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Many recent attempts to understand step structure have been based on the assumption of thermal equilibrium. In order to aid 

such analyses, we present calculations of the order of magnitudes of equilibration times for step structure. In particular, we discuss 

the equilibration of the distribution of terrace widths when step motion occurs through the exchange of atoms with a reservoir of 

adatoms on the terraces. By solving the appropriate continuum Langevin equation we give simple expressions for the time 

dependence of the terrace width distribution in terms of attachment/detachment rates at the step edge. We show that 

equilibration times should scale as the fourth power of the equilibrium width of the distribution (which can usually be expected to 

be proportional to the average terrace width). We verify this prediction for a discrete model of step dynamics with a Monte Carlo 

simulation. When equilibration occurs only through diffusion along the step edge, the equilibration times are much longer: they 

scale as the eighth power of the equilibrium width 

1. Introduction 

Since the structure of steps on surfaces influ- 
ences many surface processes, it is important to 
understand the microscopic mechanisms respon- 
sible for step configurations. Recently there have 
been a few attempts to interpret step structure in 
terms of equilibrium statistical mechanical models 
[l-4]. One of the most difficult aspects of this 
type of interpretation is the question of whether, 
or at what temperature, thermal equilibrium has 
been achieved. 

Single-crystal surfaces, in their processing, al- 
most certainly pass through stages which take 
their step structure out of equilibrium. We have 
in mind, in particular, the intensely studied sur- 
faces of Si which are often cleaned by heating to 
temperatures where considerable sublimation, 
and thus step motion, occurs. The kinetics of step 
motion can create step configurations which are 
very far from equilibrium [5] - in principle even 
changing the average height of steps [6]. Whether 
surface diffusion at any particular temperature is 
large enough to bring such non-equilibrium con- 
figurations into equilibrium is a very difficult is- 

sue on which to make general pronouncements. 
For example, even the diffusion of single atoms 
on terraces is not generally well characterized. 
Evaluating equilibration is a particularly severe 
problem in interpreting measurements in which 
one cannot monitor the temperature evolution, 
such as room-temperature STM [1,2,7]. 

To address this problem, we consider several 
simple models of the time dependence of one 
particular feature of stepped surfaces: the distri- 
bution of terrace widths. Since equilibrium ter- 
race width distributions are strongly influenced 
by the interactions between steps [8,9], their mea- 
surement has proven to be a useful tool in check- 
ing theories of step-step interactions [1,3,4,7]. 
Terrace width distributions have also been used 
as a tool for characterizing surfaces grown by 
molecular beam epitaxy [lo]. There are, naturally, 
many ways in which terrace width distributions 
can be out of equilibrium. Rather than try to 
anticipate all the various ways, here we consider 
the simple possibility of initially straight and 
equidistant steps, and inquire about the times 
required for the thermally induced meandering of 
the steps to equilibrate the terrace width distribu- 
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Fig. 1. The coordinate system and step geometry used in this 
paper. In section 2 we consider a step confined by a quadratic 
potential V(x); in section 3 we also consider a step con- 

strained between two parallel walls (the Gruber-Mullins 
model). 

tions. This scenario is not as academic as it might 
appear: sublimation or growth effects can create 
terrace width distributions narrower than equilib- 
rium [6]. Extensions to other situations are not 
difficult. 

Equilibrium terrace width distributions are de- 
termined by a balance between the entropy gained 
by step wandering and the (energetic) repulsions 
between neighboring steps. Constraining a step to 
a narrow region (see fig. 1) costs entropy. To 
estimate the magnitude of this loss - the motiva- 
tion for subsequent broadening to the equilib- 
rium width - we recall the arguments of Fisher 

