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We have performed Monte Carlo simulations of the diffraction from simple two-dimensional models of vicinal surfaces in order 

to aid interpretation of measured diffraction profiles. At low temperature, we find the sharp diffraction features predicted from the 
analogy of stepped surfaces with two-dimensional incommensurate phases. These sharp features vanish only near the roughening 

temperature of the low-index surface corresponding to the terraces between steps. If one fits experimental data having sharp 
diffraction features to models of step disorder which do not include the ordering influence of step wandering, one can severely 

overestimate the amount of disorder. We emphasize that long-range correlations in step positions are more important than the local 
order in step edge structure or step separations for interpreting sharp diffraction features from steps. After much theoretical effort, it 
has become well-established that asymptotically the height-height correlations for rough surfaces diverge logarithmically (with a 
prefactor having a universal component at low temperature). We show explicitly how to use diffraction data to access this behavior 

for stepped surfaces. In the process, we evaluate the accuracy of a popular approximate expression for the diffracted intensity. 

1. Introduction 

Steps on surfaces play an important role in 
many surface processes. To understand these 
processes the characterization of the configuration 
of steps is necessary. In particular, one would like 
to determine from diffraction experiments such 
quantities as. the disorder in step edges and the 
fluctuations in the distances between steps. Unfor- 
tunately, such analysis of distribution functions 
from measured diffraction profiles is fraught with 
problems of non-uniqueness. Thus to provide a 
basis for interpreting experimental results, we dis- 
cuss the expected diffraction signatures for vari- 
ous physical models which might govern step be- 
havior under experimental conditions. For stepped 
surfaces below the roughening temperature of the 
nearby low-index surface, the fundamental source 
of disorder in thermal equilibrium is step wander- 
ing. As we shall illustrate throughout this paper, 
the equilibrium step behavior cannot be predicted 
correctly in a one-dimensional description, since 
step wandering is omitted by definition in one 
dimension. In this paper we address the problem 
of characterization of equilibrium step behavior 

by computing the diffraction from simple model 
surfaces using the Monte Carlo method. 

Diffraction experiments are most sensitive to 
step disorder at conditions where neighboring ter- 
races scatter out-of-phase [l]. At out-of-phase con- 
ditions, straight steps which are arranged in a 
perfectly ordered staircase will give rise to “split 
beams”, the spacing between the split beams being 
proportional to the inverse of the step spacing. 
The introduction of step wandering into the step 
configuration will broaden these beams. The 
amount of step disorder consistent with a diffrac- 
tion pattern with well-defined splittings, i.e., with 
a well-defined step periodicity, has been the sub- 
ject of a number of discussions based on purely 
statistical one-dimensional models [2], without ad- 
dressing the issue of the physical mechanisms re- 
sponsible for the disorder. In devising models of 
step disorder, it is important to respect the behav- 
ior one expects for correlations in the step posi- 
tions. Step distributions which arise from a one-di- 
mensional statistical mechanical model with a 
given set of interactions will have much smaller 
height-height correlations than one expects of a 
two-dimensional surface described by the same 
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interactions, and, as a result, the splittings will be 
less well-resolved [or absent] in the 1D case than 
in the 2D case. In this paper we present the results 
of an explicit computation of the scattering from 
very simple two-dimensional statistical mechanical 
models of vicinal surfaces, which show that there 
are well-defined splittings in situations where there 
is considerable (short-range!) step disorder. The 
reason for this behavior is that two-dimensional 
step wandering enhances correlations between the 
positions of steps due to an effective entropic 
repulsion [3]. This result, although perhaps 
surprising in the context of the one-dimensional 
results, follows naturally from the analogy of vici- 
nal surfaces with incommensurate phases; two-di- 
mensional incommensurate phases can lead to dif- 
fraction features which are difficult to distinguish 
from true Laue B-functions [4]. Our work is simi- 
lar in spirit to the Monte Carlo work of Selke and 

