior~such as the di-
vergence of̂ S&q , for example!. On the other hand, if we
chooseK slightly above one, we find a system out of equi-
librium in which the plaquette number and the size of the
sampled vesicle configurations grow without bound as a run
proceeds. These configurations are like maximal area disks,
or thin ‘‘wafers.’’ Their thickness is close to unity for
r&rc and increases gradually with decreasingr.

This situation is similar to that occurring in the 2D vesicle
model with pressure differenceDp when one crosses the line
of essential singularities separating the region of the finite
ramified deflated vesicleDp,0 from the nonequilibrium re-
gion of the inflated square-shaped vesicles (Dp.0) ~see
Ref. @17#!. In our rederivation of the boundKc(r)<1 at the
end of the previous section, we established that this bound
follows from the fact that the generating function for 2D
vesicles with area fugacityK2, perimeter fugacityx5r2K,
and rigidityr is always a lower bound ofGq . Forr,rc and
K&1, the statistics of our 3D vesicles appear to be domi-
nated by finite configurations similar to the waferlike ones
providing the lower bound ofGq .

The analogy to the droplet transition of the 2D vesicle
model with osmotic pressure and rigidity can be made even
stronger: forK.1 we observe that the surface areaS grows
indefinitely with time while the number of edgesl p grows as
the square root ofS. This behavior translates into the perim-
eter growing like the square root of area for inflated 2D
vesicles. Further evidence of the waferlike configurations is
provided by the observation that the volume of the vesicles
grows proportionally to the area.

From these considerations we conjecture that the model of
3D vesicles with rigidity displays the same type of phase
diagram as the 2D vesicle model with pressure. In particular,
we claim that the semi-infinite lineK51 andr,rc consti-
tutes a locus of droplet~first-order! singularities for the prob-
lem ~see Fig. 2!. Thus, the point (rc,1), which governs the
crumpling transition of the model should correspond to a
tricritical point, i.e., a point where a first-order line joins a
second-order one.

There is support for the intriguing possibility of an even
deeper connection between the droplet-singularities line of
rigid 3D vesicles found here and that of pressurized, rigid 2D
vesicles: Recalling thatKc(r)51 so thatxc5rc

2 , we find
rc
2.0.40, quite close to the best estimate of the critical
boundary step fugacity for the 2D self-avoiding rings in the
flaccid regime (xc50.379 052660.000 0005@35#!. We al-
ready observed that along the droplet line,r<rc , K51, our
3D vesicles appear to behave similarly to minimal-thickness
wafers, with boundary perimeter weightx5r2 and rigidity
fugacity r. The critical instability of the 3D vesicles occurs
very close to that of the strictly 2D model of self-avoiding

rings with step fugacityx and vanishing stiffness energy.
Indeed, for a 2D ring without rigidity, the critical step fugac-
ity should bexc(r51)50.3790,. . . ; for a ring subject to
some rigidityr'0.63, we can only say that the critical step
fugacity xc(r) should not be lower@xc(r)>xc(1)#. While
we suspect the shift of this step fugacity from the value
xc(1) to be small, we cannot provide a quantitative estimate.
The remarkable closeness ofrc

2 to the critical step fugacity
of 2D rings seems to suggest a deeper link between critical
scaling of 3D vesicles at the crumpling point and 2D multi-
critical pressurized vesicles. However, as we discuss in the
next sections, this approximate coincidence does not imply
that the instability is identical in the two cases. The 3D char-
acter of our vesicles at the crumpling threshold is unambigu-
ously manifested and cannot be simply traced back to some
model, such as 2D self-avoiding rings, embedded in a lower-
dimensional space.

IV. MORE PRECISE CHARACTERIZATION
OF THE CRUMPLING TRANSITION

From the discussion in the previous section, it seems natu-
ral to try to locate more precisely the tricritical point by
fixing the plaquette fugacityK at 1 and performing runs at
several differentr,rc . Our results are reported in Table III.

A plot of ^S&q
21 versusr21 gives linear behavior with

slope a50.25960.002 and interceptb520.41160.002.
From the ratio2a/b, we can estimate

rc50.6360.01, ~13!

FIG. 2. Schematic plot of theK vs r phase diagram. Along the
dashed horizontal segmentr<rc , K51, there is a locus of droplet
singularities.

TABLE III. Numerical estimate of the mean area as a function
of the bending fugacityr for r,rc .

r ^S&q

0.600 47.3360.76
0.610 72.1862.34
0.620 138.11616.83
0.623 194.84622.26
0.624 238.18647.90
0.625 264.26645.03
0.627 397.08648.48
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consistent with the value 0.635 of the previous section ob-
tained from runs at constantr.