and Fisher [ll] for the case in which a step is 
freely wandering between two adjacent steps, with 
only the constraint that steps cannot cross. In this 
picture, each step-step collision decreases the 
number of the configurations available per step 
by a factor of two: thus each step-step collision 
costs entropy on the order of kaln2. The number 
of collisions can be estimated from the fact that a 
step will wander on the order of a terrace width I 
in a distance y =+‘/b’, where b2 is the mean 
square size of each kink, and a,, is the distance 
between possible kink sites. Thus the free energy 
increase per lattice constant along the step is 
approximately k,Tb’(ln 2)/~,,1~. (More rigorous 
calculations are readily available which substanti- 
ate this estimate [ll].) Taking the relatively large 
value of b = 1.4~ I (as observed experimentally 
for single-layer height steps on vicinal Si(100) [2]), 
would imply a free energy increase of only ap- 
proximately k,T/lOO per step-edge site for re- 
stricting the terraces to have widths within 10 
lattice constants of each other (the width ob- 
served for Si(100) misoriented by 1” towards the 
[llO] direction). Whether such a small free energy 
decrease is sufficient motivation for the wander- 
ing of a step to equilibrate in a reasonable length 
of time is a serious question, especially consider- 
ing the large amount of mass transport required 
for step movement. It is the question which is 
addressed in this paper. 

The form of the terrace width distributions 
depends on the magnitude of the energetic inter- 
actions between steps. As in previous work on 
equilibrium distributions [S], we will model the 
constraining influence of these interactions with a 
quadratic potential. For interactions which fall 
off like the inverse square of the separation be- 
tween steps (as one usually expects [12]), the 
width of the distributions is proportional to the 
average terrace width, as it is for the case when 
there are no energetic interactions. As we will 
discuss, the equilibration times increase markedly 
with increasing average terrace width. 

To model the kinetics of the step wandering, 
we initially follow the spirit of the classic 
Burton-Cabrera-Frank model [13] of step mo- 
tion in crystal growth. We suppose that on the 
terraces separating the steps there is a supply of 
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adatoms which are in equilibrium with the step 
(kink) sites. We use two calculational approaches 
on this model. In the first, we solve the appropri- 
ate continuum Langevin equation governing equi- 
libration, which allows us to write down analytic 
equations for the time dependence of the step 
structure. In the second, we perform a simple 
Monte Carlo calculation on a discrete lattice to 
determine the regime of validity of the continuum 
approach and to show explicitly how the parame- 
ters of the continuum approach are related to 
atomic motion. 

An obvious alternative model, considered 
briefly at the end of this paper, is that steps 
wander only by exchanging atoms along their 
length: this, as we discuss, naturally leads to a 
much slower asymptotic equilibration. 

2. Langevin dynamics 

In the Langevin formalism, each degree of 
freedom of the step is assumed to diffuse towards 
lower energy with a speed proportional to the 
gradient in the energy, subject to thermal fluctua- 
tions. We assume that x can be described as a 
continuous function of y and try to describe 
positions of the step edge separated by more than 
a few lattice constants. The step dynamics are 
then governed by 

(1) 

The noise term n allows for thermal fluctuations. 
As we discuss shortly, the “friction” coefficient 
r, depends on the size and nature of 77. The 
appropriateness of this equation relies on the 
assumption that at least small segments of the 
step edge are in equilibrium - e.g., the kink 
density is close to the equilibrium value. This 
assumption is a reasonable one to make if we are 
interested in the evolution of the terrace width 
distribution - it is likely that quantities such as 
the kink density would equilibrate much sooner 
than the terrace width distribution, for example. 
We suppose that the noise is uncorrelated and 

characterize its strength by a time T,: 

(rl( Y, f)77( Y’, t’)> = 2--- S(t-t’>S(y -Y’>, 
70 

(2) 

where a I and a ,, are lattice constants perpendic- 
ular and parallel to the step edge. We expect that 
T, will be, at least roughly, the time between 
adatom attachments/ detachments at the step 
edge (an expectation verified in the following 
section). One can show [14,15] that for eqs. (1) 
and (2) to describe an approach to equilibrium, 
we must have 

r, =a”,a,,/T,. (3) 