Szpilka for high-Miller-index surfaces near the 
roughening transition [5]. We differ in that we 
consider surfaces with larger step separations, and 
with no direct energetic interactions between steps. 

kink (TSK) model [3]. In the SOS model, the 
height at each site q of a two-dimensional square 
grid is described by an integer variable h(q). The 
hamiltonian has the form 

ffW(r;H) = ; c lh(r,) -h(r,) I, 
(ii) 

where the sum is over only nearest 
sites and e is the energy cost of 

neighboring 
a “ broken” 

nearest-neighbor bond on the surface. In a two-di- 
mensional model, e is also the energy for forming 
a “kink” [3] at a step edge. This model includes no 
energetic interactions between steps, except for 
implicit hard-core exclusions, and thus is the sim- 
plest model of equilibrium step behavior. We have 
performed Monte Carlo simulations of this model 
on grids of dimension Lx X L,. To obtain a surface 

with L, steps, we used the following screw 
boundary conditions: 

h(x+L,, y)=h(x, y)+LL,, and 

+, y+L,,) =h(x, y). (2) 

(1) 

2. The solid-on-solid and terrace-step-kink models 
of stepped surfaces 

The models we consider are the standard solid- 
on-solid (SOS) model [3,6] and the terrace-step- 

For the most extensive of our computations, we 
took Lx = L,= 128 and L,= 16. This corre- 
sponds to a mean step separation of I = LX/16 = 8. 
If we view our model as vicinal to the (100) face of 
a cubic crystal, these parameters correspond to an 
angle of miscut + = 7.1 O. Fig. la shows a sample 
Monte Carlo configuration of the SOS model vici- 
nal surface at k,T = 0.7~. 

Fig. 1. Sample Monte Carlo configurations of surfaces of dimension 128 X 128, with average terrace width of eight lattice constants at 

k,T= 0.7~: (a) the SOS model. (b) the TSK model. 
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The terrace-step-kink model is a simplifica- 
tion of the SOS model, in which the terrace excita- 
tions are not allowed: the only thermal excitations 
are “kinks” in the step edges. In the particular 
model we consider in this paper, each unit length 
of each step costs energy c. (Thus E is the kink 

energy.) At low temperature one expects that the 
SOS model and this version of the TSK model will 
yield identical results because the lowest energy 

excitations of the SOS model are the excitations of 
the TSK model. (Terrace excitations of the SOS 
model cost 4c.) The correspondence between these 

models is clear in fig. lb, which shows a typical 
Monte Carlo configuration of the TSK model at 
the same temperature as the SOS configuration in 
fig. la. At high temperatures, however, one does 

z 

p_,g+:! 
Fig. 2. The coordinate system used in this paper. The displace- 
ment of each step in the TSK model from its average position 

is given by U(P, y). 

expect differences, especially above the roughen- 
ing temperature of the low-index surface of which 
the terraces are composed. The evolution of these 
differences will be illustrated below. 

0.06 

0.0 

4. 

0.50 I 

0.0 

4x 
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Fig. 3. (a) Computed diffracted profiles at an out-of-phase condition for four models. The solid line is for zero temperature (straight, 
non-interacting steps). The crosses and circles are for the SOS and TSK model, respectively, at k,T= O.k. At this temperature the 

two models have the same scattered intensity, to the accuracy of our calculations. (b) Intensity expected for perfectly ordered steps 

for comparison. q, is in units of s/a, where a is the lattice constant. 
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3. The role of step wandering on diffraction 
features 

To mimic diffraction from vicinal surfaces, we 
compute the scattered intensity in the kinematic 
approximation as a function of the outgoing 
momentum k at fixed incident momentum k,. In 
particular, we compute the kinematic structure 
factor: 

