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To assist efforts to extract information about the energetics of step structure from measured diffraction profiles, we have used 
Monte Carlo simulations to compute correlation functions and diffraction profiles of the terrace-step-kink model of vicinal 
surfaces. We compare the results to the predictions of simple scaling arguments. We concentrate on the temperature dependence 
of correlations along the average step-edge direction. These correlations are well-known to reflect the (sometimes strong) 
temperature dependence of the mean distance between step-step collisions, ycO,,. Our calculations show explicitly how ycO,, 
governs the behavior of correlations parallel to the step edge. For example, only at length scales larger than ycO,, can one observe 
the well-known logarithmic divergence in surface height correlations, and the consequent power-law lineshape of the structure 
factor. (For large momentum transfer (short length scales), we find a Lorentzian component in the structure factor with a width 
proportional to the mean collision distance.) We discuss the feasibility of estimating kink energies from the temperature 
dependence of diffraction profiles. By scaling the profiles at different temperatures and/or misorientations, one can extract 
variations in ywli and thence the step-edge stiffness. Finally, we discuss how energetic interactions between steps influence 
diffraction features such as line shapes, spot anisotropies, and scaling properties. Comparison is made with recent experiments on 
Si(ll1). 

1. Introduction 

Steps on surfaces play an important role in 
many significant and interesting surface processes 
[l]. Despite this importance, in general there is 
httle quantitative information available about the 
factors governing step structure. A primary pur- 
pose of this paper is to assess what info~ation 
can be learned about vicinal surfaces from 
diffraction measurements. We have attacked this 
problem by first analyzing analytically the various 
limiting regimes of behavior on the basis of sim- 
ple approximations and then using Monte Carlo 
to directly compute the temperature dependence 
of the diffraction pattern from the simple ter- 
race-step-kink model of stepped surfaces in 
thermal equilibrium, to corroborate this anaIysis 
and to determine where the transitions between 
regimes occur. 

Recently, direct information about the ener- 
getics of step structure has been obtained by 
scanning tunnelling microscopy @TM) measure- 

ments of step meanderings. For example, Swart- 
zentruber et al. [2] have determined the details of 
the kink Hamiltonian on vicinal Si(OO1); in partic- 
ular, they determined the kink energy as a func- 
tion of kink size. One of the principal points of 
our paper is that such details of step structure are 
not readily available from diffraction measure- 
ments. For example, we will show that different 
kink Hamiltonians giving rise to similar orienta- 
tional dependence of the step free energy will 
have similar diffraction patterns. To estimate the 
parameters of the kink Hamiltonian, one must 
hypothesize a microscopic model of the step free 
energy. 

Given the authoritativeness of the STM work, 
we must offer an explanation for bringing up the 
old problem of interpreting diffraction measure- 
ment of stepped surfaces. Unfortunately, it is not 
yet generally possible to operate an STM at the 
temperatures at which Si surfaces have sufficient 
mobility to achieve equilibrium 131. Analyses at 
room temperature consequently assume that they 

0039-6028/92/$05.00 0 1992 - Elsevier Science Publishers B.V. All rights reserved 



N.C. Bartelt et al. / Step collisions on diffraction from vicinal surfaces 309 

are probing a quenched record of the equilibrium 
distribution associated with a much higher tem- 
perature [2,4]. In order to assess the validity of 
this assumption, as well as the reversibility of 
behavior as a function of temperature (a funda- 
mental requirement of equilibrium), it is impor- 
tant to have a probe which operates at such high 
temperatures. Widely employed in studies of vici- 
nal surfaces, diffraction probes, using electrons 
[5-81, X-rays [9], or helium [lO,ll], have this 
capability. Another advantage of diffraction tech- 
niques is that it is often very difficult to use STM 
during crystal growth, when the role of steps is 
particularly important. 

A considerable amount of work has already 
been devoted to understanding diffraction from 
stepped surfaces [12,13]. For example, it is well- 
known by the analogy of steps on vicinal surfaces 
to domain walls in incommensurate phases [9,14- 
161 that the diffraction profiles will have a power- 
law shape over at least some range of small 
momentum transfer. Our work is similar in spirit 
to that of Selke et al. [13] for high-Miller-index 
surfaces near their roughening temperature: how- 
ever, our concern is for systems with steps which 
are so far apart that step-step interactions are 
small; these systems are thus normally far above 
their roughening temperature. The thermal be- 
havior is much simpler here, and so we are able 
to discuss the step correlation functions and 
diffraction pattern fairly simply and generally in 
terms of elementary step properties. We also 
discuss more thoroughly the breakdown of the 
logarithmic form of the step correlation functions 
at small distances (a breakdown which arises be- 
cause of the large distances between steps, and 
which is not so evident (or important) on high-in- 
dex surfaces). Much of the understanding of steps 
which are far apart comes from the analogy of 
steps or domain walls with free fermions [15,17, 
181. Rather than taking the free fermion ap- 
proach to computing correlation functions (which 
can become quite complex when computing 
diffraction profiles [18]), we here primarily use 
the Monte Carlo method. Since the free fermion 
analogy is usually only exact in the limit of small 
temperatures and widely distant non-interacting 
steps, the Monte Carlo approach has the advan- 

tage of showing explicitly to what extent the free 
fermion concepts are realized in microscopic 
models of real surfaces. 

In a previous study [81, we used Monte Carlo 
simulations to verify the expectation that in the 
direction perpendicular to the step edges (as with 
the case for closely-spaced steps [13]), the power- 
law profiles accurately describe profiles for a 
large k region. Moreover, we showed that the 
lineshape in this direction has only a weak ther- 
mal dependence (now in contrast to the case of 
closely-spaced, interacting steps), related to the 
observation that the characteristic length in this 
direction is the average spacing between steps, 
explored solely by the misorientation angle. In 
this paper, we present analogous results for the 
diffraction profiles parallel to the average direc- 
tion of the step edges, perpendicular to the mis- 
orientation direction. We explicitly show, as sug- 
gested by the analysis of refs. [17,19], that the 
results can be simply interpreted in terms of the 
sizeable temperature dependence of the mean 
distance between step collisions along this direc- 
tion. Indeed, this distance sets the characteristic 
length for essentially all dependencies on spac- 
ings in this transverse direction; in particular, we 
show how in the absence of interactions both the 
mean-square deviation and the transverse struc- 
ture factor accurately satisfy scaling relations in 
which this distance serves as the distance scale. 
Conversely, any attempt to analyze the tempera- 
ture dependence of such non-microscopic data 
will yield this characteristic length or equiva- 
lently, the diffusivity or meandering probability of 
the step, rather than a direct measurement of the 
kink energy, as we shall explain. 