In the coarse-grained picture of eq. (l), the effec- 
tive Hamiltonian can be approximated by 

H=/[;ii( ;)‘+ V(x)] dy, (4) 

where f is the “step-edge stiffness” [16], and 
V(X) is the (average) potential field (per unit 
length) which the step experiences due to other 
steps. The step-edge stiffness is related to the 
mean square kink size b2 described in the intro- 
duction through [8,17] 

k&,, 
r = bz(T) ’ (5) 

Thus, in high-symmetry directions 7 usually di- 
verges as T approaches zero. For concreteness in 
what follows, we will assume that the step is 
confined close to x = 0 by a potential of the form 
V(x) = cx2 (see fig. 1). This model can very accu- 
rately describe terrace width distributions for 
many interacting steps [8,9]. With eq. (4) and this 
choice of potential, eq. (1) can be written as 
[W91 

2cr,x 
-~+?(Y,t). (6) 

B 

This type of equation [2] has been the subject of 
much investigation: because it is linear in X, 
expectation values can be easily found by Fourier 
transformation [21,23]. In thermal equilibrium (at 
large times), it can be easily shown [Sl that the 
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probability of a step to be at position x is just 

P(x) = &exp( -x2/2d), 
m 

where the equilibrium width w, is 

2_ k,T 

““-$7’ 

We are interested in the time dependence of the 
root-mean-square width of the terrace width dis- 
tribution, w(t). In order to estimate the equilibra- 
tion times, we suppose the step is initially straight, 
and compute the time evolution of the width w of 
the terrace width distribution. From eq. (6), we 
find 

w2(t) = (x2(t)> =w, erf 

l\i-l 

F , 
-I 

(9) 

where the time req, 

v 4w,q 
7 =-=- 
eq 2cr, k BTra ’ (10) 

is a measure of the equilibration time: when 
t = req, w has reached 98% of its final value. 
Expansion of the error function at small t, where 
the constraining potential is not yet felt, gives 

w(t) = (11) 

Eqs. (9) and (10) show that the time depen- 
dence of the terrace width distribution scales as 
the fourth power of w, (which is usually propor- 
tional to the average distance between steps [SD. 
As an example of the quantitative use of these 
equations, we consider the case of SXlll): Al- 
fonso et al. [4] have measured terrace width dis- 
tributions at 900°C using reflection electron mi- 
croscopy. From measurement of the mean square 
meanderings of isolated step edges, they deter- 
mined T to be approximately 1.1 x lop5 erg cm-i. 
For the observed value of w(t) of 200 A (when 
the average terrace width is 600 A> to represent 
90% of the equilibrium value after, say, an hour 
of equilibration, eq. (9) would require that 7, 
should be on the order of lop3 s (assuming 
single-atom step attachment-detachment). If such 

rapid attachment was actually occurring, then 
small-scale temporal fluctuations in step edge 
position should be readily observable (for an ex- 
ample, see ref. [24]). An estimate of these fluctu- 
ations can be found by noting that the equilibrium 
fluctuations of eq. (6) are governed by an expres- 
sion similar to eq. (9): 

(X2(t)> - (x(t)x( t’)> = wz erf 
2lt-t’l 

id 1. Tes 

(12) 

Using the parameters obtained for Si(ll1) by 
Alfonso et al. in this equation, one finds that 
equilibration times of one hour are associateg 
with equilibrium fluctuations of the order of 20 A 
every second in the position of the step edge at 
any particular y. These fluctuations, should, in 
principle, be observable. 