S(q) = c P[X (1 

X3Y 

ex 1 q,x+qY_v+qzh(x7 vi)]~2)T 

(3) 

where q = k - k, is the momentum transfer in 
units of reciprocal lattice constants. Our coordi- 
nate system is defined in fig. 2: f and j are in the 
plane of the terraces, with f perpendicular to the 
step edges, and i is the terrace surface normal. 
For concreteness we assume normal incidence to 
the vicinal surface (i.e., the incident beam is at an 
angle $ with respect to the i-direction as in fig. 2) 
so that q, = k, - k, sin 9, qv = k, and q, = k, + 
k, cos C#B, with kz + kz + kz = k$ Near the specu- 
lar beam (i.e., qx = 0 and qY = 0) in-phase condi- 
tions (q, = 2an) - with unsplit diffraction beams 
- then occur when k, = nv/cos 9; out-of-phase 
conditions - split diffraction beams - occur when 
k, = (n + $)v/cos 9. 

At zero temperature, no thermal excitations 
occur, so the ground states of these models are 
composed of straight steps placed at random posi- 
tions; the hamiltonian of eq. (1) does not prefer 
any particular step-step separation. Onfy in this 
pathological case are the one- and two-dimen- 
sional models equivalent. The degeneracy of the 
ground state leads to an exponential distribution 
of step widths. The diffraction from this type of 
distribution is discussed in ref. [2]. When neigh- 
boring planes scatter out-of-phase, the scattered 
intensity has a Lorentzian shape, as shown by the 
solid line in fig. 3a for the out-of-phase condition 
k, = 3~/(2 cos $): the splitting expected for per- 
fectly ordered steps (fig. 3b) does not occur. This 
lack of a well-defined splitting is a general result 
for one-dimensional models with interactions 
which are much shorter than the average terrace 
width, 1. Thus, in a 1D model, it would be neces- 

sary to include energetic long-range step-step in- 
teractions explicitly to explain experimentally ob- 
served splittings. Such energetic interactions are 
not necessary in a 2D model. 

We computed S(q) for the TSK and SOS mod- 
els using standard Monte Carlo methods. The 
starting Monte Carlo configurations usually con- 
tained a random distribution of straight steps. We 
performed several runs at each temperature; in 
each run we performed 2 x lo5 to 2 x lo6 Monte 
Carlo steps per site, accumulating averages every 
10 to 40 steps. Typically - 2 x lo4 steps were 
required for equilibration. (Long runs of this length 
are needed because of the long-range correlations 
characteristic of vicinal surfaces: see below.) By 
comparing the results from several different runs, 
we estimate our computed diffraction profiles are 
accurate to better than approximately 5%. 

The crosses in fig. 3a show the diffracted inten- 
sity at an out-of-phase condition, computed for 
the SOS model at k,T = 0.7c, the same tempera- 
ture as the configuration shown in fig. la, where 
there is considerable disorder in the step edges. 
The diffracted intensity, however, shows a well-de- 
fined splitting. Thus, rather remarkably, the step 
wandering arising from kink formation sharpens 
the corresponding diffraction pattern. This shar- 
pening is a consequence of the long-range entropic 
repulsion between steps [7]. This repulsion makes 
the surface more ordered, in the sense described in 
the next section, at finite temperature (when step 
wandering occurs) than at zero temperature, where 
the behavior is that of a 1D system. The circles in 
fig. 3a also show the corresponding diffraction 
profile for the TSK model (cf. fig. lb). At this 
temperature, to the accuracy of our calculation, 
there is no difference between the TSK and the 
SOS model. 

4. Approximations to the shape of the diffracted 
profiles 

In the previous section, we showed that well-re- 
solved beam splittings can be produced by steps 
wandering thermally, even in the absence of en- 
ergetic step-step interactions. We now ask what 
are the quantitative signatures of such freely 
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wandering, equilibrated step structures which 
would appear in measured diffraction profiles. To 
answer this question, we invoke the statistical 
mechanical analysis common to models of incom- 
mensurate structures and of surface roughening. 