Most of our computational work is based on 
the venerable [20] terrace-step-kink model, 
which is illustrated in fig. 1. This model neglects 
adatom or vacancy excitations on the terraces. In 
a simple formulation, a kink of length na I costs 
energy In I E: the configuration shown is from a 
Monte Carlo simulation at k,T = E. With increas- 
ing temperature, step meandering increases [21- 
231. The qualitative sensitivity of the diffraction 
pattern to this meandering is shown in fig. 2, 
which previews results of the Monte Carlo calcu- 
lations discussed below. At the presented “out- 
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of-phase” condition, the diffraction pattern con- 
sists of a “split beam” with splitting 27r/l in the 
direction perpendicular to the step edges [5], 
where 1 is the average spacing between steps. 
While the splitting remains well-resolved with 
increasing temperature (because the profiles per- 
pendicular to the step edges have only a weak 
temperature dependence [81 in this model), there 
is considerable broadening in the transverse ( y^) 
direction. This broadening is the subject of this 
paper. 

The plan of the paper is as follows. In the next 
section we discuss the real-space correlation 
functions characterizing the meanderings of a 
step. Considering the mean-square displacement 
of the step perpendicular to the average direction 
of step “propagation,” we note three regimes of 
different simple behavior as a function of separa- 
tion along this average direction. To understand 
the behavior of the steps at small distances (and, 

Fig. 1. Sample Monte Carlo configuration of the terrace step 

kink (TSK) model of a vicinal surface at a temperature equal 

to the kink energy. The coordinate system used in this paper 

is also shown. The inset shows a schematic of the correspond- 

ing diffraction pattern showing split beams at out-of-phase 

conditions, i.e., when the difference in path length for scatter- 
ing from adjacent terraces equals an odd number of half- 

wavelengths, e.g., k, = r/h. 

0 

kT = 1.2~ 

kx 

kT = 1.8~ 

Fig. 2. Logarithmic grey scale images of the simulated diffrac- 

tion pattern of stepped surfaces in the TSK model shown in 

fig. 1, at three different temperatures. These contour plots 

illustrate the effect discussed in this paper: increasing the 

temperature increases the step wandering and the width of 

the beams transverse to the step direction. This pattern is at 

an out-of-phase condition, i.e., k, = T//I. 

thus, the lineshape at large Ak), we approximate 
this system by a single step trapped between two 
straight steps - a model introduced by Gruber 
and Mullins [21]. When the steps are sufficiently 
far apart, the correlations can be simply and 
accurately computed within this model by draw- 
ing upon the analogy between the wandering step 
and a quantum mechanical particle trapped in a 
one-dimensional well [22,23]: the transverse 
structure factor can be expressed in terms of the 
eigenstates and eigenfunctions of Schrodinger’s 
equation for a particle in a box. As we discuss in 
detail below, comparison of the properties of the 
simple Gruber-Mullins model with those found 
from the more general computations show good 
quantitative agreement for small y or large mo- 
mentum transfer. We then discuss the change in 
behavior that occurs at the length scale of the 
step collision distance and show how the collision 
distance depends on the kink energy and on 
temperature. We define the diffusivity (or, alter- 
natively, the inverse step-edge stiffness) as a key 
concept and relate it to a measure of the effective 
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distance between close approaches of neighbor- 
ing steps. We emphasize how this distance sets 
the length scale of behavior in this direction. In 
the third section, we perform a similar analysis of 
the structure factor. We show that scaling argu- 
ments can be applied to describe diffraction pro- 
files, again with an emphasis on the step collision 
distance. Both the anisotropy of line profiles and 
the deviations of the line shape from power-law 
form are discussed in terms of the collision dis- 
tance. In the fourth section, changes in the step 
collision distance caused by energetic step-step 
interactions and the resulting changes in the cor- 
relation functions and line profiles are discussed. 
We find that knowledge of the step-edge stiffness 
and the terrace width distribution enable one to 
make a reasonable estimate of the shape of the 
diffraction profiles. This estimate is discussed in 
the context of recent diffraction and microscopy 
measurements on vicinal Si(ll1). We conclude 
with a discussion of feasibility of analysis of ex- 
perimental data based on these ideas, to evaluate 
the step collision distance, and thence the kink 
energy. 

2. Step-position corretation functions: 
mean-square displacements 

As a prelude to our discussion of the trans- 
verse structure factor, in this section we describe 
the behavior of the real-space correlations along 
a single step edge. In particular, we consider the 
mean-square displacement as a function of dis- 
tance y along the step edge: 

g,(y) -(lx(Y) --am (1) 

where x(y) charts the course of one step edge 
[241, as shown in fig. 1. This correlation function 
can be used directly for analyzing data from 
stepped surfaces obtained by STM [2,4], reflec- 
tion electron microscopy 12.51, or low-energy elec- 
tron microscopy 1261. 

Since we assume no interaction between kinks 
on the same step, the ‘probability of a particular 
configuration of a single isolated step can be 
simply written as a product of probabilities of 

each kink: the step edge represents a simple 
random walk [22]. In a random walk, the key 
parameter which scales the amount of meander- 
ing is the step edge “d~ffu~~vi~” b2(T>, i.e., the 
mean-square pe~endicular deviation with each 
pace “forward” [1,8,23]. At small y, the behavior 
of g,(y) is particularly simple #l. Here the ap- 
proximation of isolated steps is valid, so that the 
mean-square displacement is proportional to the 
number of “paces” in the walk: 

g,t Y> N b2(T)~/‘alr- (2) 

To compute b* from microscopic interactions, we 
need to know E(n), the energy of a kink of size n, 
i.e., a move in the lfrP direction of size nu I. 
Then b2 is given by the simple Boltzmann- 
weighted average over all possible values of the 
kink size: 

2~2, i n* exp[ -E(n)/k,T] 

b’(T) = 
fI=l 

1 + 2 f exp[ -E(n)/k,T] 
‘ (31 

n=l 

Thus, b2 is usually a monotonically increasing 
function of T. As reviewed below, we emphasize 
that the only way that the kink energy E(n) enters 
the mucroscopic phy&cs is through the dif~s~vi~. 
Conversely, analysis of diffraction data or other 
macroscopic measurements as a function of T 
will only yield b2(T); to go the last step to E(n) 
requires some knowledge or assumption of the 
form of E(n). 

