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The effect of inhomogeneous couplings on the scaling behavior in critical phenomena is considered us-
ing renormalization group analysis, Monte Carlo simulations, and other numerical tests. Novel scaling
relationships result from nonuniform perturbations of a uniform fixed point at criticality. An effective
dimension entering scaling equalities is elucidated. Nonuniversal behavior is found in fully connected
systems with exchange couplings arrayed in a hierarchical manner.

PACS numbers: 64.60.Ak

In recent years, new forms of scaling, richer than those
occurring in standard critical phenomena, have been pro-
posed to explain many physical problems ranging from
growth processes to turbulence [1]. A basic issue is to
identify which dimensions or other properties associated
with fractal, multifractal, or inhomogeneous structures
influence or determine the basic scaling laws of critical
phenomena. In this Letter we address this question in
two different contexts and find new results for the scaling
properties of critical phenomena when multifractal
features are incorporated in the models. First, we consid-
er inhomogeneous perturbations about a uniform critical
fixed point and deduce the effective dimensionality that
enters scaling relationships. Second, we consider fully
connected structures with inhomogeneous exchange cou-
plings arranged in a hierarchical manner and argue that
nonuniversal critical behavior, with unusual corrections to
scaling, should be obtained.

Our study was stimulated, in part, by the critical be-
havior of superfluid He in porous media [2,3]. In the ex-
periments, the critical exponents were found to be sensi-
tive to the structure of the host medium. While bulk

|

values were seen for He in Vycor, gels possessing long
range correlated structure [4] yielded variable exponents.
It is not clear whether these results are consequences of
the geometry alone or of the correlated energetics of the
adsorption potential resulting from the morphology.

Let us consider d-dimensional Ising models with inho-
mogeneous coupling constant arrangements as sketched
in Figs. 1(b)-1(c). An iterative scheme underlies the
construction [Fig. 1(a)]l. We first consider these struc-
tures to define small perturbations of an otherwise uni-
form critical Hamiltonian. For simplicity we imagine an
Ising model on a hypercubic lattice with the reduced
Hamiltonian,

—BH(S) =(2;>(KC+SK,,(,-J))S,-S< , (1)
ij

where S; = * 1, the sum is over nearest neighbor (n.n.)
pairs of sites, and n(i,j) is the order of the bond {ij). If
we choose 6K,,=6KoR™, with 0<R=<1, m=0,l,
2, ..., and 8Ky close to zero, the perturbation in Eq. (1)
acquires a multifractal character [1]. Indeed, if we con-
sider, for example, a d-dimensional structure of Nth or-
der in a lattice of linear size L =2", we get

N N
MN(q)EZ;[6Kn(i,j)]q=d6Kg > m](zd—1)”‘"*R'"‘1=d51<g(2d—1+Rq)"’sd51<82”"") )
{ij m=0
with 7(g) =log, (2¢—1+R9). Thus, the gth moment
My scales with an exponent 7(g) typical of a multiscal- I ) . _
ing distribution. The perturbation in Eq. (1) is a sum l,.... These recursions have the 7; =1, uniform 7 =0

over this lattice of the usual local energy density operator,
modulated by a position-dependent source factor with
multifractal properties. We want to determine the scal-
ing dimensions of this operator and see whether it is con-
nected to any of the exponents characterizing the mul-
tifractal distribution. This goal can be addressed by re-
normalization group (RG) methods and achieved exactly
for d=1. By putting ¢, =tanh(K_.+6K,), a standard de-
cimation with rescaling b =2 yields: t,=t,t,+, n=0,
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fixed point; linearization of the RG transformation
around it leads to the following simple eigenvalue prob-
lem:

b —1)8t,=6ty+1, n=0,1,..., 3)

determining the acceptable (lim,_. »8t, =0) eigenpertur-
bations and their dimensions y. The relevant eigenvectors
correspond to 0 <y < 1 and have 81, =(b” —1)"8ty. The
eigenperturbation satisfying Eq. (3), in terms of ¢ (the
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FIG. 1. Inhomogeneous coupling structures in d =1 (b) and
d =2 (c), obtained using the recursive algorithms in (a). n-
tuple bonds correspond to couplings, or perturbations, of
(n—1)th order.