The shapes of the diffraction profiles for vicinal 
surfaces in equilibrium can be estimated from 

knowledge of the asymptotic form of surface height 
correlation functions, using the assumptions of 
Villain et al. [8]. By assuming a Gaussian distribu- 
tion of the displacements u(z, Y) of the steps 

about their mean positions (see fig. 2), S(q) can 
be written in terms of the correlations of the 

displacements (see fig. 2), g(z, Y) = ((u(z, Y) - 

u(O, 0))2): 

(1 - cos 4;) 
s(q) = (1 - cos q,) 

&GCexp(i[q,y 
y,z 

+(4, + 4,+] - d&+* YWj. 
(As written this equation is only valid when 1 q, 1 
-z-c 2m, a condition which is upheld in the calcula- 
tions near the specular beam presented here.) This 
equation reveals that for the diffracted intensity 
what is important near the peaks is not so much 
local step disorder, but the long-range correlations 
in the positions of the steps. Whether or not there 
are sharp diffraction features at an out-of-phase 
condition will depend on the behavior of g(z, Y) 
at large I, not necessarily, for example, on the 
terrace width distribution. 

O/C 4 5 6 7 a 

Fig. 4. Comparison between calculated step displacement COT- 
reiations (circles) and the prediction of eq. (5) for large z with 
c; = 5.0 and X = 0.040 (solid line). z and u are in units of 

lattice constants. 

For one-dimensional models with short-range 
forces, one expects g(z, Y) to diverge linearly 
with z (in analogy with one-dimensional random 
walks). This leads (through eq. (4)) to Lorentzian- 
like peaks, which are generally shifted from their 
positions when the surface is perfectly ordered, as 
illustrated in fig. 3a. For two-dimensional surfaces 
in thermal equilibrium, g(z, Y) is expected to 
diverge only logarithmically at large z, y [8]: 

g(z, Y> = ((u(z, Y) - u(O, ON*) 

- Zln( 
sin2t$ 

cfz’ + c.; y2 ). (5) 

The parameter X is a measure of the rate at which 
the correlations decay with step separation. X = 0 
corresponds to a stepped surface with long-range 
step order, i.e., a facet on the equilibrium crystal 
shape. As shown in fig. 4, a fit of Monte Carlo 

results for the TSK model at k,T = 0.86 to the 
form of eq. (5) for y = 0 yields c, = 5.0 and X = 
0.040. (The failure of the fit at large z is presuma- 
bly due to finite-size effects: because the periodic 
boundary conditions g(z, y) = g(16 - z, y) which 
reduces the value of g at large z.) The values of X, 

c,, and cu in general depend on temperature and 
angle of misorientation. However, as discussed 
below, reasonable estimates of their values can be 
made. 

For TSK systems with short-range interactions 
between steps, X takes on a universal (tempera- 
ture-independent) value in the limit of small 9. 
This number can be computed from results in ref. 
[9]: the form of the height correlations perpendicu- 
lar to the surface plane (not the terrace) is: 

((S(x’, Y) - l(O7 O))*) = -$lnjc~~‘2 + c.ty*), 

(6) 

where l(x’, y) is the height of the vicinal surface, 
above (x’, y) on the average surface plane (see 
fig. 2). By assuming that 1 {(x’, y) 1 c I x’ I (as 
expected on the basis of eq. (6)), one obtains eq. 

(5) with X= X, c 1/4m2 = 0.025. X, is smaller 
than the number we observe, but of the same 
order of magnitude. 