To gauge the sensitivity of b2(T) to assump- 
tions about the form of E(n), we consider some 
typical examples and collect the results in table 1. 
In the TSK model, E(n) is just proportional to 
the length of a kink. In analyzing the meandering 
of ‘(Sn” steps of (2 X Greconstructed vicinal 
Si(lOO), Swartzentruber et al. found that a “corner 
energy” E, 12,271 was also evident, providing an 

#1 The analogy of steps with random walkers can be fruitfully 
extended to the case when steps collide, as elegantly 
described in ref. 1223. Since one must drop configurations 
from the ensemble averages which contain steps which 
cross, the appropriate random walkers are “vicious” (rather 
than”bouncy”). 
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Table 1 
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Temperature dependence of b* for the various kink Hamiltonians discussed in the text 

Model E(n) b2/a: 

TSK lnle i sinh-*(6/2knT) 

TSK + corner I n I E + (1 - 6, &, b&&l + [exp(c,/knT) - 11 tanh(c/2k,Tl 
Discrete Gaussian n% Not a simple function 

Restricted E(O) = 0, E( + 1) = E 2/[2 + exp(c/kJ)l 

additional constant contribution whenever there 
was a kink. Specifically in this case E, = 3~. For 
theoretical analysis, it often is easier to use mod- 
els which restrict large kinks relatively more 
severely, with the expectation that the general 
features should not be altered. These sorts of 
approximations, made in the i direction, were 
used to characterize the roughening transition 
[28,29]. For example, in the discrete Gaussian 
model [28], the kink energy depends quadratically 
on its size. More severely, one can invoke “re- 
stricted” models [29], in which the step can wan- 
der by at most a I , i.e. E(1) = E and E(n 2 2) = 
co. At low temperatures in all cases b’/aT is 
equal to exp( -E(l)/k,T), which in turn is pro- 
portional to the kink density. As can be seen 
from the plots of b’(T) for these various cases in 

0.0 0.5 1.0 

kT/E 

1.5 2.0 

Fig. 3. Temperature dependence of b2 a yco,,, for the four 

cases discussed following eq. (3): (a) solid curve: TSK model, 
in which a kink of length na, costs energy E(n)= In Ic; (b) 

dotted curve; TSK model with an additional corner energy 3~; 

(c) short dashed curve: discrete Gaussian model, E(n) = n2e; 
(d) dash-dotted curve: restricted model, with only n = 0, 1 

allowed; (e) long-dashed curve: restricted model in which the 
step is misoriented away from the high-symmetry direction 

(eq. (20)). 

fig. 3, a poor assumption about the form of E(n) 
can lead to a value of E that is incorrect by as 
much as an order of magnitude or more. The 
high-temperature limits of all of these models are 
unrealistic because of the neglect of overhangs 
and adatom and vacancy excitations on the ter- 
races. 

As an aside to prevent possible confusion, we 
note that while most step displacement correla- 
tion functions exhibit logarithmic behavior at large 
separation (because these surfaces are technically 
“rough”), the behavior at small y may differ 
considerably. For example, the seemingly similar 
height correlation function analyzed by Villain et 
al. [12] 

g,(y) =(b(y> -z(0)12)- F J 5 (4) 

at small y, as we show in the appendix. 
When the steps begin to collide, i.e., when the 