Next, we discuss the relationship between the 
rate of change of the amount of step meandering 
contained in eq. (9), and changes in the average 
position of the step. It is easy to show from eq. 
(6), that if a step initially has a mean position x,, 
away from the equilibrium position at x = 0, then 
the mean position will approach equilibrium as 

(x> =x0 exp(-t/r,,), (13) 

with req given by eq. (10). Relaxations to equilib- 
rium of the form of eq. (13) have been observed 
experimentally on vicinal Si(OO1) surfaces after 
the removal of an externally applied strain [7,25]. 
(We mention in passing that eq. (13) has also 
been derived in ref. [7] with, however, a different 
expression for req - in our model T,~ does not 
depend explicitly upon q - i.e., kink energies 
[26].) Significantly, req governs both the equilibra- 
tion of the average step edge position and the 
terrace width distribution. Thus, given the experi- 
mental observations of Webb [7] of the equilibra- 
tion of the average step position on Si(OOl), one 
can be very optimistic that the reported terrace 
width distributions are also in equilibrium (de- 
spite the small driving forces discussed in section 
l!). The value of 40 s for 7eq reported for terraces 
on Si(OO1) separated by 260 A at 550°C corre- 
sponds to a value of T, of 3 x 10m4 s, taking a I 
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Fig. 2. The time dependence of w, the root-mean-square 

width of the terrace width distribution, from a Monte Carlo 

simulation of an isolated step which is initially straight. At 

long times, w approaches the equilibrium value w, deter- 

mined by the strength of the constraining potential. The 

dashed line shows the prediction of eq. (9): the dotted line 

shows the early time behavior of eq. (11). The temperature is 

equal to the kink energy ck D. 

and a ,, to be the observed kink dimensions of 7.7 
A. 

3. Monte Carlo dynamics 

The Langevin approach of the preceding sec- 
tion is phenomenological. Although very plausi- 
ble, there is generally no way of deriving eq. (1) 
directly from a microscopic model of the kinetics. 
To check how the features of the Langevin pre- 
diction of eq. (9) are realized in an atomic model 
of step motion, we have have used standard 
Monte Carlo techniques [27] to study the equili- 
bration kinetics of a step composed of kinks of 
length na I costing energy no. Fig. 2 shows the 
time dependence of the width w of the terrace 
width distribution for k,T = E and weakly inter- 
acting steps with c = O.O02k,T/a:a,,. In the sim- 
ulation, periodic boundary conditions were used 
in the y direction: 1, was taken to be 200~~~. 
Points along the step were randomly chosen: the 
Monte Carlo unit of time is defined as I, such 
trials. For each selected step site, we tried to add 
or subtract an atom according to the standard 
Metropolis Monte Carlo algorithm. In calculating 

fig. 2, 1000 runs were averaged. To check if 
the behavior of fig. 2 is consistent with eq. (9) 
we need to know r,: we thus kept track of 
the frequency of changes in the kink structure. 
At this temperature, the probability that any par- 
ticular site is changed during a single Monte 
Carlo step was 0.267 [28]: we thus make the 
identification 7, = l/O.267 = 3.7, where time is 
measured in units of Monte Carlo steps per 
site. For the simulated model, b’(T) = UC/ 
(2 sinh*(E/2k,T)), so that b*(T = E) = 1.84~: . 
Using eq. (81, this gives W, = 3.27~ I , which com- 
pared well with the observed value of W, = 
3.20~ I. The dashed line in fig. 2 shows the 
prediction of eq. (9): the agreement is good: thus 
the continuum approach of the preceding section 
provides a useful description of the kinetics of 
our (atomic scale) simulation! 

The dotted line in fig. 2 compared the short- 
time behavior predicted by eq. (11) with the simu- 
lation results. Deviations from eq. (11) quickly 
occur because of the comparatively small value of 
w,. To study the short-time regime more thor- 
oughly, we also simulated the case of non-inter- 
acting steps, i.e., c = 0: the results are shown in 

1.5 

77 a) 

Fig. 3. (a) A log-log plot of the time dependence of w for the 
case of no constraining potential. The dashed line is the curve 

w = 0 75a t’i4, the form expected from eq. (11). (b) The I 
time dependence of the energy (per kink site) of the step 

showing that the very short time transient of (a) is associated 
with the equilibration of the local kink structure. Energy is in 

units of the kink energy E, and time is in unit of Monte Carlo 

steps per site. 