The values of c, and cv are nonuniversal and 
will depend on the temperature, i.e., on the amount 



154 N.C. Bartelt et al. / Diffraction from stepped surfaces in thermal equilibrium 

of step wandering, and the strength of the en- 
ergetic interactions between steps. The value of c, 
can be roughly estimated from eq. (5) by assuming 
that the asymptotic form is valid down to z = 1. 
This assumption has been shown to be good for 
SOS models of unstepped surfaces, for example 
[lo]. Thus we estimate 

c, = exp[((u(l, 0) - u(O,O))‘) sin2$/4X], (7) 

i.e., c, depends exponentially on the mean square 
deviation of the terrace width about its mean 
value. This number can be straightforwardly com- 
puted exactly at low temperatures by, for example, 
applying the free fermion approximation to the 
TSK model [ll]. One finds that ((~(1, 0) - 
~(0, 0))2) = 14.6 for a mean step separation of 
I=8 (and = 0.18(1+ 1)2 in the limit of large f) 
compared to the value of 16.5 found in the fit in 
fig. 4. The value of cY governs the shapes of the 
beam profiles perpendicular to the direction of 
splitting (see below). For steps which do not have 
energetic intractions with each other, one expects 
[7,11]: 

cg a (l/b)* a 1' exp(e/kT), (8) 

where b is the root-mean-square size of each kink 
perpendicular to the step edge. Notice cv depends 
sensitively on the amount of step wandering and 
hence temperature (while c, does not, at least for 
TSK systems with no energetic interactions be- 
tween steps [ll]). By measuring the temperature 
dependence of cv one can estimate kink energies, 
as described in a forthcoming publication [ll]. 
The relationship between step wandering and the 
form of diffracted profiles transverse to the split- 
ting direction has been considered in ref. [12] for 
the case of energetically interacting steps. 

An equation useful for analyzing beam profiles 
can now be derived by using eq. (5) in eq. (4) to 
give [13]: 

S(q) = &I c [i 
q,l+ 9; - 2an 2 

n.m CZ 1 
2 -(2-VI/2 

+ 
qy - 2mm 

i )I CY 
(9) 

with 

17 = 2 Xq,/sin’+, (10) 

and 

z, = 2n3’2 
&L,(l - cos(qJ) 

C&,(1 - cos(qJ) 

These equations can be used to evaluate beam 
profiles parallel to the direction of splitting (i.e., 
where qy is a constant) without the need for the 
parameter c_~. The primary information obtained 
from such analysis concerns the range of the 
step-step correlations, as gauged in terms of the 
value of X (cf. eq. (5)). Eq. (9) is only valid when 
n < 2; n goes to zero in the limit of ordered steps. 
As expected for vicinal surfaces, the structure fac- 
tor has the form characteristic of rough surfaces: 
power law divergences near the reciprocal lattice 
rods of the perfectly ordered surface. The full 
widths at half maximum of these peaks are zero: 
experimentally the widths will only be limited by 
instrumental resolution (or surface imperfections!). 
The value of n determines how sharp the dif- 
fracted peaks are. The peaks are especially dif- 
ficult to distinguish from B-functions when n is 
small. In the limit of small angles (I-’ = tan + = 
sin C#I) one expects that n will be approximately f 
for the TSK model at out-of-phase conditions: 

4, = v/l, so that 17 = 2X,,v2 = f . This value should 
be universal in the sense that it is independent of 
such details as kink geometry and step height. 

0.0 

% 
Fig. 5. Comparison between Monte Carlo calculation of the 
diffracted profile for the TSK model at k,T= 0.8~ (circles) 

and the asymptotic theory of eq. (9) with c= = 5.0 and X = 0.040 

(solid line). 
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Fig. 6. Finite-size effects on the scattered intensity for the TSK 
model at k,T= 0.8~. The circles correspond to lattices size 
128 X 128, crosses to 96 X 96, to 64 X 64, squares diamonds to 

48 X 48, and triangles to 32 x 32. is in units q, of n/a. 

However (see section 7), it will depend on the 
range of step-step interactions. 

Fig. 5 shows that there is good agreement be- 
tween the form of S(q) predicted in eqs. (9)-(11) 
and the Monte Carlo results for the TSK model at 
k,T = O.&, using the values of c, and X found 

from fig. 4. The value of cY, which just determines 
the overall scale of the predicted curve parallel to 
the splitting direction, was chosen to give the best 
fit to the Monte Carlo data. 