mean-square displacement becomes a significant 
fraction of the terrace width, deviations from 
linear, “diffusive” behavior must occur. To un- 
derstand the temperature dependence at these 
distances, we draw on heuristic arguments ratio- 
nalizing the analogous behavior of domain walls 
in incommensurate phases. The key idea is that 
the characteristic length which determines 
g,(y>/1* is the average distance from any point 
on a step edge to a point where this step collides 
with (i.e., comes within a I of) an adjacent step 
[19,17,22,30]. One expects this collision distance 
to be the distance y along the step edge required 
for an isolated step to wander a distance f/2 in 
the direction x perpendicular to the step edge. 
Guided by eq. (2), we thus define the collision 
distance 

~~~~~ = 12a,,/4b2. (5) 
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For I = 16 and k,T = 1.46, yml, is M 17 Q,, in the 
simple TSK model. 

The simplest scheme to account for collisions 
with neighboring steps is the Gruber-Mullins 
model. In this approximation, the problem is re- 
duced to that of a single wandering wall between 
two straight fixed walls separated by twice the 
average inter-step separation, 21. As we next show, 
a convenient way of estimating the correlation 
functions for this model is to take the continuum 
limit in the y^ direction, which reduces the prob- 
lem to solving the 1D Schriidinger’s equation for 
a quantum mechanical particle in a box. 

Consider a segment of the step from d y to 
y + dy along the step edge. There are dy/a,! 
possible kinks. From the central limit theorem, 
one expects the probability distribution for the 
step to wander a distance dx during this length 
to be approximately Gaussian with a second mo- 
ment proportional to the number of kink sites 
multiplied by the second moment of the kink 
distribution at each kink site (cf. eq. (211, i.e., 

and where s = 0 denotes the ground state and the 
eigenvalues Es = b2~‘(s + 1)2/8a,,E2 are ener- 
gies per unit length. 

Because we assume that the wandering step 
cannot pass through the neighboring straight 
steps, we require that the ICI, go (continuously) to 
zero at x = rtl: we use the familiar sinusoidal 
wavefunctions for a particle trapped between two 
impenetrable walls. Recognizing that g(y, y’) = 
g( I y - y' 1) is just the double integral of (x - ~‘1~ 
weighted by P(x, x’; y, y’), eq. (8) then gives a 
simple expression for the mean-square displace- 
ment (in which only terms with .s = 2p - 1 sur- 
vive): 

2048 m p2 
-- 

d t: 
4e 

-y/t, 

p=l (4p2 - 1) 
> (10) 

where 

(11) P( x, x + dx; y, y + dy) a exp 

so that the probability of a particular step config- 
uration x(y) is 

P(x(Y>) a ew ( --$/($)2 dY). (7) 

Using standard path-integral arguments [1,5,31] 
the probability of a step passing through x at y 
and X’ at y’ can be written as 

P(.x, x’; y, Y’>= Cew[-(Es-&J/y’-yI] 
s 

where the $$‘s are the eigenstates of Schriidinger’s 
equation: 

b2 d2$s 
--- 

2a,, dx2 
= Krf/,, (9) 

and 

812a,, 351 
‘P= (4~2 _ l),$.bz = =a (12) 

In general only the first term in the summation is 
needed, and g(y) is seen to approach, from be- 
low with simple exponential decay, a constant 
simply related to the root-mean-square deviation 
rvoM of the step from half-way between the two 
fixed boundaries in the Giber-Mullins model. 
The flattening out of g,(y) with increasing y is 
clearly an artifact of this fixed-wall approxima- 
tion. Notice that [i contains the same parameters 
as ycol,, differing only by the numerical factor 
32/3rr2 = 1.08. For small y, all terms must con- 
tribute to reproduce the linear behavior noted 
earlier. (Furthermore, expansion around y = 0 
recovers eq. (21.) 

We can go beyond the Gruber-Mullins ap- 
proximation to explore “many-wall” aspects of 
the problem by using the free-fermion approxi- 
mation. For large y the form of g,(y) (in the 
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absence of energetic interactions between the 
steps, or at sufficiently high temperature) is ex- 
pected to be given by E8,12,18,32] 

-I r2 

(13) 

This behavior can occur only on length scales 
larger than the step collision distance ycO,,. In the 
absence of energetic interactions, the analogy of 
steps with free fermions [17,18,32] yields the pre- 
diction that 7 is 3 in the asymptotic limit of 
vanishing misorientation, i.e., infinite 1 and y 
(independent of T!). 

To corroborate these ideas, we computed 
g,(y), normalized to the square of the average 
terrace width, for several temperatures, using 
standard Monte Carlo techniques. The lattice 
had an average terrace size 1 = 16a i , with 32 
steps established by screw periodic boundary con- 
ditions in the 4 direction; each extended 256a,, in 
the 9 direction (with periodic boundary condi- 
tions in that direction). Typically 10’ Monte Carlo 
steps per step site were used; lo6 Monte Carlo 
steps were allowed for equilibration. The raw 
results are displayed in fig. 4. 

0 10 20 30 40 50 

Y/% 

Fig. 4. Mean-square displacement, g, as a function of the 
distance y along a step for four temperatures. y is measured 
in units of a,,; g, is normalized by 12. For the highest and the 
lowest depicted temperatures, 2.0 and 0.8 e/k*, dashed lines 
show the limiting diffusive behavior of eq. (2), which evidently 
holds only at small y. This plot and most subsequent ones 
were computed using a lattice with 32 steps, i = 16a L in the 2 
direction and periodic boundary conditions with 256a,, in the 
j direction. Typically 10’ Monte Carlo steps per site were 
used in computing these curves (with the first lo6 discarded 

for equi~ibratjon). 

0.01 0.10 1 .oo 10.00 100.00 

Y/Ycoil 

Fig. 5. When the data of fig. 4 is resealed by dividing y by 
y_,,, the data coflapses onto a single curve. At larger y there 
is a region of effective Iogarithm~c divergence of g. The 
dashed line shows the prediction of the Gruber-Mulljns model 
(eq. (10)). The dotted line has a slope corresponding to eq. 
(13) with n = 0.5. The dash-dotted curve shows the diffusive 

limit of eq. (2). 

The initial linear increase of g,(y) is evident 
in fig. 4; for the highest and the lowest tempera- 
ture displayed, the linear form given in eq. (2) is 
co-plotted for comparison. It is also clear that 
particularly as temperature increases, step colli- 
sions quickly become important. The exponential 
approach toward a constant for intermediate y, 
predicted in the Gruber-Mullins approximation, 
is also evident in the solid curves, as well as the 
eventual logarithmic divergence. 

To highlight the key idea that the (only) char- 
acteristic distance in the 9 direction is yco,,, we 
replot in fig. 5 the computed data in fig. 4 as a 
function of log(y/y,,,). The most striking obser- 
vation is how well the data from different tem- 
peratures scale until the largest values of y, at 
which finite-size effects introduce a new length 
which destroys the scaling: the periodic boundary 
conditions restrict the size of g,(y) when y gets 
close to 128. From eq. (2) it is clear that the 
expression for the linear regime obeys the scaling 
with yco,,; this curve is included in fig. 5 for 
comparison. At small y, we see that deviations 
from diffusive behavior become noticeable once 

Y = OJY,,,,, and the somewhat more complicated 
Gruber-Mullins form of eq. (10) is needed. We 
see that this expression also scales explicitly with 

