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Abstract 

Using the equivalent crystal theory (ECT), we have calculated the energies of steps and kinks on vicinal 
(001) and { 111) surfaces of Ag and Pt. We compare with some semiempirical calculations, particularly our 
recent embedded atom method (EAM) results, and with avaiiable expe~ment~ data, considering both trends 
and magnitudes: ECT values are roughly double those from EAM, and may well be more accurate. Like EAM, 
ECT incorrectly predicts an instability of Ag{ 110) towards missing row reconstruction. 

1. Intruduction 

In recent years a surge in the study of surface phenomena has led to an interest in surface 
morphology. The goal is deeper understanding of such behavior as epitaxial growth, chemical 
reactivity of adsorbate molecules, and surface reactivity. Steps and kinks are the basic ingredients in 
the description of surface mo~hology. In general the symmet~ of such systems is too low to allow for 
self-consistent total energy approaches (except for simple, light materials [ 1 ] ). Thus, investigators 
eager to gain some understanding of the important energies have relied on semiempirical methods, 
most often the embedded atom method (EAM) [2-61, sometimes alternative related schemes [ 71. 
While EAM has been impressively successful [6] in describing a wide variety of properties of late 
transition and noble metals, including many surface properties, a significant shortcoming is that 
the estimate of surface energies is considerably lower than found by local-density-approximation, 
total-energy calculations [ 8,9] and in experiments [lo]. (While this problem in EAM has been 
linked to the neglect of presumably strong gradient corrections near surfaces [ II], the deficiency 
may be more general: recent calculations have found EAM numbers to be about half those of density 
functional theory for stacking faults and for twin boundaries in Al [ 12 1. ) Since step energies can at 
least crudely be approximated by a difference in surface energies (cf. the “awning” approximation 
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discussed below ), one is led to wonder whether the magnitudes of EAM calculations of step and 
kink energies [ 5,13,14] are also too small. 

In recent years, a new semiempirical approach, equivalent crystal theory (ECT), has been 
formulated [ 81. The surface energies in this approach are much closer to experimental and first- 
principles computational results [9]. In this paper we present a calculation of the principal step 
and kink energies of vicinal (001 }, { 1111, and ( 110) surfaces of Ag and Pt at temperature T = 0 
using ECT. Our focus on energies contrasts with previous applications of ECT to vicinal surfaces, 
which emphasized relaxations [ 151. 

In this short paper, we first give a utilitarian explanation of the ECT method, followed by some 
formal background on definitions of energies of steps and kinks. We then report and discuss our 
calculations and results, comparing with previous calculations and measurements. 

2. ECT 

In this section a brief operational description of the ECT method is given. Details of its derivation 
and the rationale behind its development are found in Refs. [S] and [ 151. In ECT any deviation 
of a solid from its zer~temperature in~nite-bulk structure occupying all of three-Dimensions space 
is considered a defect. Thus, for example, even a perfect bulk-terminated surface of an fee metal at 
T = 0 is considered a defect in a solid. If E is defined as the total energy required to form a defect, 
then 

& =: t: E. I3 (1) 

where &i is the ~ont~bution to E from the atom d’ close to the defect; the sum runs over all such 
atoms with non-zero contributions ei. In the ECT calculational scheme there exists for each of 
these atoms i an equivalent perfect single effective crystal filling all space at T = 0 such that the 
energy Ei of atom i in the actual defect crystal is the same as in the equivalent perfect crystal. The 
equivalent crystal differs from a perfect defect-free crystal of the same substance only in that its 
lattice constant differs from the physical bulk value. The problem of finding &i, and hence E, is 
reduced to finding for each atom i an effective equivalent single crystal and calculating the energy 
of the atom i in it. This is easier said than done: many-body terms contribute to the energy of each 
atom in real systems. Hence, Ei is written as a sort of perturbation series of one-, two-, three- and 
four-body terms, each of which is obtained by considering a different effective perfect equivalent 
single crystal. In this approximations &i takes the form: 

Ei = AE I;* [a;(i)1 + xF* [a$ti,j)l + xF* [a;(i,j,k>l + xF* la~(i,j,kll , (2) 
\ j 

where 

F” [a”] = I - (1 + a*) exp(-a*). 