N.C. Bartelt et al. / The equilibration of terrace width distributions on stepped surfaces 257 

fig. 3a. Substituting eq. (5) into eq. (10, we ex- 
pect 

w(t) 3 0.75ULf”4, (14) 

with time again measured in units of Monte Carlo 
steps per site. This prediction is compared with 
our simulation in fig. 3a: after a short time tran- 
sient, the t’14 prediction of eq. (14) described the 
data well: even the amplitude of the power law is 
in reasonable accord with the Monte Carlo calcu- 
lation. As shown by fig. 3b, the short time tran- 
sient is a measure of the equilibration of the local 
kink structure: deviations from the t’14 behavior 
only occur when the energy of the step is substan- 
tially different from its equilibrium value 1291. 
(That the energy equilibrates so rapidly suggests 
that for analyses of STM data for kink energies 
[2,30], equilibration should be of much less con- 
cern compared to terrace width distributions.) 

To show that the general features of eq. (9) 
are independent of the particular model of the 
preceding section (in particular the choice of a 
quadratic potential), we have also studied with 
Monte Carlo simulations the model introduced 
by Gruber and Mullins [31]. A single step is 
confined between two straight walls separated by 
twice the average step spacing 21, (see fig. 1). 
This model again neglects the possible complexity 
of step collisions, but still accurately described 

Fig. 4. Monte Carlo results (points connected by dashed lines) 
for the time evolution terrace width distribution P(x) for the 
Giber-~ullins model with 1, equal to 13 lattice constants. 

The solid line shows the equilibrium distribution of eq. (15). 

t (21,)-h 
Fig. 5. Plot of the time dependence of the width of terrace 
width distributions for various L, scaled according to eq. (16), 

with A = 3.6. 

the terrace width distributions for non-interacting 
steps. Compared with the quadratic constraining 
potential, this model is more appropriate for steps 
without energetic interactions (it differs from the 
c = 0 case of the preceding paragraph because of 
the possibility of collisions of the steps with the 
walls). When 1, is large compared to b, the 
probability that the step is found a distance x 
from the midpoint between the walls is just 

P(X) = ;cosz F . 
( i 

(15) 
x x 

From eq. (9) we expect the width of the terrace 
width distribution to have the scaling form (using 
the fact that w, cx 1, for the Gruber-Mullins 
model): 

w(t) = 1,G( t/l;). (16) 
where the scaling function G(u) will be different 
from that given in eq. (9), because of the differ- 
ences of eq. (15) from eq. (7). To check the 
validity of this equation, we examined the time 
dependence of w for 21, = 7,9,11,13 and 15~2 I. 
Fig. 4 shows the evolution of the terrace width 
distribution for 21, = 13. Fig. 5 shows the plot 
scaled according to eq. (16): the best fit A is 
_ 3.6, close to the value of 4 anticipated from 
eqs. (9) and (10). Given the relatively smail I, 
values considered, 10% deviation seems a reason- 
able agreement. 
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4. The case when diffusion is restricted to the 
step edge 

If the temperature is low, one might expect the 
density of diffusing adatoms on terraces to be 
extremely low, so that step motion can occur 
most easily through atoms diffusing along the 
step edge. (Rapid diffusion along step edges has 
been observed to occur even at room tempera- 
ture on stepped Ag(ll1) [3,24].) In this situation, 
one can expect a much slower approach to equi- 
librium. When mass transport occurs only along 
the step edge, there is a constraint that the inte- 
gral over x is fixed. The analog of eq. (6) can 
then be shown to be (“Model B” of ref. [141X 

ax r,q a4x 2cr, a2x 
_=--_-- 
at k,Tay4 B 

k T ay2 +dy7 t)T (17) 

where now the noise term must be correlated 
because atoms are hopping from one site to an- 
other: 

h(Y, t)rl(y’, t’)> =2r,qt-t’)6”(Y -Y’). 