Y _,r and is a good approximation until y gets 



N.C. Bartelt et al. / Step collhions on diffraction from uicinal surfaces 315 

0.1 1.0 10.0 100.0 

Y/Yc.n 

Fig. 6. Plot of g,(y) versus y/y,,, for I= 16 (solid), 8 
(dotted), and 6 (dashed), with ~,T/E = 2.0, 1.2, and 0.8, 
respectively, to show that data for various terrace widths can 

also be collapsed by the scaling formulation. (Cf. eq. (5).) 

somewhat larger than yCO,,. The significance of 
this agreement for the form of the diffracted 
profiles will be discussed in the next section. For 
larger y, the logarithmic divergence expressed in 
eq. (13) occurs. Indeed, the plot of g,(y) versus 
log(y) of fig. 5 is approximately linear when 
y/y,,, > 1 (and before the onset of finite-size 
effects). The dotted line in the figure has a slope 
corresponding to the predicted limiting value n = 
f . At high temperatures, when b becomes a 
sizable fraction of 1, fig. 5 provides some evidence 
that r] becomes greater than 0.5. (For reference, 
b/l is N 0.2 for k,T = 1.86, the largest tempera- 
ture on figs. 4 and 5.) Similar results are found in 
the 2 direction [8,33]. 

In normalizing g,(y) by l2 in figs. 4 and 5, we 
have implicitly recognized that I sets the scale for 
behavior in the x^ direction, as discussed thor- 
oughly elsewhere i&23,341. Moreover, t plays an 
important role in the 9 direction by setting the 
deviation distance for a step to collide with its 
neighbor. To check further the scaling ideas, we 
show in fig. 6 that data for different l’s can also 
be collapsed onto a single curve by resealing y 
with yco,,. Notice that even for I as small as 6a I , 
the resealing works well. (In general one expects 
the resealing to be successful as long as b2 is 

much smaller than I2 [23].) 
None of the scaling features of the correlation 

functions depends on the microscopic details of 

the kink Hamiltonian or the symmetry of the 
surface. To make this point clear, we consider the 
generalization to non-high s~rnet~ directions, 
where there is a finite density of “kinks,” even at 
zero temperature. To determine b2 as a function 
of temperature and net step orientation, it is 
convenient to introduce a kink chemical potential 
p. Since we have assumed that the kinks do not 
interact with each other, the grand partition func- 
tion of a step edge can be written as the product 
of the partition function 9 at each kink site: 

q(T, in) = Cexpf[--E(n) +~~]/knT}. (14) 
n 

The generalized Gibbs free energy per kink site is 
simply g = -k,T In(q). The mean-square size 
of each kink site can simply be obtained from 9 
through 

a29 b2 = -atk,Tg . (15) 

We wish to determine the dependence of the b2 
on step orientation p = a _L (n>/a,, = tan(e) rather 
than it. This density can be computed from g 
using 

P= _a.-* 9 

9 ap 
(16) 

Eq. (15) can now be re-expressed in terms of 
derivatives with respect to p by introducing the 
Helmholtz free energy per kink site, f =p + pp: 

(17) 

In terms of the free energy per unit length r(e) 
of the step edge (rather than per projected length, 
as in f ), this can also be written in the more 
familiar form 

a,,kJ 

b2 cos38 
=+y+$ 

2’ 

where y(0) is the step-edge “stiffness” [3.5]. Eq. 
(18) leads to another way of expressing eq. (2) in 
terms of q: 

kal” 
g,r( y') = FY’7 
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where x’ and y’ are coordinates perpendicular 
and parallel, respectively, to the average step 
edge. Eq. (19) is actually more general than eq. 
(2). If, for example, kinks at different sites are no 
longer independent, if there are overhangs in the 
step edge, or if terrace excitations exist, then eq. 
(19) should be used rather than eq. (2) #‘. 

For a model in which each kink is restricted to 
be at most one lattice constant long #3, one can 
show, using eqs. (14)-(181, that b* is just 

b* 42; - /P’ + 42,2(1 - P2) 
-= 

2 42; - 1 
-p*, 

a, 
(20) 

where z,, = exp(-e/k&. The curve showing b* 

when p = 0.5 is compared with the results for the 
high-symmetry directions in fig. 3. The distinctive 
feature of this curve is that b* does not vanish as 
the temperature approaches zero. This feature is 

0 50 100 150 

Y/all 

Fig. 7. Plot of g,(y) for the two step configurations pictured 

in figs. 8a (dashed) and 8b (solid). Despite the fact that the 

local step (kink) structure is completely different in the two 

cases, b* (or the step stiffness) and the average terrace width 

is the same for both cases and hence the correlation functions 

of the two cases are quite similar. 

#* Eq. (19) underscores the artificiality of using the models 

for b* of fig. 3 to predict step correlations at high temper- 

ature: On general grounds if one includes overhangs and 

terrace excitations, one expects the step free energy y 

eventually to become isotropic and finally to vanish as the 

temperature is raised [35]. This behavior does not occur in 

the models considered here. 

#3 The generalization of eq. (20) for the unrestricted TSK 

model is b2/a< = p2 + udp*) + A[(1 + p%(p2) - 
A2p2]1/2)/{A2 - h(p*)), where A = 1 + 20” and /&I*) = 

42; +(A* + A)p*. 

a consequence of the fact that even at zero tem- 
perature there is randomness in the positions of 
the kinks (because of the assumption of no kink- 
kink interactions). Now, .to convince the reader 
that correlation functions along the step edge 
depend primarily on the value of b* (or, more 
generally, on y>, fig. 7 compares g,(y) for two 
systems with distinctly different kink structures 
but the same b*. The first case, pictured in fig. 
8a, is the unrestricted TSK model of the solid line 

kT = 0.52~ 

Fig. 8. (a) Picture of a stepped surface with the kink Hamiltonian E(n) = I n I E at temperature of 0.526. (b) Stepped surface where 

the average step direction is rotated from the high symmetry direction of (a). In this model only kinks of length of one unit are 
allowed: the temperature is twice the kink energy E. 
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of fig. 3; the second (cf. fig. 8b) has the average 
step direction rotated by 8 = tan-‘(0.5) (long- 
dashed line of fig. 3). The differences between 
the two curves are small. 

3. Diffraction from stepped surfaces 

To calculate the transverse diffraction profiles, 
we assume the scattered intensity is given by the 
kinematic structure factor 

= c exp(i(k,x+k,y+k,z)) 
Ix, Y, 2) 

(21) 
In our model we include only the positions of the 
uppermost atoms in the summation. Since the 
scattered intensity is most sensitive to step struc- 
ture when neighboring terraces scatter out-of- 
phase, we set k, = r/h, in which case the peaks 
in scattered intensity pictured in fig. 2 occur at 
k, = *r/l. Fig. 9 plots the logarithm of the 
transverse profile S(k,) = S(r/l, k,, r/h) calcu- 
lated from Monte Carlo data for the same range 
of temperatures shown in figs. 4 and 5. As the 
temperature is raised, the scattered intensity be- 
comes progressively more diffuse as anticipated 

10-l 7 

10-Z 

10-3 

go-4 

10-5 

10-6 

10-71 

0.0 0.2 0.4 0.6 0.6 1.0 

% 

Fig. 9. Transverse structure factor, i.e., the profile along a 

vertical line in fig. 1 starting at the center of a split spot, for 

five temperatures within the range shown in fig. 4; k, is in 
units of r/a,,. 

by fig. 2. The strong thermal dependence of the 
lineshape shown in fig. 9 contrasts with that per- 
pendicular to the steps, which is much less sensi- 
