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We discuss two types of step-height doubling transitions on vicinal surfaces. In one type,
exemplified by Ge(lll)-[lil], a phase transition can occur since the symmetry between
alternate terraces is broken at low temperatures. There is evidence in both experiment and in
Monte Carlo simulations that this transition can have Ising character. In the second type,
exemplified by Si(001)-[110}, one subset of terraces is always favored, so that no symmetry is
broken. If an actual phase transition occurs (rather than a smooth crossover), it is expected to
be first order, implying a coexistence region in a temperature-misorientation phase diagram.
Finally, the coalescence of steps into steps of height more than two atomic layers is briefly

considered.

I. INTRODUCTION

An intriguing aspect of vicinal surfaces is the coalescence
of single-layer height steps into double-height steps as the
temperature or misorientation angle is varied. Questions of
concern are whether this coalescence represents an actual
phase transition; is the transition first or second order; if
second order, what is the universality class; and what can
be learned about interactions between steps. In this short
paper, we shall discuss two distinct prototypes for step-
height doubling.

We approach the problem by labeling the terraces sep-
arated by single-layer height steps as 4 and B, alternately.
Thus, if all the single-layer height steps coalesced into dou-
bles, we would have only A4 terraces or only B terraces. If
the 4 and B terraces are identical (except for a simple
translation }—or, equivalently, the step from 4 down to B
is identical to the step from B down to 4—then above the
transition 4 and B terraces should by symmetry occur in
equal abundance; below the transition, one or the other
predominates. This picture is an example of ‘‘spontaneous
symmetry breaking.”” We have studied what we believe to
be a physical example of this symmetry breaking,
Ge(111)-[121], using low-energy electron diffraction
(LEED); additionally, we have performed Monte Carlo
simulations of related simple models.

In an alternate scenario, there is some intrinsic differ-
ence between 4 and B terraces, so that either 4 or B ter-
races are always favored, though to a much greater degree
once the double-height steps appear. In this case, no sym-
metry is broken. An example is the much-discussed case of
Si(001)-{110]. Lacking any symmetry breaking, only local
changes in properties of the surface need occur as temper-
ature or misorientation angle is changed. In this case one
expects changes in behavior as temperature or misorienta-
tion angle is varied to be either smooth (with no transition
at all) or to occur through first-order transitions.'

il. ISING-LIKE STEP-DOUBLING TRANSITIONS

First, we consider a system in which energy favors the
coalescence of two single-layer height steps into a double-
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layer height step. Barring a perversely greater kink energy
for singles than doubles, entropy will favor the breakup of
the step into two singles at sufficiently high temperature. In
the limit of an isolated double-layer height step, i.e., in the
limit of vanishing misorientation angle, a phase transition
occurs when the temperature rises to the point at which
twice the free energy per unit length of a single-height step
drops to equal the free energy per unit length of a double-
height step. This transition, depicted schematically in Fig.
1, is an example of the wetting transition explored a decade
ago in the context of steps by Chui and Weeks.? Above the
transition, the new intermediate terrace “‘wets” in the sense
that the two single-height steps are unbound.

The next question is what happens when there is a dense
collection of double-layer height steps. Figure 2 illustrates,
for the case when both the energy per unit length and the
kink energy of a single-layer height step are equal to those
of a double-layer height step, that double-layer height steps
predominate at low temperature while singles predominate
at high temperature. As described in the introduction, we
label the terraces as 4 and B, alternately. Above the tran-
sition, there should be equal areas of each, while below the
transition, the area of 4 or of B (with equal probability)
should predominate, breaking the symmetry. To determine
the universality class associated with this transition, one
should first determine the order parameter; the answer is
perhaps not immediately obvious.® In contrast to a previ-
ous study,* we focus on the areas of the terraces. We claim
that a sensible order parameter is the difference between
the area of all the A terraces and the area of all the B
terraces (normalized by the total area of all the terraces).
This is a scalar (one-dimensional) order parameter, in
which the system at every site of a two-dimensional lattice
is given an “either-or” choice (viz. 4 or B), so that in the
simplest picture, the transition, if continuous, should be in
the Ising universality class.>® (Complications, however,
are conceivable.”)