(18) 

If the step diffuses by atoms hopping one lattice 
constant per time T,,, then we identify 

a+: 
r,=-. 

7h 
(19) 

Fig. 6. A log-log plot of the time dependence of the root- 
mean-square width of the terrace width distribution from a 

Monte Carlo simulation of an isolated step evolving through 
step-edge diffusion. The dashed line shows the theory of eq. 

(22), i.e., w a t’/8. 

Eq. (17) is again linear in x and thus the expecta- 
tion values can be found by Fourier transforma- 
tion. The result is 

(20) 

with the scaling function F(u) given by 

4% 
F(U) = ;u’/4kmdu 

1 - exp( - 2u4) 
U2 + 2G . (21) 

Notice that now re. of eq. (10) does not deter- 
mine the equilibration time. At short times (be- 
fore the effect of the constraining potential is 
felt) eq. (20) becomes 

= (0.46385 . . . ) (22) 

Compared to eqs. (9) and (ll), the equilibration 
of eqs. (20) and (22) is very much slower: in 
particular the equilibration times scale as the 
eighth (!> power of the terrace width distribution. 
In terms of the vicinal SXlll) example of section 
2, eq. (20) [32] implies that equilibration to 90% 
of the terrace width distribution for w, = 200 A 
in one hour would require a value of 7h in eq. 
(19) of around lo-l3 s, which seems unphysically 
small. 

Fig. 6 shows the results of a Monte Carlo 
simulation of an initially straight step evolving 
through step-edge diffusion at k,T = E. The 
dashed line shows the t118 behavior predicted 
from eq. (221, using the hop rate from the simula- 
tion CT,, = 0.135 Monte Carlo steps) to determine 
r,. Again, aside from short transients (in which 
the local kink structure is equilibrating). Eq. (22) 
provides a good description of the observed be- 
havior. 

5. Conclusion 

The principal result of this paper is the obser- 
vation that equilibration times for terrace width 
distributions grow as fairly large powers of the 
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equilibrium width of the distribution: 4 for adatom 
attachment and 8 for step-edge diffusion. Thus, 
confirming the suspicion raised in the introduc- 
tion, the entropy of step wandering can indeed be 
a small driving force for the diffusion towards 
equilibrium of widely spaced steps. For steps on 
the order of a few hundred Angstroms apart to be 
in equilibrium at typical experimental tempera- 
tures requires on the order of 1000 adatom at- 
tachments/detachments at the step edge every 
second. 

Another point we stress is that the large fluc- 
tuations needed to equilibrate widely separated 
steps are naturally associated with large equilib- 
rium fluctuations (as, for example, comparison of 
eq. (9) with eq. (12) shows). If one is to hypothe- 
size that steps are in equilibrium, it is important 
to check that the existence of these fluctuations is 
consistent with experimental observations. 

We should point out that the above models 
have left out some physics which could in princi- 
ple be important. The foremost among these defi- 
ciencies is that we have not considered the equili- 
bration of the average position of groups of steps 
- a problem important in such problems as 
faceting and step height doubling transitions. We 
have neglected gradients in the adatom diffusion 
field near step edges. We have also implicitly 
assumed that the net number of atoms which are 
leaving the step edge is the same as those that 
attach (a consequence of the assumption of local 
equilibrium leading to eq. (3)). Finally, these 
equilibration times will probably drastically un- 
derestimate the equilibration of the logarithmetic 
divergence of the height-height correlation func- 
tion. Despite these limitations, eqs. (9) and (20) 
at least provide a guideline for estimating orders 
of magnitude of important components to equili- 
bration times in terms of attachment and hop 
rates at the step edge. (The problem of relating 
these rates to surface diffusion constants is dis- 
cussed, for example, in ref. [7].) 
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