tive to temperature [8]. 

To evaluate the thermal evolution of the line- 
shape, we again rescale distances by ycol, as done 
in fig. 5. From the dimensional arguments of the 
preceding section, one expects that correlation 
functions that depend on y and other variables 
like temperature and terrace width can be col- 
lapsed to “universal” functions of just y’ = y/yco,,. 

o.looo ~ 
mkT= E 

-x + kT = 1.2~ 
+ 

0.0100- 0 A kT = 1.4~ 

L 
0 kT = 1.6~ 

1 X kT = 1.8~ 
x- 
iz 

~.~~~1~.........~.........,.........,....~~~..,...~~.~~.~ 

0 20 
(a) 

40 60 60 100 120 0 1 2 3 4 5 

kyYco,, (bl kyYdl 

Fig. 10. (a) Illustration of how scaling collapses the structure factors for several temperatures onto a single curve. The solid lines 
show the scaled curves from fig. 9: each curve ends at the value of k,y,,, for which k, = r/a,,. The dashed line shows for 
comparison the Gruber-Mullins approximation of eq. (25); the dotted line shows the prediction of eq. (25) including only the p = 1 
term, i.e., a single Lorentzian. (b) This plot expands the small k, regime of (a), presumably the only region in which the intensity is 

sufficiently strong to permit reliable experimental measurements. 
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In particular, we expect that the transverse struc- 
ture factor can be resealed as follows: 

S(k,, T, I) = /dy eikyyf(Y) 

so that 

S(k,, T, I) ==Ycoe(E, T)z+,Y,l,(~~ T>>Y (23) 

where $Z(r) is a universal function. (Note that in 
contrast to the analysis of the mean-square dis- 
placement, the value of S is alsa resealed. 
Heuristically, because S is proportional to the 
area of the surface, dividing y by ycot, requires 
that S be proportional to ycO,,J In fig. 10a we 
recast the computed data of fig. 10 as a semi-log 
plot of y, i.e., S(k,, T, l>/vcol,(l, 7% versus 

k, yco,,- Fig. 10b highlights and enlarges the re- 
gion near the center of a spot, where the intensity 
is great enough to permit accurate measurement. 
(Fig. 10b includes intensities down to 10S4 of 
that at the center of the spot, which is probably 
optimistic compared to current capabilities [9].) 
Again the scaling effectively collapses the data 
onto a single curve until large k, becomes on the 
order of z-/a,,, ~(~~) becomes sensitive to the 
atomic geometry of the kinks, and the scaling 
fails. The impressive scaling shows that the strong 
temperature dependence of S(k,) comes from 
the strong temperature dependence of the pref- 

actor ycoll. 
To understand the line shape at large momen- 

tum transfer, we use the fact (fig. 5) that g,(y) is 
accurately described by the Gruber-Mullins 
model for distances Y < y,rr. We thus anticipate 
that at large momentum transfer, S(k,) is also 
well-appro~mated. To show this explicitly, we 
compute Sfk,) for the Gruber-Mullins model. 
The requirement that each step be restricted to 
-I < x < 1 allows eq. (21) to be written as 

S(k,) = -$ (l/dy[l + ew(irx(y)/l)l 

Xexp(i~~y) * 
I) 

. (24) 

Using eq. (8) to compute the expectation values, 
one finds that 

(25) 

where cP was defined above in eq. (10). The 6 
function is a manifestation of the straight- 
boundary assumption of the model. It overesti- 
mates severely the intensity at k, = 0, and will be 
henceforth ignored in comparisons with the 
Monte Carlo results. Eq. (25) is compared to the 
Monte Carlo data in fig. 10. (Notice again that 
the scaling of fig. 10 is implicit in the assumptions 
leading to eq. (251.1 The curves agree well over 
the range of approximately l,/yco,r < k, < ?r/2a,,. 
An approximate analytical form for S(k,) can be 
computed with just the p = 1 term of eq. (25). 
Over an intermediate regime of k, (l/Y,,, < k, 

< 27r/ycoll), with is highlighted in fig. lob and 
beyond which S(k,) is immeasurably small, the 
structure factor Sk,) is well described by this 
simple Lorentzian - represented by the dotted 
line in the figure - with correlation length given 

by 
2 

5(T, q =F*=$ -& . 

-i 1 

(26) 

As noted following eq. (121, er is almost identical 

to Ycolf~ as was anticipated by our definition of 

Y co11 . 

At small k, previous work [8,12] has shown 
that when the height-height correlation function 
g, diverges logarithmically, the scattered intensity 
for a specular beam at an out-of-phase condition 
has a power-law lineshape: 

%L ky) 
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where n is given in eq. (13). However, in the 9 
direction, fig. 5 shows that the logarithmic ap- 
proximation for real-space behavior fails at dis- 
tances less than y,,,,. Thus we expect - and 
observe in fig. lob - a power law to describe the 
line shape in the y^ direction only at small mo- 
mentum transfer k, < l/yco,,, albeit in the regime 
where S(k,) is most readily observed. In fact, the 
transition from Lorentzian to power-law behavior 
occurs quite abruptly around l/yco,,. (By contrast, 
in the P direction, perpendicular to the steps, we 
have showed explicitly (cf. fig. 5 of ref. [81) that 
the correlation function g*(z, y) is approximately 
logarithmic even at small distances and thus the 
structure-factor profile in this direction is power- 
law for any momentum transfer k,.) 

To examine in more detail the form of the 
scaling function ‘$!/(r), we have regraphed in fig. 
11 the computed data of fig. 10 as a log-log plot 
of S(k,)/y,,,, versus kyycoll. At small T, in the 
power-law regime, we know that y/(r) N l/72-q. 
For large r, in the Lorentzian regime, Y(T) N T-~ 
before finite-size breakdown sets in. If y had a 
pure power-law form, this plot would consist of a 
straight line. Here, the slope expected from eq. 
(27) fits the data only up to k, = 4/yc0,r. Beyond 
that the slope decreases to a value consistent with 
~,~r = 0. This limiting form describes the com- 

z/h (Y=@ 

L 

0.1 1.0 10.0 

kyY,.,, 

100.0 1000.0 

Fig. 11. Plot of logarithm of S(k,) versus the logarithm of k, 

showing the limited regime of power-law singularity. The 

dashed line shows of the Gruber-Mullins approximation of 

eq. (25). The dotted line has a slope corresponding to nerr = 0.5 

(cf. fig. 5); the dash-dotted line has a slope corresponding to 

the prediction of a Lorentzian line shape S(k,) = 4b2/k: 

when k, is large. 

puted results accurately for k,,yc,,,, greater than 
about ten. 

Clearly, in making contact with experiment it 
is important to understand at what k, does S(k,) 

become so small that it cannot be measured accu- 
rately. In a recent sensitive X-ray diffraction ex- 
periment [9], this k, could be as small as 0.002 
A-‘, where S(k,) dropped to three orders of 

z/h (Y=O) 
0.1 1 10 

251 

(a) ’ 10 100 
(bl 

10 100 

y/a,, b=O) Y/G,, (z=O) 

Fig. 12. This figure compares the step correlations along the step edge (solid lines, bottom abscissa) with those perpendicular to the 

step edges (circles, top abscissa) for (a) non-interacting steps, and for (b) steps interacting through a A/x2 potential, with 
A = 4k,Ta,,. In both cases the average terrace width 1 was lOa i, and k,T = E. In (a) the coordinates perpendicular to the step 
edges were multiplied by a factor of 22 so as to bring the curves in the two directions together. This factor compares favorably with 

the value of _ 17 suggested by eq. (28) for this temperature; in (b) this factor was divided by 2.18 as suggested by eq. (33). 
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magnitude below S(O). Note, from eq. (27), that 