appropriate parameter in d=1), has exactly the mul-
tifractal structure postulated in Eq. (1), with R =4”—1.
In particular, y=t(1). Thus, in d =1, our multifractal
energylike perturbations have a continuous range of asso-
ciated relevant dimensions. For d > 1 an exact evalua-
tion of these dimensions is not possible. We therefore ap-
ply to the problem an approximate Migdal-Kadanoff
(MK) RG scheme [5].

We consider explicitly the d =2 case. With the bond
moving sketched in Fig. 2, we find (with 6=2)

+¢ 2t
= |2tk "1, n=01,.... @
1+thtn+1 141,
By linearizing around the uniform fixed point, we get
Yu Yu
5ty = b4 St 1+ 251, =b61, (s)

where y, indicates the thermal exponent associated with
uniform perturbations and the last equality again speci-
fies the eigenvalue problem determining y. Acceptable
relevant perturbations are multifractal also in this case
with 8t, =(4b” % —3)"6ty and 0.325... <y <y,. This
means that if we choose a perturbation with 6K, o R"5K
and R =4b” 7" — 3, the corresponding exponent will be .
Moreover, using the expression for 7 we get 7(1)
=logy (46> ") =2+yp —y,. In general d this becomes
the scaling relation

y—t()=y,—d. 6)

According to Eq. (2), 7 (1) can be interpreted as a fractal
dimension associated with the perturbation. In Eq. (6)
the relation between y and y, depends only on the dimen-
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FIG. 2. Migdal-Hadanoff bond moving scheme for the d =2
structure. Decimation leads to an RG transformation with
b=2.

sions of the corresponding perturbations. Another inter-
pretation of Eq. (6), substantiating the role of dimension
for (1), involves the ‘defect” free energy, i.e., the
difference Af between the free energy corresponding to
the Hamiltonian (1) and that obtained with all 8K,
equal to zero. For a finite system of linear size 5", Eq.
(6) is shown below to be consistent with this free energy,
made intensive by a normalization factor bV* for
N — oo, and scaling as

Af(K.+ 8K 16K,}) =1 " DAf (K. + 178K, {IP5K,3)  (7)

near the bulk fixed point. For nonfractal defects [6],
scaling relations like (6) hold with 7 (1) replaced by the
geometrical dimension of the defect (e.g., 1 for a line de-
fect). Let us indicate by @ the dimension of the energy
density operator; at criticality the two-point energy-
density correlation function behaves like r ~2? at large
distance r. Since y, is the dimension of the conjugate pa-
rameter 6K [Eq. (7)], the static relation between fluctua-
tions and correlations implies w =d —y,. We now dif-
ferentiate Af twice with respect to §Ko. Since 8K is the
parameter conjugate to the multifractal part of the Ham-
iltonian (1), we expect that, for a system of linear size bN
at K=K, and 6Ko=0:

°Af 1

9(8K)? ~ pNeD in
ki)

X ((SiSjSkS/> — <S,-Sj><SkS1>) s
8)

Rn(i,j)+n(k,l)

where the correlation function in brackets decays like
r ~2@_if ris the distance between (ij) and (k/). On the
other hand, standard scaling considerations applied to the
finite size version of Eq. (7) imply that the quantity in
Eq. (7) should scale like 5V =7 Since w=d —y,,
Eq. (6) entails 2y —7(1)=—20+17(1). Thus the
second derivative in Eq. (8) should scale as pVlr(1) 201
Such behavior implies a simple, but nontrivial, way in
which the energy correlation in Eq. (8) couples to the
correlations implicit in the multifractal structure [7]. We
have tested the scaling behavior of the quantity in Eq. (8)
numerically on Euclidean lattices for arbitrary values of
o and R and have obtained clear evidence that our as-
sumption, and thus Eq. (6), are satisfied generally.