To substantiate this idea, we computed the square of
this order parameter, as a function of temperature, for the
terrace-step-kink (TSK) model of a vicinal surface. (The
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{a)

(b)

{c)

TSK model assumes that the only thermal excitation is
wandering of the step edges; defects on or below the terrace
plane are excluded. The approximation is quite adequate
well below the roughening transition of the flat surface.) In
a diffraction experiment, this squared order parameter is
proportional to the intensity of the specular beam at an
out-of-phase condition, at least in the kinematic limit.
(The critical behavior, to leading order, should not be af-
fected by multiple scattering.®) The results are depicted in
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{d)

(e)

FiG. 1. Monte Carlo simulations schematically illustrating the
Chui-Weeks® *“wetting transition™ of an isolated double-height step as
temperature increases. The calculations are in the TSK model, with kink
energy €. At T = e€/kp the double-height step is well defined. At T
= 1.3€/ky, the double-height step splits into two single-height segments
over limited intervals. By T = 1.5¢/kg the width of the intermediate
terrace has increased noticeably, and by T = 1.7¢/k, there is no contact
between the two single-height steps. In the thermodynamic limit, the
width of the intermediate terrace diverges at wetting.

Fig. 3, for several latticg sizes. As this size increases, the
transition becomes sharper, as expected for a second-order
phase transition and reminiscent of the intensity of “‘extra”
spots induced by ordered overlayers in cases of continuous
disordering. Instead of simple fits to power-law forms, ex-
perience in critical phenomena has been that a more pre-
cise estimate of critical exponents can be achieved using
finite-size scaling theory.’ This theory embodies the idea
that the only relevant length in the critical regime is the
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FI1G. 2. Nlustration of the transition occurring for a nondilute set of steps,
again in the TSK model. Double-height steps predominate at low tem-
perature (depicted here at T = €/kg) while singles predominate at high
temperature (here at T = 1.4e/kp). In these Monte Carlo simulations,
the energy per unit length of a single-height step equals that of a double-
height step.

correlation length, and that finite size limits the growth of
this length. In Fig. 4 we display such a log-log plot of the
squared order parameter times L" versus the reduced
temperature t=|1— T/7T,| times L', using the Ising val-
ues B = 1/8 and v = 1. The data evidently scales well with
these exponents, both above and below T.. As an added
test, we find that the slope of the former line, which should
be — v, is — 1.67+0.10, consistent with the Ising model
result y = 7/4.

To make the picture of this transition more complete,
we now discuss the dependence on the misorientation angle
6, or equivalently the average terrace width / = 1/tan(8).
By performing finite-size analyses as in Fig. 4, we find that
the [Ising] transition temperature decreases roughly lin-
early from the wetting temperature at the facet orientation.
This behavior can be understood qualitatively based on the
following argument: In the limit of isolated steps, below
the wetting temperature 7, adjacent bound single-height
steps wander from each other with a characteristic width
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Fi1G. 3. Expectation value of the squared order parameter, ie., the
squared, normalized difference between the area of A4 terraces and B
terraces, vs temperature, from Monte Carlo simulations of a terrace-step-
kink model on an L X L lattice, for several L’s. The average terrace width
was eight. The runs were 10° Monte Carlo steps per site (MCS.) Tem-
perature is in units of the kink energy in the TSK model.

l,, which is known'® to have the form a(7, — T) ',
where a is a proportionality constant. When /,, becomes
comparable to /, the steps are no longer isolated, but will
encounter the presence of neighbors. Thus, we expect
crossover to the Ising transition at 7’ 'S8 when ! = a(T,
— T™"&y =1 [with  model dependent], i.e.

TS~ T, —a/l (1)

In Fig. 5 we show how well this equation describes the
T/’s extracted from Monte Carlo simulations at four values
of the average terrace width.