the size of S(O) must be limited by (system- 
specific) finite-size effects, so that it is naive to 
assume that the simulated results become unob- 
servable at the same value of ~(~.“)/~(O) as the 
experimenta data does. 

Recent experimental work [9] has successfully 
characterized the asymmetry of the peak in the 
power-law regime, i.e., the ratio c,/c,,. In the 
free-fermion regime of widely spaced steps, this 
anisotropy has a distinctive form. To see this, 
consider the generalization of the correlation 
function of eq. (11, between step edges, gXlz, y) 
= (x(0,0) - x(z, y)12), where the coordinate z 
labels the step edges. At large distances z or y, 
this correlation function has the form [17,18]: 

gx(z, Y> _“ln[(~~+(~)‘l. (28) 
5r2 

It is straightfo~ard [12] to show that eq. (28) 
leads to eq. (27) with 

CX ?I la,, ---.= -=- 

GY 
n-k,T .irb2 ’ (29) 

Fig. 12a presents the results of a Monte Carlo 
simulation which approximately verifies eq. (28) 
for the simple TSR model at a temperature equal 
to the kink energy. As an application of this 
equation, we consider the recent measurements 
on vicinal SXlll) by Noh et al. [93 and Alfonso et 
al. [25]. For steps separated by 55 A, the observed 
value of c,/cY at 1120 K is - 3.9. Using the 
estimate by Alfonso et al. for the step-edge stiff- 
ness at 1170 K of 1.1 x 10-l@ J m-‘, one finds 
from eq. (291, that c,/cY should be N 12: the 
step-edge stiffness wouId have to be a factor of 
three smaller than estimated to give the observed 
ratio. Given that 7 is probably only determined 
up to an order of magnitude, failure of the non- 
interacting step picture for high-temperature 
Si(lll) may not be ruled out on this basis. The 
role of step-step interactions on the asymmetry is 
discussed in the next section. 

4. The role of energetic step-step interactions 

Recent work on several different surfaces has 
shown that energetic interactions between steps 

can be important [2,4,7,36-381 in understanding 
step structure of even small-angle vicinal sur- 
faces. Thus, when interpreting diffraction pro- 
files, one must consider how such interactions 
modify the simple picture painted above. Atten- 
tion has focused on interactions due to elastic 
relaxations at the step edges. The magnitudes of 
these interactions are largely determined by the 
surface stress, which is known in only a few cases, 
so it is in general difficult to evaluate the applica- 
bility of the non-interacting step picture of the 
preceding sections. (We caution, however, that in 
genera1 the step-step interactions can be ex- 
pected to be much weaker than observed on 
Si(lOO), where the anisotropic stress of the (2 X 1) 
reconstruction causes asymptotic interactions to 
actually diverge.) Since computing the surface 
correlation functions with arbitrary step-step in- 
teractions is generally more difficult without in- 
teractions we will consider their effect within the 
Gruber-Mullins (single wandering step) frame- 
work, encouraged by this model’s successes de- 
scribed in the preceding two sections. Suppose 
U(x) is the potential, per unit length of the steps, 
between two steps separated by X. If U(X) is 
sufficiently strongly repulsive (i.e., the tempera- 
ture is low enough) that it strongly inhibits direct 
step collisions, then one might expect to approxi- 
mate the potential felt by the wandering step by 

V-(X, I) = (I(Z+x) + U(1-x) 

= 2U(Z) + U”(l)& (30) 

where in the final form we have expanded about 
x = 0. For this potential, correlations along the 
step edge are governed by harmonic oscihator 
eigenstates and eigenvalues within the formalism 
of eqs. (6)-(9). Again, one finds [231 that S is 
approximately Lorentzian with a correlation 
length given by an expression resembling eq. (26): 

w 2 
S(T, 0 =2a,, b(T) . 

i 1 (31) 

Again, ,$ is an effective distance between colli- 
sions, but with the average terrace width 1 re- 
placed by the width w of the terrace-width distri- 
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bution, i.e., the root mean-square deviation of a 
single particle in a (1D) harmonic potential: 

k,Tb2( T) 1’4 

i 
SU”( Z)a,, ’ 

(32) 

As one increases the strength of step-step repul- 
sions, w decreases, increasing the correlation 
length and decreasing the width of the diffraction 
profiles. With significant A/x2 repulsions, the 
thermal scaling of the widths of these profiles, 

a: 5-l, varies as bT-‘I* rather than b2. If, in- 
stead, U(I) a In(l), then the scaling with respect 
to misorientation angle will change to [- ’ a 1, 
compared to 1* in the free or A/x2 case. 

Eq. (31) can be expected to be a reasonable 
representation of the correlation length only when 
w < 1. When the potential is so weak (or the 
temperature is so high) that w becomes compara- 
ble to I, the non-interacting expression of eq. (26) 
becomes appropriate. (If the temperature is so 
high that b is comparable to I or w, neither 
equation is valid.) 

The above results suggest that, over most of 
the surface Brillouin zone, S(k,) for interacting 
steps will have the same general behavior as the 
non-interacting steps presented in the preceding 
section, except with eq. (31) replacing eq. (26). Of 
course, this Gruber-Mullins picture is only ap- 
propriate at large k,, when the intensity quickly 
becomes too weak to be measured accurately: At 
smaller k, the power-law divergence appears, 
and, as discussed by Saam [32], n will be different 
from the noninteracting case considered here. 
Indeed, n for interacting steps will be tempera- 
ture dependent (and the resealing of figs. 5 and 8 
will fail): at low enough temperatures the power- 
law singularity can be replaced by a S function - 
the vicinal surface can become a high-Miller in- 
dex facet on the equilibrium crystal shape [39]. 
(In this case one would expect the Gruber-Mul- 
lins approximation for S(k,), with its S function, 
to provide an even better account of the structure 
factor.) 

The dependence of the aspect ratio c,/cY on 
T and E should also change when strong repul- 
sions are present. To assess this effect, we sup- 
pose that the primary effect of the step repulsions 

is simply to forbid small terrace widths. A natural 
gauge of this local inhibition is the terrace width 
distribution. If one simply scales all of the step 
fluctuations by the width of the distribution, in- 
stead of eq. (28) one has 

gx(z, Y) = 
w2(A) /*q(A=O) 

w*(A= 0) r* 

z 2 
xln i() 1 h + 

w”( A = O)n-k,Ty * 

II 
w*(A)jY* ’ 

(33) 

To test this equation, we consider the special case 
of inverse square interaction with amplitude ?A 
= 2(k,T)2. The long-range correlations for this 
model are known exactly from the work of 
Sutherland [40]: the amplitude of the logarithm is 
exactly half of the non-interacting case. From 
previous numerical work [41] we know that w* is 
smaller by a factor of 2.18 than the free-fermion 
model, roughly verifying the prefactor of eq. (33). 
Fig. 12b tests the predictions of eq. (33) for the 
asymmetry. Notice that in this picture (and as 
confirmed by our simulations), step-step repul- 
sions both decrease the value of n in eq. (33) and 
the asymmetry by the same amount. Since we 
have also shown previously that a reasonable 
approximation to w2 is given by eq. (32), the 
influence of interactions on the profiles can be 
readily estimated. Of course, this analysis fails 
when the interactions become strong enough that 