In order to study the crumpling transition more closely,
we setr to the last estimated value ofrc50.63 and per-
formed several long runs for different values of
K,K(rc)51 to get precise estimates of the exponents. In
addition to the grand canonical averages of the area, volume,
squared radius of gyration, and number of edges with per-
pendicular plaquettes, we computed three different, suppos-
edly universal, quantities related to the eigenvalues
(l1,l2,l3) of the inertial tensor of the vesicles. More
precisely if (r k

(1) ,r k
(2) ,r k

(3)) are the components of the posi-

tion rWk locating the center of thekth plaquette, we define the
inertial tensor of a configuration withn plaquettes as

Gab5
1

2~n11!2(k50

n

(
m50

n

~r k
~a!2rm

~a!!~r k
~b!2rm

~b!!. ~14!

The asymmetry measuresA, D, andS are then defined
@36# as

A[ lim
uSu→`

AuSu , with AuSu5^l1 /l3&q , ~15!

D[
3

2
lim

uSu→`

DuSu , with DuSu5
^Tr$@G2ITr~G!/3#2%&q

^@Tr~G!#2&q
,

~16!

S[
9

2
lim

uSu→`

SuSu , with SuSu5
^Tr$@G2ITr~G!/3#3%&q

^@Tr~G!#3&q
,

~17!

whereI is the unit tensor. Our estimates of all seven aver-
ages for 10 values ofK are displayed in Table IV. Also in
these computations we determinedKc(rc) andu by plotting
^S&q

21 versus K21 @see Eq. ~12!#. The result
Kc(rc)51.000460.0100 is in very good agreement with the
value 1 conjectured in the previous section, while for the
entropic exponent we estimate

uc51.7860.03, ~18!

where the error bars are obtained by taking into account the
estimates ofu and n at r50.62 and 0.64. Even if we take

three standard deviations for the error bars, the estimate of
the entropic exponent at the crumpling transition is definitely
larger than the corresponding valueu5 3

2 of 3D branched
polymers.

A determination of the exponentn by fitting Eq.~4! gives

2nc50.97260.001. ~19!

Alternatively, n can be estimated from data collected over
realizations of vesicles for several runs at different values of
K. LetNK(n) be the number of vesicles of sizen realized in
a run with fugacityK. Let ^R2&n,K be the canonical mean
square radius of gyration over this sample. Then over all the
runs ~at various values ofK), we compute

^R2&n5
(KNK~n!^R2&n,K

(KNK~n!
, ~20!

which is a weighted average over the averages from the in-
dividual runs: the weights are proportional to the sample
sizes. The data are displayed in Fig. 3. To computen we

TABLE IV. Numerical estimate of different grand canonical averages atr5rc and for several values of the surface fugacityK
approaching the suggested critical valueKc(rc)51.

K ^S&q ^V&q ^R2&q ^ l p&q AuSu DuSu SuSu

0.960 52.960.2 17.360.1 3.8660.02 60.160.2 1.01060.006 0.29560.006 0.04160.003
0.970 70.360.3 24.360.1 5.1260.02 77.260.3 0.97060.006 0.29360.007 0.04160.003
0.980 105.960.7 39.660.3 7.6760.05 112.060.6 0.93060.006 0.29260.011 0.04160.005
0.984 132.660.8 51.860.4 9.5260.06 127.860.8 0.92060.006 0.28560.035 0.03560.006
0.990 217.463.2 92.4461.7 15.4360.23 217.662.9 0.89060.009 0.28460.025 0.03460.008
0.992 263.264.0 115.962.5 18.4260.26 260.263.5 0.88060.008 0.27760.023 0.02960.006
0.993 304.264.9 136.962.8 21.2660.35 298.064.4 0.87060.010 0.29260.026 0.04060.009
0.994 340.264.9 155.162.8 23.6960.36 331.664.4 0.86060.010 0.29260.026 0.04160.009
0.995 394.865.4 183.363.0 27.3760.40 382.664.9 0.86060.010 0.29160.026 0.04060.011
0.997 556.867.2 269.864.4 38.1260.50 531.566.4 0.86060.010 0.29060.028 0.04060.013

FIG. 3. Log-log plot~with common logarithms! of the canonical
mean-squared radius of gyration atr5rc .
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assume the scaling form given by Eq.~5!, ignoring higher-
order corrections. A linear least-squares fit gives

2nc50.965060.0030, ~21!

where the error bars are estimated as in Eq.~18!. Evidently
the two methods give comparable estimates ofnc at the
crumpling transition; these estimates are slightly, but decid-
edly, lower than the expected value ofn for BP ind53 @33#.
If n,1/2 then at crumpling the vesicle configurations cannot
remain strictly waferlike: we know that, for such disks,
n51/2 should apply@34#.