The computed peak intensity of the split beams 
does not diverge in fig. 5 because of finite-size 
effects. As the simulated system gets larger, the 
intensity of the split beams gets larger. This effect 
is shown in fig. 6, where the diffracted intensity 
for various L = L, = L, is shown for the TSK 
model at k,T = 0.8~. The intensity in these plots 
is normalized per unit area. The intensity away 
from q, = km/l converges quickly, while the in- 
tensity at q, = &n/l increases with L. If the 
structure factor became a a-function in the in- 
finite system limit, one would expect this intensity 
to diverge like L*. For a power-law diffraction 
peak as given by eq. (9), finite-size scaling theory 
[14] predicts a divergence like L*-?o, where Q = 
2X7r2(/* + l)//* is the value of n given by eq. 
(lo), evaluated at the values of q, at the out-of- 
phase condition. Analysis of the intensities at q, 

= *T/I from the data in fig. 6 yields q0 = 0.8 + 
0.1, consistent with the value of X found in fig. 4. 

In real experiments, this divergence will be masked 
by instrumental resolution. Diffraction instru- 
ments with finite spatial resolution will yield dif- 

fracted profiles without the singularities of eq. (9). 
However, increasing the instrumental resolution 
will cause the (normalized) peak intensities to 
increase in manner analogous to the finite-size 
increase of fig. 6: the peak intensities should di- 
verge like Lieso [15], where L, is the “transfer 
width” of the instrument (compared with the L: 
divergence expected for a S-function peak). We 
again emphasize that one-dimensional models with 
short-range interactions do not have these diver- 
gences. 

The previous discussion presents the form of 
the diffraction profiles for the equilibrium step 
structure with the largest amount of local dis- 
order: non-interacting steps. We also mention the 
two limiting cases of very strong attractive or 
repulsive interactions. Attractive interactions can 
cause steps to coalesce to form a faceted surface. 
Repulsive interactions will stabilize the vicinal 

orientations and increase the step order, thus de- 
creasing X and sharpening the profiles. In the 

limit of very strong repulsions, X becomes zero 
and the vicinal surface corresponds to a facet. 
Such a surface, containing an ordered staircase 

step structure, would also have sharp, albeit weak, 
diffraction peaks near q, = + 3m/l, + 5r/l,. . . as 

shown in fig. 3b. These peaks are much more 
sensitive to disorder than the q, = +m/l peaks 
discussed above. This sensitivity can be clearly 
seen from eq. (10): the values of 17 at these posi- 
tions are very large at out-of-phase conditions: 
9=’ 25 

29 2 , . . . . When v is larger than 2, analysis of 
eq. (4) reveals that there are no divergences in 
S(q). Correspondingly, our simulations show oery 
small intensities at the higher-order diffraction 
conditions. Observations of sharp diffraction fea- 
tures at these conditions are thus grossly incon- 
sistent with the type of thermal disorder antic- 

ipated on the bais of models of surfaces contain- 
ing weakly interacting steps. As an application of 
this idea, the sharp higher order diffraction beams 
visible on Ge(ll1) misoriented by 10” towards 

the [ii21 direction, would suggest that fig. 1 would 
hardly be an accurate description, despite the rela- 
tively small angle of misorientation [16]. 
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0.04 - 

a) 

Fig. 7. SOS model diffraction profiles at an out-of-phase condition as a function of temperature. (a) A surface plot showing the large 
decrease in intensity near the roughening temperature of an infinitely large terrace (k,Ta = 1.2~). (b) Several high temperature 

profiles are coplotted. Crosses correspond to kaT= 1.2r, squares to k,T= 1.3r, triangles to k,T= 1.4c, and circles to k,T= 1.5~, 

respectively. The double-peaked nature of the diffracted profiles does not disappear until above /caTa. 