The four different values of a; for i = 

a; = t&j - f-WSE 1 fl, 

where Rec,i, i = 1,2,3 and 4, are the 
perfect single crystals ~o~esponding to 

i,k j,k 

1,2,3 and 4 are given by 

(4) 

nearest-nei~bor fnn) spacings in the effective equivalent 
the one-, two-, three-, and four-body terms of the ith atom, 
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respectively. In the discussion above and the one to foifow, the parameters tr, 8, rws~, 1, 2, p, AE, 
AZ, 143, A4 are all obtained from the o&y ~~~~~rn~~ta~ input to the method, namely the three bulk 
elastic constants, the bulk cohesive energy, the bulk lattice constant, and the vacancy fo~atio~ 
energy. Rec,l is obtained by solving nume~cally the transcendental equation which represents local 
atom density changes: 

- C Ryexp[-{a +S(Rj)}Rj] = 0 
defect 

(5) 

where the sum over the defect crystal is over all neighbors within second nearest neighbor (nnn) 
distance. Rj is the distance between atom I’ and a nei~bo~ng atom j, A$ and A$ are the number 
of nearest neighbors (nn) and next-nearest neighbors of the equivalent crystal, repectively. cz is the 
ratio of the nnn distance to the nn distance in the perfect solid, which for fee metals is v% ,S (Ri ) 
is a screening function given by: 

0 ifR5Ro 
S(R) = (2A)-* fl-~~~{~(R-R~)/(c~R~-R~))] ifRosR<:c2R0 (6) 

A-’ if CT+& 5 R 

where Ro is the nn distance in the perfect bulk solid. R ec,2 is obtained by solving numerically the 
transcendental equation which represents nn bond length changes: 

R is obtained by solving numerically the transcendent~ equation which represents changes in 
th?\n bond angles: 

N&‘,,, exph&,d - N& exp6-aR0) 

+AsRgexp [-a(Rj - 2Ro + Rk)] Sinf@jk - 61 = 0. 

Here Bjk is the angle between the nn position vector Rj of atom j’ with respect to atom i and the 
position vector Rk of atom k with respect to atom I’ in the defect crystal. 8 is the equiiib~um value 
of this angle in the bulk perfect crystal. 

R ec,4 is likewise obtained from the transcendental equation which represents changes in the body 
diagonal of the fee unit cell: 

NR&exp(--crR,,,4) - NR{exp(-aRo) 

+AR~(l4 - &l/d) exp [-a(Rj =I- Rk + RI + Rm - 4Ro)] = 0, (9) 

where d is the face diagonal of the undistorted cube, and & and C& are the face diagonals in the 
defect crystal. 



Yin this section some format definitions of step and kink energies are recapitulated. For vicinal 
surfaces, tilted by an angle $I from a low index face, the surface energy per unit ~roj~~~~~ area 
.f ($,7’) (the projection being onto the low-index plane of the terraces) can be expanded with 
respect to the average density of steps [ 16,171 as 

.f(45,72 = f@, T) + PV)l tan#//PE + s(T)ltan4i3. (10) 

The first term f (0, T) is the surface free energy per unit area of the terrace plane. The average 
density of steps (i.e. the inverse of their mean sepa~t~on) is f tanrJ~/h, where h is the step height. 
p(T) is the free energy per anti& ~~~g~~ of step formation at an absolute temperature 7’. In the 
following discussion /3(o) is referred to, simply but somewhat imprecisely, as the “step energy.” 
The third term is the step-step interaction term, which will not be addressed in this work. Vicinal 
surfaces whose steps have periodic kinks can be produced by polar and azimuthal rotations about 
a high symmetry direction, as shown in Fig. f of Ref. f 5 1. At zero temperature the free energy per 
unit projected area of such a surface is given by 

~(~0,~) = f(O,O) + @(O> +~~-'tan~)tan~*/~, (111 

Hem B is the azimuthal angle between a periodically kinked step and a principal axis, 40 is the tilt 
a&e about this principal axis. b is the spacing between rows of the surface ~~endic~la~ to the 
step edge, so that the one dirne~si~~a~ density of kinks along a straight step edge is b-r tan 8. t: is 
the energy of an individual kink, called hereafter simply the “kink energy.” In terms of the polar 
angle I$ between the terrace normal and surface normal, the previous equation is 

f(&,8) = .f(O,O) + (/I(O) cosB + eb-‘sin8) tangle. (12) 

Note that @, #o and 6 are related by tan 40 = tan 4 cos 8. 