In an earlier publication'' some of us reported an evi-
dent physical realization of this transition on vicinal
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F1G. 4. Finite-size analysis of the simulated data in Fig. 3. The reduced
temperature ¢ is |1 — T/T.|. As illustrated, with the correctly chosen
critical exponents and transition temperature, the data for different L and
7 collapse onto a single curve when plotted in the scaled fashion indicated
on the axes.
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FIG. 5. T, vs misorientation angle for a simple TSK model of step dou- t

bling. The dashed line illustrates the linear decrease predicted by Eq. (1).
The inset shows experimental data for Ge(111)-[121]; evidently there is
no decrease in T, with increasing misorientation angle.

Ge(111) misoriented (by 6° and 10°) toward the [121]
direction. This transition is observed by the emergence, as
temperature is lowered, of specular LEED intensity at an
out-of-phase energy for single-height steps. The reversible
transition occurs about 100 K above the temperature at
which the ¢(2X8) reconstruction disorders [to a weak (2
% 2)), and so apparently is unrelated to that transition [in
contrast, for example, to the first-order step-bunching tran-
sition of vicinal Si(111), which is driven by the (7X7)
reconstruction'?]. Attempts to fit limited measurements of
the peak intensity of the specular beam to the form
AT, — T)%f were thwarted by Debye-Waller effects. No
convincing evidence of critical broadening was observed
with our low-resolution instrument. However, indication
that the transition is Ising-like has been obtained by mea-
surement of the integrated intensity of the specular beam.
In the neighborhood of the transition, this quantity has an
energy-like anomaly'

I(T)~Ady— B t' " *sgn(T~T,) —A (T —T,). (2)

Examples of fits to this form are displayed in Fig. 6. The
value of the deduced specific heat exponent « is less than
about 0.02, so consistent with the Ising value of O (i.e.,
logarithmic divergence). Moreover, the ratio of the critical
amplitudes above and below T, B, /B _, is about 0.99,
very close to the expected value of unity. Thus, there is
evidence that the transition has Ising character.'*

There are two other aspects of vicinal Ge(111) that are
not explained in the simple theoretical picture: In the inset
of Fig. 5 we show the T's for samples misoriented by 6°
and 10°. Evidently the transition temperature increases (or
possibly is flat) as the misorientation angle increases, con-
trary to expectations based on crossover to Ising from wet-
ting described above. Second, as one heats Ge through the
transition, a well defined splitting appears as the specular
beam fades. In our simulation of the simple TSK model,
there are no noticeable split maxima appearing in this ther-
mal range. Presumably longer range interactions than in-
cluded in TSK are significant.
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F1G. 6. Integrated specular beam intensities at an out-of-phase condition
vs reduced temperature t=(T — T,.)/T,for Ge(111) misoriented by 6°
(O, upper data) and by 10° (O, lower) toward the {121] direction. Since
the units on the ordinate are arbitrary, the two sets of data are simply
displaced from each other for clarity. The solid curves are the best fits to
Eq. (2).

. STEP-DOUBLING WITHOUT SPONTANEOUS
SYMMETRY BREAKING

In a distinctively different picture, single steps can be
favored energetically at small misorientation; strong mod-
erate-range repulsions then might lead to step doubling as
misorientation angle increases. Note the important distinc-
tion from the previous scenario, in which long-range ener-
getic interactions between steps were not at all necessary.