the system approaches its roughening tempera- 
ture, which can be expected to occur when w 
becomes on order of a I . (This Lindemann-like 
criterion for the roughening temperature of vici- 
nal surfaces is consistent with the analysis of ref. 
[12] - in particular, eq. (38) of ref. [12] amounts 
to w(TR>=a,, in our notation.) 

As an application of eq. (33), we consider 
again the diffraction measurements of Noh et al. 
[9l on high-temperature Si(ll1). Alfonso et al. 
[251 have measured terrace width distributions on 
these0 surfaces. Analyzing steps spaced more than 
200 A apart, they find that w = 0.331, compared 
to the free-fermion model result of w = 0.421 
[411, thus revealing repulsive step-step interac- 
tions. If one extrapolates this result down to the 
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55 A separation studied by Noh et al., based on 
eq. (33) one would have expected a measured n 
of (0.33/0.4212 or 0.6 of the value of 0.5 for the 
free-fermion model. This deduction is in direct 
conflict with experiment [9], where r] is observed 
to be 2.7 times as large as the free-fermion result 
[42]. This disagreement suggests that the result of 
Alfonso et al. for the terrace width distribution 
cannot be extrapolated down to small distances. 
Notice, however, following the discussion of the 
preceding section, that the factor of 0.6 change in 
the asymmetry of the spots predicted by eq. (33) 
causes the measured asymmetry to be closer to 
what one would expect from the measurement of 
Alfonso et al. for T. 

5. Conclusions and implications for analysis of 
experiments 

We now make some observations about how 
one might analyze experimental diffraction data 
on the basis of the above analysis. The compari- 
son of fig. 10 of the Gruber-Mullins model pro- 
files with the Monte Carlo data suggests that one 
might attempt to fit S(k,) to a simple Lorentzian 
at large k,. When the step-step interactions are 
weak, the correlation length one obtains from this 
fit can be simply interpreted in terms of the step 
diffusivity of eq. (2). Given a model for the kink 
Hamiltonian, the diffusivity can be used to ex- 
tract estimates of the kink energy. We again 
caution, however, a Lorentzian will poorly ap- 
proximate the profiles at small k,: indeed when 
one approaches the half width of the Lorentzian 
fit, the fit should fail. 

An alternate procedure, outlined in an earlier 
publication [43], would use the fact that the en- 
tire shape of the scaled profile does not change 
with T. By experimentally determining the rescal- 
ing necessary to collapse the profiles onto a single 
curve, one would obtain a quantity proportional 
to yco,,(E, T). An Arrhenius plot in the low-tem- 
perature limit, for example, of this quantity could 
then be used to estimate kink energies. (One 
should note, as shown in fig. 3, that the exponen- 
tial dependence of ycol, on the temperature is 

only true of high-symmetry directions.) This pro- 
cedure has the advantage of using all of the 
information in the profiles, and not necessarily 
requiring complicated fits of the data. Also, as 
discussed in the preceding section, failure of the 
profiles to scale at small k, would be a signature 
of significant step interactions. 

Another approach would involve using a tech- 
nique such as STM to determine b and step 
interactions directly [2,4]. Then diffraction mea- 
surements of t(T) could be used, through eqs. 
(26) and (311, to check that the temperature evo- 
lution is consistent with hypotheses of thermal 
equilibrium. (Since surface self-diffusion is usu- 
ally limited at temperatures where conventional 
STM can be performed [3], it is by no means 
certain that equilibrium is being observed.) 

The small range of k, where power-law line- 
shapes are evident in our calculations under- 
scores the difficulty of determining n from exper- 
imental probes: only at length scales larger than 
the correlation length given by eq. (26) (or pre- 
sumably eq. (31)) does the logarithmic behavior 
of stepped surfaces become apparent. Being able 
to distinguish the power-law behavior of a rough 
surface from a delta function plus Lorentzian of 
eq. (25) requires instrumental resolution much 
larger than 5. (For example, given estimate for f 
of lo-‘” J m-’ by Alfonso et al. [25] for high- 
temperature Si(lll), one would estimate ycO,, of 
- 600 A for the 3.3” vicinal Si(ll1) surfaces stud- 
ied by X-ray diffraction by Noh et al. [9]: most 
low-energy electron diffraction instruments would 
have insufficient resolution to probe these length 
scales.) 

The Gruber-Mullins model is used for other 
properties besides the transverse step-edge corre- 
lations. For example, it accurately gives the form 
of the orientational dependence of the increase 
of the surface free energy of vicinal surfaces 
[39,44]: at low temperatures the exact free energy 
per unit length per step (viz. 1 times that per 
area) has the form f(f) =f(O) + b2r2/1212 [441, 
compared to the Gruber-Mullins result (obtaina- 
ble from E, given just after eq. (9)) of f(Z) =f(O) 

+ b2a2/812. We have also found it to yield satis- 
factory estimates of terrace-width distributions 
[23,34]. Thus, it is a ready source of at least 
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semiquantitative information about vicinal sur- 
faces. 

An important issue which we have not ad- 
dressed here is the question of whether it is 
reasonable to expect thermal equilibrium to be 
realized in experimental systems. Although it is 
reasonable that the local kink structure can equi- 
librate quickly, large length scale behavior equili- 
brates slowly (especially if the only mechanism is 
surface diffusion) [45]. Thus, one must exercise 
caution in attempting to interpret large length 
scale behavior in terms of equilibrium theories. 
(For example, a linear density of order merely 

l/YCOH of quenched impurities along the step 
edge would presumably destroy the logarithmic 
divergence of step position correlation functions, 
making it difficult to observe experimentally [46].) 
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Appendix 

We consider here the height correlation func- 
tion 

g,(y) =(My> -ml'). 

analyzed by Villain et al. 1121. Rather than mea- 
suring the meanderings of a step, this function 
gauges how many terraces apart are two points 
separated by y, but with the same value of x. At 
small y this is just the probability that the points 
are on neighboring terraces, i.e., that a step 
crosses between them. If we assume that the 

probability of finding a step between x and x + 
dx is just I-‘, then the chance is I-’ exp(-x,/l) 
that the first step to the left of (0, 0) lies at 
c-x,, 01. The chance that this step meanders to 
(x,, y), on the right of (0, y), is Gaussian in the 
separation: [2ng,(y)]-‘I* exp[-(x, + x,)*/ 
2g,(y)], where g,(y) denotes the mean-square 
separation. Thus, the overall probability of a step 
crossing from left of (0, 0) to right of (0, y) is the 
double integral (over both x0 and xy, each from 
0 to m> of the product of these expressions. Ex- 
panding the resulting error function, using eq. 
(21, and multiplying by two since the step could 
just as well cross from the right of (0, 0) to the 
left of (0, y), we find 

bh* /-%- 

as given in the text. This behavior is obviously 
qualitatively different from that of g,(y). 
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