The above results can be generalized in various ways.
One can, of course, consider either systems different from
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FIG. 3. (a) Ultrametric structure in d =1. Crosses indicate
surviving spins under a b =2 decimation. (b) Ultrametric
structure in d =2. (c) Self-dual, anisotropic, hierarchical pat-
tern used in Monte Carlo simulations. Ultrametric structures
may be constructed by superposing lattices of periodicity
a,2a,4a,16a,... with bonds of order 0,1,2,3, ..., respectively,
with the higher order bonds superceding the lower order ones.

the Ising model or multifractal perturbations of magnetic
rather than thermal character and conjecture the validity
of a scaling relation like (6). We have checked numeri-
cally that Eq. (6) holds when the perturbation in Eq. (1)
has a quenched random character. In the construction of
the multifractal structure [Fig. 1(c)], the upgrading of
bond orders is not regularly applied to the right upper
quarter of the structure but instead to a quarter chosen at
random. Such a scheme gives rise to a random structure
having the same 7’s as the deterministic one. A numeri-
cal study of the behavior of the quenched average of Eq.
(8) confirms that the scaling law (6) holds.

We now turn to a case of hierarchical inhomogeneities,
sketched in Figs. 3(a)-3(c). Hierarchical, ultrametric
structures of this kind have often been introduced in con-
nection with dynamical problems inspired by spin glass
physics [8,9]. They can be considered as trivial limiting
cases in the multifractal family; in the example of Fig. 3,
7(g)=1(0) =2, the dimension of the lattice, independent
of the coupling’s reduction ratio, R, for R <2. Such a
feature suggests the absence of a band of subdominant
relevant perturbations, according to Eq. (6).

In d=1, a =2, decimation of the structure can be
performed as indicated in Figs. 3(a), leading to 1y =141,
th=tn+1, n=1. One finds a structure §t, =b" (b’ —2)
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FIG. 4. Eigenvalue spectrum for the multifractal (a) and
hierarchical (b) distributions of coupling strengths. The shaded
regions denote a continuum of subdominant eigenvalues. A, is
the eigenvalue of the uniform system. ¢* is the fixed point pa-
rameter for the uniform system. In (a), 0 <§ < 1, with ¢* be-
ing between 0 and 1. In (b) 0 < 1§ <:t*.

X629 for an eigenperturbation with exponent y. This
lf:aves the choice y =y, =1, with periodic eigenperturba-
tion (80,0,0,...) as the only possibility. For the d =2

example of Fig. 3(b) a MK decimation with » =2 leads
to

totin+1
1+1oth+1

L

n

9

Linearization around the uniform critical fixed point
yields 61, =[27"Y 7 — (1 = 27" ™)) /(1 — 26" 7)]
X 8tg. This again leaves y =y, and the fully uniform per-
turbation 6t,=6tp as the only acceptable solution. We
have verified that this behavior, consistent with Eq. (6), is
indeed implied by the scaling of the corresponding quan-
tity in Eq. (8).

So far, we have discussed infinitesimal nonuniform per-
turbations away from a uniform system at criticality. We
now consider the situation where the intrinsic couplings
are inhomogeneous. Within the MK scheme the drastic
difference found between multifractal and hierarchical
perturbations in the linear regime remains when we inves-
tigate the fixed point structure of recursions like (4) or
(9) in an infinite dimensional parameter space.