In recent years the case of vicinal reconstructed Si(001)
misoriented toward the [110] direction has attracted great
interest.'® For this system the small-misorientation regime
features single-height steps and terraces with both (2 1)
and (1Xx2) reconstructions. (Going *“*downhill” from the
(1X2) to the (2X 1), one traverses nearly straight, high-
kink-energy SA step; the other kind of step SB is highly
meandering.) For misorientations greater than about 4°,
adjacent single-height steps tend to coalesce into one of the
two possible types of double-height steps DB separating
{2 1) terraces, with dimer pairing along the mean step-
edge direction and so dimer rows perpendicular to the step-
edge direction. We emphasize that there is always more
(2 1) area than (1X2), but that this preponderance in-
creases substantially when the DB steps are plentiful.® In
short, there is no symmetry breaking: the areas of (2 1)
and of (1x2) are never the same, and the latter never
predominates. Thus, there is no need to have a phase tran-
sition as misorientation angle increases; the relative frac-
tion of (2X1) can just increase smoothly [without any
singularity in its derivative]. If the energetics are such that
a phase transition does occur, only local properties of the
two phases need be different, and one would expect the
transition to be first order.'®!” Such a transition appears as
a coexistence region in a phase diagram of temperature
versus misorientation angle, since the latter (specifically,
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its tangent'®) corresponds to a thermodynamic density.
Surfaces prepared with angles within the coexistence re-
gion would break up into surfaces with stable orientations.
Alternatively, in the equilibrium crystal shape, a *‘sharp
edge” joins the two coexisting orientations, with all inter-
mediate orientations absent; such behavior was reported by
Umbach et al.,'” albeit for a surface with a relatively large
local curvature. No faceting, however, has been observed
in the many scanning tunneling microscopy (STM) and
LEED studies of these surfaces. (Ref. 17 has been widely
misinterpreted as predicting the presence of a coexistence
region for Si(001)-[110]; the intended theme of that Com-
ment was merely that if a phase transition exists, as sug-
gested by Ref. 16, it should be first order and so manifested
by a coexistence region.)

We now comment on some specific models which have
been proposed recently to account for the behavior of this
vicinal surface. [In each case, our comments apply to the
model per se rather than to the actual physical system.]
Several models consider just a single pair of SB and SA
steps, with periodic boundary conditions to reproduce the
given average spacing (i.e., the miscut). This viewpoint is
reminiscent of the Gruber-Mullins?® approximation, in
which a single active step is allowed to meander between
two fixed straight steps separated by twice the mean step
separation. In order to reproduce a phase transition, a
many-body collective phenomenon, one must allow all
steps to wander. Indeed, experimentally derived distribu-
tions of the SA-SA separations are not at all sharp, but are
comparable in width to SA-SB distributions.?! The best a
single-step picture can do regarding transitions is to pro-
duce a [finite-size rounded] wetting transition such as dis-
cussed for Ge(111). Step-doubling transitions are implic-
itly but intrinsically excluded by this sort of model. First-
order transitions are smeared out, so that they appear to be
continuous transitions or no transitions at all. On the other
hand, if there really is no transition, this viewpoint can be
expected to give a good accounting of behavior.

An important ingredient in describing this physics is the
relative magnitude of interactions between like steps (i.e.,
between singles or between doubles) compared to those
between singles and doubles. When the latter are relatively
small, Pehlke and Tersoff’’ show, in a simplified model
that allows lone singles between doubles , that a subtle
sequence of mixed phases, reminiscent of a devil’s stair-
case, can replace the coexistence regime at zero tempera-
ture. At finite temperatures this behavior is presumably
smoothed in some subtle way which would be difficult to
predict.>*** Experimentally or in simulations, it would be
quite a challenge to distinguish between a dense sequence
of very weak first-order transitions and a continuous cross-
over as misorientation angle increases. (The mixed phases,
however, can have very distinctive signatures in diffraction
experiments—effects which have been observed, for exam-
ple, in high-resolution electron diffraction studies of vicinal
Si(111).*%) Theoretical analysis, particularly in conjunc-
tion with numerical work, is confounded by the long-range
interactions between steps. Moreover, the actual magni-
tude of the relevant interactions is not entirely clear for
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Si(001). [In the cases of vicinal Si(111) (toward [211] or
[TIO])]2 and vicinal Ag(1 10),%® in contrast, a coexistence
region is clearly observed.] In the analysis of their full
model, Pehlke and Tersoff claim that no transition is seen
in some experiments because the temperatures at which
mobility is sufficient to permit equilibration may lie above
the critical temperature capping the mixed phase region;
this viewpoint, as they state, has not been established com-
pellingly from first-principles calculations.