For the two ratios^S&q /^V&q and ^ l p&q /^S&q , we ob-
tained 1.9460.02 and 0.93060.002, respectively. In particu-
lar, the nonzero value of the latter asymptotic ratio is further
evidence that we are not dealing with waferlike vesicles at
this crumpling threshold. Furthermore, for waferlike vesicles
a surface-to-volume ratio exactly equal to 2 should be ex-
pected. Our value is close, but three standard deviations
smaller.

From Table IV it is also possible to extrapolate the uni-
versal quantitiesA, D, andS asK→Kc(rc). The results are

A50.8660.02, ~22!

D50.2960.03, ~23!

S50.04060.015. ~24!

Comparing these estimates withe expansion (D50.326 and
S50.164, to order e1) or series estimates
(D50.39060.003 andS50.2760.01) for 3D BP@37#, we
see that these universal quantities are also different at the
crumpling point from in the crumpled regime.

V. SUMMARY AND DISCUSSION

From a systematic MC study of a plaquette vesicle model
subject to bending rigidity and self-avoidance, we have ob-
tained strong evidence of the existence of three distinct sin-
gular regimes as a function of the stiffness fugacityr. For
moderate rigidity (r.rc), the vesicle maintains the asymp-
totic scaling properties of a BP, as already well established
for the zero-rigidity case. Here singular behavior exhibits
continuous, second-order character with BP exponents asK
approachesKc(r). This critical fugacity is a decreasing
function of r in this range and appears consistent with rig-
orous bounds@30#. In the high-rigidity region (r,rc), we
have strong numerical evidence that the singularity line oc-
curs at the upper-bound value for the fugacity, i.e.,Kc51.
This result is again consistent with the rigorous bounds of
Ref. @30#. Along this line there is clear evidence that vesicles
undergo a first-order divergence very similar to that occur-
ring for 2D pressurized vesicles. ForK<Kc(r)51, the
vesicles remain finite, and there is no indication of critical
scaling. However, onceK.1, the configurations grow with-
out bound, as indicated by the lack of a finite equilibration
time. Thus, the transition can be explicitly described in terms
of droplet singularities@19#. In theK.1 regime, the growing
vesicles are predominantly thin disks, with minimal perim-
eter ~i.e., l p) for given area.

These waferlike configurations and the physical interpre-

tation of the upper bound onKc suggest a close relation
between the rigidity-driven droplet line here and the inflation
threshold of 2D vesicles. It is certainly intriguing that we
found rc

2 close to xc(1)50.37, . . . . We know that
rc
2<xc(rc), andxc(1)<xc(rc). Presumablyxc(rc)2xc(1)
is also very small.

The above results and the clear features of the phase dia-
gram established in our analysis allowed us to locate the
transition very precisely and to examine carefully the pecu-
liar critical regime atrc . This crumpling point evidently
exhibits a tricritical nature and is characterized by au expo-
nent that differs from the BP one. An unusual universality
class is then realized at the crumpling transition. Whilenc
differs less distinctly from the BP value, the fact that it ap-
pears to be slightly lower than 1/2 is probably not an artifact
of the analysis. In his attempt to assess the critical exponents
of the transition for the same model, Baumga¨rtner also re-
ported values less than 1/2 fornc @23#.

An important aspect of our study was the assessment of
the extent to which crumpling point scaling deviates from
that to be expected from a simple 2D picture of slab configu-
rations. Our analysis showed that crumpling point scaling is
associated with a genuinely 3D critical instability.

The notion that crumpling point scaling differs from that
of multicritical 2D vesicles is further supported by the fol-
lowing argument: If the critical rigid vesicle atr5rc be-
haved as an essentially 2D object, the entropic exponent
should be that appropriate to express the number of configu-
rations of planar self-avoiding rings in terms of their en-
closed area. This exponent is well known@38#, and its con-
jectured exact value would implyuc51, which is very far
from our estimate.

In view of the aforementioned failure of various attempts
to establish the existence of a crumpling transition in models
of tethered surfaces, we believe our results are certainly re-
markable. We still lack a complete understanding of what
peculiar features of latticized surfaces could allow them to
display a crumpling point that is not present in the con-
tinuum @39#. However, our results suggest that a crucial in-
gredient in rigid-lattice vesicles is the possibility of estab-
lishing a direct link with 2D vesicles under pressure, which
are well known to possess a droplet line with a tricritical
point @17#. A similar relation in the context of tethered sur-
face models does not seem obvious to us. To establish it
would certainly imply substantial modifications of the exist-
ing models. Thus, we suspect that a major role in determin-
ing the very existence of a crumpling transition in our model
is played by the evident relation found here between pressur-
ized and rigid vesicles in the lattice context.
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