Fig. 8. SOS model surface configurations as a function of temperature for the same range of temperatures as in fig. 7: (a) kaT = 0.8c, 
(b) k,T= 1.06, (c) kaT= 1.2~, (d) k,T= 1.46. For clarity only surfaces of dimension 64 x 64 are shown, compared to the 128 X 128 

surfaces used in computing the diffracted profiles. 
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Fig. 9. TSK model diffraction profiles at an out-of-phase 
condition for the same range of temperatures as the SOS model 
given in fig. 7. The changes are much smaller because the lack 

of terrace excitations reduces the decay of height-height corre- 
lations. q, is in units of Ir/a. 

5. Temperature dependence of the diffracted 
profiles 

From eqs. (9) and (lo), the smaller the value of 
X the sharper the diffraction features at out-of- 
phase conditions. As one increases the number of 
terrace excitations in the SOS model by increasing 
temperature, one expects the value of X to in- 
crease [17]. The effect of this increase is illustrated 
in fig. 7, which shows a sequence of diffraction 
profiles at an out-of-phase condition. As the tem- 
perature is raised, the intensity of the peak split- 
tings gradually becomes smaller, but still easily 
visible. On the other hand, fig. 8, which contains 
corresponding sample SOS surface configurations, 
shows clearly that considerable surface disorder is 
present under conditions showing split diffraction 
features. Even near the roughening temperature of 
the (100) facet in this model (k,T, = 1.24~ [6]) 
where steps are barely discernible (or even defina- 
ble [3]) there is still a well-defined splitting. Only 
above the roughening temperature of the (100) 
facet does the splitting vanish. 

Fig. 9 shows the peak intensity of the split 
beams at an out-of-phase condition as a function 
of temperature for the TSK model. The splittings 
in the profiles for the TSK model persist to large 
temperatures, and have a shape which is largely 
temperature-independent. This behavior is con- 

sistent with the expected universality of X in the 
limit of small misorientation angles below the 
roughening temperature of the + = 0 surface: since 
the terraces do not roughen in the TSK model, X 
should not vary much for small but finite angles. 

6. Energy dependence of the diffracted profiles 

To demonstrate that a stepped surface is in 
thermal equilibrium, one must show that the dif- 
fraction profiles have the power-law divergences 
of eq. (9). To determine the nature of the step 
interactions, it is necessary to determine the 
strength of the step correlations by measuring the 
value of 77. In principle, one could extract 9 and 
thus X from experimental diffraction profiles by 
directly plotting log S versus log(qJ + q2 - 2an). 
The strong dependence of n on qx in eq. (10) 
makes this procedure ineffective for experimen- 
tally accessible ranges of q,: the log-log plots are 
far from linear over the range of q, shown in fig. 
3. A better approach [ll], sometimes used in stud- 
ies of surface roughening, is to analyze profiles at 
constant q, [18]. Here we describe an alternative 
approach based on the analysis of the peak inten- 
sities as the incident energy, i.e. q,, is varied. 

0.0 

q. 
Fig. 10. The dependence of diffracted intensity of the TSK 
model on incident momentum at k,T= 0.8~. qx and qz are in 
units of v/a. The baseline of each of the curves is displaced by 
Aq, = O.O5n/a as shown on the right-hand axis. Intensities 
were calculated at intervals of Aq, - T/L,; thus, the discon- 
tinuities in the curves are a computational artifact. Notice the 

sharp drop in intensity near the out-of-phase condition. 
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Fig. 11. The diffracted intensity at q,l+ q, = 277 for the TSK 

model at kT = 0.8~ (circles) as a function of the q, of the peak 

position, compared to the variation for a perfectly ordered 

staircase (solid line). q, is in units of ?r/a. 