Finally, the issue has been raised® whether the Chui-
Weeks analogy” sheds light on vicinal Si(001). As sug-
gested by the discussion in the previous section, this model
might well describe the separation of an isolated DB step
into SA and SB steps, if an isolated DB step were ever
stable, contrary to experimental evidence. Since step inter-
actions are crucial for the Si(001) problem, one is in the
regime in which the perpendicular fluctuations of the DB
step (or its SA and SB constituents) are significantly re-
stricted. In the symmetric case of the previous section, this
limitation led in our simple picture to crossover to Ising
behavior. Here we suspect it completely destroys the phase
transition.

IV. HIGHER-MULTIPLICITY TRANSITIONS

For step tripling transitions, we extend the previous
viewpoint by designating terraces separated by single-
height steps as 4, B, and C, in repetitious sequence. Above
the transition, one expects comparable area for all three
while below, one of the three predominates. To construct
an order parameter, we can take

(area A) + exp(im/3)(area B) + exp(i27/3)(area C)
total area

(3)

This has the form of a three-state Potts model, actually a
[highly] chiral three-state Potts model since there are AB
and BC steps but no BA or CB steps (or vice versa).
Experimentally, the square of this order parameter can be
monitored by measuring the specular intensity using an
incident energy such that the normal component of the
scattering wave vector introduces a phase of exp(im/3) or
exp(i27/3) between adjacent layers. While the exponents
of this model are usually found to be close to those of a
nonchiral three-state Potts model, the ratio of the critical
amplitudes that one might measure for the integrated in-
tensity (cf. Fig. 6) should be different, i.e., not unity. '%*’

The only physical instance of step tripling of which we
are aware occurs on Si(111) misoriented toward the [TT2]
direction.?®> The onset of this tripling with increasing mis-
orientation angle occurs by way of a mixed phase reminis-
cent of the Pehlke-Tersoff simple model, rather than a
coexistence region of a single-height-dominated phase and
triple-height-dominated phase or a critical onset. Thus, we
find neither a chiral three-state Potts model nor a simple
first-order transition, but rather some complicated behav-
ior.

For higher-order coalescence, the order parameter will
have even higher dimensionality. Usually the transitions
involving such order parameters are found to be first order.
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In closing, we hope these remarks show the importance
of identifying whether symmetry is broken in any phase
transition and using this scrutiny to set down a sensible
order parameter. Furthermore, it highlights the idea that
when symmetry is not broken, one can go from one regime
to another smoothly, without any phase transition.

ACKNOWLEDGMENTS

T.L.E, N.CB, and E.D.W. were supported by Na-
tional Science Foundation (NSF) under Grant Nos. DMR
89-18829 and 91-03031. T. M. J. was supported by the
Department of Defense. C. R. was supported by NSF un-
der the Experimental Program to Stimulate Cooperative
Research (EPSCoR). We benefited from conversations
with Professor Shmuel Fishman and Professor J. D.
Weeks.

'J. Cahn, J. Phys. (Paris) Colloq. 12, C6-199 (1982).
3S. T. Chui and J. D. Weeks, Phys. Rev. B 23, 2438 (1981).

X. Tong and P. A. Bennett, Phys. Rev. Lett. 67, 101 (1991).

4A. Saxena, T. Ala-Nissila, and J. D. Gunton, Surf. Sci. 169, L231
(1986).

M. Schick, Prog. Surf. Sci. 11, 245 (1981).

®T. L. Einstein, in Chemistry and Physics of Solid Surfaces, edited by R.
Vanselow and R. F. Howe (Springer, Berlin, 1982), Vol. 1V, p. 251;
ibid. (Springer, Berlin, 1988), Vol. VII, p. 307.

"One might, for example, worry about how the surface height degrees of
freedom couple to the “Ising” degrees of freedom. This is of special
concern because height fluctuations on a vicinal surface have long-
range correlations. Work on this problem is in progress [C. Doty and J.
D. Weeks (private communication)]; preliminary results suggest that
the coupling represents only a marginal perturbation on the Ising
model.

*N. C. Bartelt, T. L. Einstein, and L. D. Roelofs, Phys. Rev. Lett. 56,
2881 (1986).