Consider first the multifractal interaction pattern of
Fig. 1(b), with the recursion relation given by Eq. (4).
The fixed point is characterized by a set of nonuniform
coupling constants determined uniquely by 7§ =tanhK{.
This set of fixed point parameters {#} has the property
that lim, . « ¢t =t* for all ¢§. ¢* is the fixed point pa-
rameter of the uniform system; at long length scales the
lattice becomes trivially uniform. Perturbations about
the fixed point can be studied numerically and result in a
continuous spectrum of eigenvalues— the dominant eigen-
value, Amax =1.917...., being that of the uniform system
[Fig. 4(a)]l. Generally, multifractal interaction patterns
lead to the generation of a continuous, gapless spectrum
of eigenvalues, while preserving the universality of the
dominant eigenvalue. This spectrum of subdominant
relevant eigenvalues may lead to unusual corrections to
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scaling.

A new feature is found, however, for the case of hier-
archical interactions, Fig. 3(b). The recursion relation,
Eq. (9), again has a nonuniform fixed point structure of
{t}}. Here, in the asymptotic limit, the corresponding
distribution of K} increases linearly with » and meaning-
ful solutions exist only for 0 <t§ <t¢*. The eigenvalue
spectrum obtained by linearizing about these new uni-
form fixed points is shown in Fig. 4(b). The dominant ei-
genvalue no longer retains the value of the uniform sys-
tem but shows nonuniversal behavior dependent on ¢§.
Furthermore, as 1§ — 0, Amax crosses over from the uni-
form 2D value to that obtained within the MK approxi-
mation for a 1D system. (The MK scheme in d=1+¢
yields a discontinuity in the limit e— 0.) This behavior
can be understood in terms of the long-length-scale na-
ture of the fixed point distribution: As t§— 0, K, in-
creases with n and never recovers the uniform system lim-
it. In addition, the corresponding eigenvectors are no
longer simply related to the distribution {K}}. Thus, any
perturbation, even a uniform change in K,, is controlled
by Amax and exhibits nonuniversal behavior. Similar re-
sults were obtained in 3D for the hierarchical interaction
pattern: Amax now crosses over from its 3D value in the
uniform limit to the 1D value as t§ — 0. As in the mul-
tifractal case, a continuum of subdominant, relevant ei-
genvalues is found [Fig. 4(b)]. The Widom scaling rela-
tion, for the vanishing of the surface tension at criticality,
u=(d—1)v, is found to hold with the Euclidean d value
independent of the value of t§. The same holds in the
multifractal case, as well.

Is this nonuniversality an artifact of the MK approxi-
mation? We have carried out Monte Carlo (MC) simu-
lations in an attempt to answer this question. We con-
sidered finite Ising systems in d =2 with the anisotropic
self-dual interaction pattern in Fig. 3(c). The horizontal
bonds in the ith row have strength K/, while the vertical
bonds between rows i and i +1 have strength K, = — ¥
xIn(tanhK!). By construction this 2Vx2" lattice is
self-dual, eliminating the need to search for a critical
point. For this system we computed the specific heat and
the susceptibility to obtain, from a finite-size scaling
analysis, a/v and y/v—2= —n, respectively. We chose
couplings from a two-parameter family of the form
K,=Ko+nA. We used N =3 to 8; the 256 X256 lattice
was the largest for which we could obtain adequate statis-
tics, even using a standard acceleration algorithm [10].
This sort of problem poses a major challenge to MC
simulation because of the broad range of characteristic
energies. Specifically for K¢=0.1, A=0.4 we found
a/v=0.08+0.02 and n=0.45=*0.03, whereas for Ky
=0.2 and A=0.3, a/v=0.11£0.01 and n=0.62 £ 0.02.

In summary, we have investigated the effect of hetero-

geneous couplings on the critical behavior of an Ising spin
system. In the perturbative limit (around a uniform sys-
tem at criticality), the coupling of multifractal correla-
tions with those of a critical spin system leads to an en-
largement of the standard algebra via a continuum of
new relevant operators [11]. An RG analysis combined
with MC simulations is suggestive of nonuniversal critical
behavior of spin systems with a hierarchical distribution
of exchange couplings. It is an intriguing possibility that
a similar mechanism may be the cause of nonuniversality
in the experiments of Ref. [2] and [3].
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