For ~a~ish~~g azimuthal rnis~~e~tati~n~ Eq. f 12) reduces to 

.~~~~~~ = SVJ,O) + ~~~)t~~~/~~ (13) 

All step energies were calculated via Eq. f f 3). On (@If) ~~re~onst~~ted surfaces of fee metals, 
there is just one kind of straight step. The microfacet associated with the step riser is (1 11). On 
{ 111) unre~nst~cted surfaces of fee metals, there are two kinds _of straight steps, often called A 
and B, The A step has a (0013 riser, while the 3 step has a { 111) microfacet. To find the step 
energy of a particular straight step, we must compute f (~$2~0) of a sequence of vi&al sutiaces 
which have these steps at various separations. A prescription for choosing the Miller indices of the 
vicinal surfaces in this sequence is readily available [l&19]. Eq. (13) creates the expectation that 
a plot of h~{~, 0) versus tan # should be a straight line. Accordingly, from a Iinear fit we obtain 
the step energy per unit step length /S from the slope. 

With EAM, pa~~~~arly as implemented with the Dynamo driver, there is an easier alternative 
ap~~~a~h for obtaini~ step energies: with grooved surfaces [ 151~ there is no need for linear 
fitting. ~pe~~~~a~~y, it is simple to match the projected areas of the grooved surface and the 
corresponding flat surface; then the difference of the ~Q~u~ energies of these two s&aces does 
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not depend on the terrace energy f (0,O). Calculation of such grooved configurations with ECT, 
however, would pose formidable difficulties. There are a large number of inequivalent sites, each of 
which would need to be relaxed independently. No “semiautomatic” way to carry out this process 
is currently available. Moreover, the need to solve several transcendental equations (i.e. perform 
several simultaneous relaxations) in ECT would impede the development of a software package 
which could straightforwardly relax any subset of the individual atoms of the system. 

Once we know the step energies, we can proceed to the kink energies, which are calculated via Eq. 
( 12). We consider three kink configurations, one corresponding to each type of step listed above. 
In each case, we must compute the surface free energies per unit area f (~$,8 # 0) of a sequence of 
vicinal surfaces which have the particular kink. (Again, the alternative of grooved notched surfaces 
[5] is much more difficult with ECT.) Plots of b[{f ($,O) - f (O,O)}h/ tan4 - /I(O) COSI~] versus 
sin8 are again expected to be a straight lines. From the slopes of a linear fit to these plots, we 
obtain the energies of the kinks in question. 

For all our calculations of f (c#I,O) corresponding to Miller indices {hkl}, only planar relaxations 
perpendicular to the surface normal, as shown in Fig. 6 of [ 8 1, were allowed. As yet there is no 
clear and unique prescription to determine the number nl, of layers which should be allowed to 
relax [20]. We chose nlr as the smallest integer greater than the ratio of the lattice constant to 
the bulk inter-planar spacing of the particular vicinal surface [21], thereby assuring that any atom 
which does not have the full bulk nn and nnn coordination could relax. Corresponding to these nl, 
relaxed layers are nl, non-bulk interplanar spacing variables. For each chosen orientation (hkl), 
we searched for the minimum of E, determined from Eqs. (l-9), using the simplex [22] algorithm 
with respect to these nlr spacings. The minimized value of E (divided by the projected area onto 
the terrace plane of the vicinal surface) gives the value off (4, t9) used for the plots. The linearity 
of the plots was quite good for all the steps and kinks we studied: the standard deviation of the 
fitted slopes was usually less than 1% of the value of the slope; the fits for E were comparably good 
to those for 8. All values of ECT input parameters were taken from Ref. [ 151, and our calculation 
of surface free energies was similar to theirs. However, there is a difference between Refs. [8] 
and [ 15 ] in calculating Rec,i : In Ref. [8] an ad hoc screening factor is used for atoms which lie 
below the top layer of the surface and which lack bulk nn coordination. We followed Ref. [ 151 in 
excluding this ad hoc screening. 