Fig. 10 shows the dependence of the scattered 
intensity near q, = 0 as the incident energy is 
varied from an in-phase condition through an 
out-of-phase condition to the next in-phase condi- 
tion. The behavior of these profiles reveals several 
features predicted by eq. (9). First, the intensity of 
the beams diminishes rapidly as the position of 
the peak approaches r/Z, its value at the first 
out-of-phase condition. (If the surface were per- 
fectly ordered, one would likewise expect a decay 
with increasing q,. However, this decay is signifi- 
cantly slower than the behavior we observe, as 
indicated by the solid line in fig. 11.) Eq. (9) 
predicts that there will be no singularity in the 
diffracted intensity when n = 2, i.e., when q, = 

sin +/X1/* (cf. eq. (10)). As shown in fig. 11, our 
Monte Carlo simulations show no intensity in the 
split beam when 1 q, / > 1.49r/1= O.l75r/a. If one 
interprets the disappearance of the peak as indi- 
cating n = 2, this observation yields the estimate 
of X = 0.05. This X is consistent with the value of 
X deduced above from direct observation of the 
height-height correlation function, and also from 
finite size scaling. Thus we have a straightforward 
way of estimating the value of X, or at least for 
putting an upper limit on its value, without perfor- 
ming fits to diffracted profiles. This method might 
be difficult in LEED because multiple scattering 
complicates interpretation of the dependence of 
scattered intensities on incident electron energy. 

7. Discussion 

In this paper we have shown that even in the 
absence of energetic step-step interactions, steps 
in thermal equilibrium give rise to sharp diffrac- 
tion features, the full widths at half maximum of 
the beams at out-of-phase conditions being limited 
only by instrumental resolution: Ultimately the 
sharpness of the beams is determined by the long- 
range correlations in surface height (through eq. 
(4)). In a two-dimensional description, the diver- 
gences one expects for these correlations (because 
of step wandering) are relatively small (i.e. loga- 
rithmic, cf. eq. (5)). One thus must be careful in 
trying to relate beam broadening to short-range 
quantities such as terrace width distributions, as is 
done, for example, in refs. [2] and [19]. In particu- 
lar, many different possible height-height correla- 
tions can arise from the same distribution of 
terrace widths. For example, in the one-dimen- 
sional model, the same distribution of terrace 
widths which yields the unsplit diffraction profile 
in fig. 3a, could equally yield &functions if one 
imposed an additional constraint restricting 
surface height fluctuations, i.e., by hypothesizing 
correlations between neighboring terrace widths. 
Such a constraint could be supplied by restricted 
surface diffusion. 

When interpreting experimental diffraction 
profiles in terms of the types of statistical mecha- 
nical calculations presented here, an important 
caveat concerns the question of equilibrium. 

Surfaces are usually prepared under conditions 
which are very far from equilibrium. For example, 
stepped Si surfaces, which have been the subject 
of intense scrutiny lately [20], are usually cleaned 
by heating to temperatures at which a large amount 
of sublimation occurs. High-energy reflection elec- 
tron microscopy has shown clearly that step struc- 
ture at these temperatures can be dominated by 
kinetic effects [21]. It is far from obvious that an 
equilibrium configuration will occur when one 
cools, especially when the steps are widely spaced. 
Whether or not the surface is in equilibrium will 
depend on surface diffusion, which is generally 
poorly characterized. The question of whether 
kinetically determined surfaces would give rise to 
sharper or more diffuse diffraction features than 
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the ones presented here is also difficult to answer 
a priori: there are plausible kinetic mechanisms 
which can cause surfaces to be rougher [22,23] or 
smoother [24] than they would be in equilibrium. 
However, our calculations do show that even when 
steps do not interact with each other energetically 
over large distances, sharp diffraction features are 
generally expected from stepped surfaces in equi- 
librium. 

Interactions between steps will undoubtedly af- 
fect the shape of the diffracted profiles. As an 
extreme case, long-range repulsive step-step inter- 
actions can stabilize high-index facets, leading to 
peaks with a-function components in the dif- 
fracted intensity at out-of-phase conditions at low 
temperatures. One might anticipate that the 
roughening temperature induced by these interac- 
tions would be low for small angles of misorienta- 
tion, however. Attractive interactions can increase 
X [9], making the surface rougher than the non- 
interacting case, by causing incipient faceting of 
the surface [25]. 
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