M. N. Barber, in Phase Transitions and Critical Phenomena, edited by
C. Domb and J. L. Lebowitz (Academic, New York, 1983), Vol. §, p.
145.

"D. A. Huse and M. E. Fisher, Phys. Rev. Lett. 49, 793 (1982); Phys.
Rev. B 29, 239 (1984).

T, M. Jung, R. J. Phaneuf, and E. D. Williams, Surf. Sci. 254, 235
(1991).

"R. J. Phaneuf and E. D. Williams, Phys. Rev. Lett. 58, 2563 (1987); R,

J. Vac. Sci. Technol. A, Vol. 10, No. 4, Jul/Aug 1992

J. Phaneuf, E. D. Williams, and N. C. Bartelt, Phys. Rev. B 38, 1984
(1988).

"N C. Bartelt, T. L. Einstein, and L. D. Roelofs, Phys. Rev. B 32, 2993
(1985).

As a note of caution, we recall that Ising-like behavior was observed in
diffraction measurements of the (1x2) reconstruction of two (110)
face-centered-cubic (fcc) metals [J. C. Campuzano, M. S. Foster, G.
Jennings, R. F. Willis, and W. N. Unertl, Phys. Rev. Lett. 54, 2684
(1985); J. C. Campuzano, G. Jennings, and R. F. Willis, Surf. Sci. 162,
484 (1985); I. K. Robinson, E. Vlieg, and K. Kern, Phys. Rev. Lett.
63, 2578 (1989); 65, 1831 (1991)], but later theoretical work showed
that roughening degrees of freedom also contributed, complicating the
transition [J. Villain and 1. Vilfan, Surf. Sci. 199, L165 (1988); Phys.
Rev. Lett. 65, 1830 (1990); M. den Nijs, ibid. 66, 907 (1991) and
references therein]. We do not believe such extra degrees of freedom are
significant in the step-doubling transition. For example, the vicinal
surfaces are technically rough even below the transition, so that this
factor does not change as the sample passes through the transition.

"*B. S. Swartzentruber, Y. W. Mo, R. Kariotis, M. G. Lagally, and M. B.
Webb, Phys. Rev. Lett. 65, 1913 (1990).

%0, L. Alerhand, A. N. Berker, J. D. Joannopoulos, D. Vanderbilt, R. J.
Hamers, and J. E. Demuth, Phys. Rev. Lett. 64, 2406 (1990); 66. 962
(1991).

N. C. Bartelt, T. L. Einstein, and C. Rottman, Phys. Rev. Lett. 66, 961
(1991).

"A. A. Chernov, Usp. Fiz . Nauk 73, 277 (1961) [Sov. Phys. Usp. 4, 116
(1961)].

1°C. C. Umbach, M. E. Keeffe, and J. M. Blakely, J. Vac. Sci. Technol.
A9, 1014 (1991).

©FE. E. Gruber and W. W. Mullins, J. Phys. Chem. Solids 28, 875
(1967).

'B. S. Swartzentruber (private communication).

*E. Pehlke and J. Tersoff, Phys. Rev. Lett. 67, 465 (1991) and in press.
’S. E. Burkov, J. Phys. (Paris) 46, 317 (1985); 46. L805 (1985).

*W. Selke, Phys. Rep. 170, 213 (1988), reviews the intricate behavior of
the ANNNI model, a model which has just short-range interactions but
which in three dimensions exhibits a devil's staircase. In contrast to
studies of this model, our problem involves variations in field {or den-
sity) rather than in ratio of interaction strengths.

BJian Wei, X.-S. Wang, J. L. Goldberg, N. C. Bartelt, and Ellen D.
Williams, Phys. Rev. Lett. (submitted to axial next-nearest neighbor
Ising).

*I. K. Robinson, E. Vlieg, H. Hornis, and E. H. Conrad, Phys. Rev.
Lett. 67, 1890 (1991).

'N. C. Bartelt, T. L. Einstein, and L. D. Roelofs, Phys. Rev. B 35, 4812
(1987).

ot te g