Before presenting our results, we note that (as implied by the preceding remark) the ECT method 
is still being relined [20]: the optimal choice of parameters has not been entirely resolved, an explicit 
treatment of screening appeared and disappeared, and the range of applications has been relatively 
limited, so that there is not extensive lore about possible problems. In other words, the method 
cannot, at least yet, be applied in the rather routine, semiautomatic way in which EAM can. Our 
ECT results should not be taken as definitive but rather as an indication of current capabilities. 

4. Results and discussion 

The ECT surface free energies per area listed in Table 1 agree with those in Ref. [ 151 to within 
a fraction of a percent. (The differences are presumably due to different techniques for solving 
the non-linear Eqs. (5), (7), (8) and (9) and minimizing the energy E in Eq. ( 1). ) The results 
of our calculations for step and kink energies are listed in Table 1. Most of the EAM values are 
taken from Ref. [ 51. (See also Ref. [4] .) The most striking difference between the EAM and ECT 
calculations is that all EAM energies are much lower than their corresponding values from ECT. It 
has been shown in Ref. [8] that the ECT surface energies are closer to first principles calculations 
than those from EAM. ECT surface energies also are evidently closer to experimental values [lo], 



Summary of results of our ECT step and kink energy calculations 

Surface type Surface energy in meVIA 
Ag 
ECT EAM 

Pt 
ECT RAM 

(001) 98.6 43.8 147.8 103.1 
(111) 76.0 38.5 107.0 9a.o 

Step type Step energy p in meV/A 
Ag 
ECT (Awning) EAM 

Pt 
EGT (Awning) EAM 

~OOl~/~~~l~ 170 (158) 65 283 (261 i I24 
(llT)f(lll) 161 (127) 66 274 (171) 123 
(Ill)/(OOl) 56 (48) 36 90 (52) 

(111)/t110~ --II -2* -37 -g* 
(100)/(110) 59 100 

Kink type Kink energy Ed in meV 
Ag 
ECT (Awning) EAM 

Pt 
ECT (Awning) EAM 

(001)/(111) 213 (219) 102 384 (366) 161 
(11T)~(111) 255 (259) 99 431 (406) i78 
(Ill)/ 219 (163) 102 401 @sot 

The values in parentheses are tests of the so-called awning approximation IS], a simple scheme in which B and E are 
computed directly from [weighted] differences of surface energies, in this case the ECT values listed in the top panel. See 
text for discussion. The EAM results are from Ref. [S], with two exceptions: the surface energies for Pt were not quoted 
explicitly there, and the starred values for (110) are estimated from the results tabulated in Ref. [25]. Those two values are 
the lattice constant times the difference of [relaxed] surface energies per area of the (2 x 1) and (1 x I ) structures (thus 
neghzting ~presumabIy-si~i~cant] step-step intem~tions). 

than those from EAM. However, there is no experimental evidence yet to suggest whether EAM or 
ECT give a better accounting of step and kink energies. 

In our EAM study [5 f , we found that the step energies could be well approximated by the 
difference of the surface free energy of the riser microfacet (times the length of the riser) and 
of the terrace plane (times the length, normal to the step, that is “shaded” by the riser). The 
feasibility of this so-called awning approximation implies that in EAM the “crease” of the step 
makes an insignificant contribution to the step energy. In some sense this is a corollary of the 
finding that EAM energies can be described well by a nearest-neighbor bond approximation [ 351. 
In the Table the values in parentheses are from an awning approximation but using our ECT surface 
free energies. The awning approximation does not work so well here, although for Ag it may still 
offer a reasonable way to get a quick estimate of energies; the implication is that multisite terms 
ultimately play a larger role in ECT than in EAM. To further explore this theme, we display in 
Fig. 1 a Wulff plot of surface free energy (tension) versus orientation along a principal azimuth 
for which all steps are straight. The plot shows our ECT calculations for Pt and Ag and reproduces 
the previous trace of EAM values for Ag. The solid curves are arcs of circles which pass through 
the origin and the surface tensions of the [%I1 ] and [ 1111 orientations. In a nearest-neighbor bond 
approximation, all free energies would lie on these arcs. We see that for Ag the points do lie rather 



Pig. 1. Segment of the zero-temperature Wulff plot (surface energy versus orientation1 along the azimuth connecting the 
( 100) and ( 111) facets. The values for Pt (A) and for Ag ( q ) were computed using ECT as described in the text. For 
comparison the values for Ag (0) computed earlier with EAM [5] are included. The solid curves for each set are arcs of 
circles passing through the origin and through the surface energies of the two facets. If only nearest-neighbor interactions 
determine the surface tensions, all the points would he on such arcs [24]. 

close to the arc while for Pt they do not. An implication is that one should be more cautious in 
accept~~g results from simple bo~d~o~~ting schemes for Pt surfaces. 

As in EAM [ 5,251, the energy of the close-packed step on { 110) is negative for both Ag 
and Pt. Thus, both methods suggest, erroneously, that Ag has an instability toward missing-row 
reconstruction such as occurs for Au{ 110) (and Pt{ 110)). 

Regarding relative energies, the step on (001) has a much smaller energy than either of those on 
{ 111); the ratio is notably larger than for EAM. The relative size of the two steps on { 11 I} can be 
assessed in light of Michely and Comsa’s [26] elegant STM experiments, from which they deduced 
that the ratio of the energy of the B step to that of the A step on Pt(l1 I) to be 0.87f0.02 at 700 K. 
With the ECT values shown in the Table 1 (which are values at OK) this ratio is 274/283 = 0.968, 
closer than the EAM value of 0.99 1 as found in Ref. [5 J. As with EAM, including the leading 
thermal correction f5] (which lowers the step free energy due to step wandering) decreases the 
difference between A and B, steps, m&kg the ratio closer to unity. A common justi~~ti~n of 
semiempi~~ calculations is that they produce the correct trends, even if the overall ma~itude is 
somewhat inaccurate. Note, however, that for Ag{ 111) ECT and EAM give opposite predictions of 
the relative energy of A and B steps, and hence their kinks. 

There is very little experimental data for kink energies. Poensgen et al. [27] reported a value of 
76 meV at 300 K on the Ag(OO1 )/ ( 111) step. This value is somewhat less than values around 100 
meV that are found [ 5,131 using EAM; the ECT value, however, is over twice as large as the EAM 
numbers~ Liu and Adams [ 133 point out that the experiment is at room temperature and so the 
theory value, approp~ate for T = 0, should be reduced by some entropic factor, which to leading 
order can be estimated from the random wandering of the step ]S f . Fu~he~ore, they remark 
that the measured kink concentrations ]27 J may not necessarily be the equilib~um ~on~ent~tions 
at room temperature but may rather reflect those of some higher temperature, locked in by rapid 
cooling. Such a quenching effect would further lower the apparent kink energy compared to its 
zero-temperature value. 
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We have demonstrated that the ECT method can be applied to calculate the principal step and 
kink energies of the fee metals, here Ag and Pt. As with other semiempirical schemes, there are 
problems in calculating close-packed step energies on the fee { 1 lo} surface. The ECT values are 
substantially larger than EAM values; for surface energies, these ECT values are in better agreement 
with theory and experiment, but for steps and kinks there is insufficient evidence to judge. There is 
better agreement with the experimental value for the ratio of the energies of the two types of steps 
on Pt{ 1 I I}. In the case of Ag, ECT and EAM give opposite predictions about the relative energies 
of these two kinds of close-packed steps and of the associated kinks. 
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