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For the terrace-step-kink model of a stepped surface, the distribution P(L) of terrace widths L is
calculated at low temperature by mapping the problem onto the one-dimensional free-fermion mod-
el. In this approximation, the only energetic interaction between steps is a hard-core repulsion. A
skewed distribution with a parabolic rise and a Gaussian tail is found; the exact asymptotic forms
are displayed. By plotting (L )P (L) vs L /{L ), we obtain a “universal” curve nearly independent
of the average terrace width (L ). With use of this scaling property, analytic approximants are con-
structed and the role of correlations discussed. We present some results for steps with energetic in-

teractions in two special cases.

I. INTRODUCTION

Surfaces cut close to high-symmetry directions (i.e., vi-
cinal surfaces) tend to exhibit a regular array of meander-
ing steps at temperatures below the roughening tempera-
ture of the high-symmetry facet direction. "> With recent
progress in scanning tunneling microscopy (STM), it has
become possible to obtain quantitative information about
such surfaces.®> While the morphology of technically im-
portant systems might often be determined by kinetics,* it
is also important to understand the equilibrium proper-
ties of such surfaces; this paper restricts itself to an
analysis of such behavior. We assume that the steps do
not cross each other, so that there are no overhangs; nor
do steps terminate. We further assume that the dominant
thermal excitation is the formation of kinks, leading to
step meandering and thence entropic repulsion between
the steps.>® This approximation is expected to be valid
until close to the roughening temperature of the terraces,
when higher-energy excitations on the terraces (i.e., ada-
toms and voids) play an important role. These approxi-
mations embody the well-established terrace-step-kink
(TSK) model.”® An illustration of a possible
configuration in such a model is shown in Fig. 1. Except
at the end of the paper, we explicitly neglect energetic in-
teractions between steps other than the hard-core ex-
clusion preventing overhangs. Our principal motivation
for considering noninteracting steps is not that we neces-
sarily believe they correspond to reality for particular sit-
uations, but rather that we seek characteristic features of
noninteracting models to which experimental data can be
compared.

If there are no significant energetic interactions be-
tween steps, their structural properties can be described
in terms of two characteristic lengths: The first is the
average length d along the direction of step wandering,
between close approaches of adjacent steps. This dis-
tance depends sensitively on the ratio of the kink energy
to the temperature. By analyzing the thermal scaling
properties of the structure factor in this direction, one
should be able to extract this length and, ultimately, the
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kink energy from a high-resolution diffraction experi-
ment, as described elsewhere.®® An alternative approach
using STM is to analyze the kink distribution.!® In this
paper we are concerned instead with the distribution
P (L) of integer terrace-width spacings L. These spacings
are in the direction perpendicular to the average direc-
tion along which the step edge runs, i.e., in the direction
of the projection onto a terrace of the normal to the vici-
nal surface. If energetic interactions do not introduce a
competing length, properties in this direction—in partic-
ular P(L), but also the structure factor!'— depend al-
most exclusively on the second characteristic length, viz.,
the average spacing between steps, (L ). This length is
determined solely by the angle of misorientation ¢. For

FIG. 1. Picture of a set of steps corresponding to a typical
situation in the terrace-step-kink (TSK) model. The separation
of steps at a given position along the step is shown as L. The
average (L ) is taken perpendicular to the average direction of
the steps and parallel to them. The mean distance between
step-step “collisions” is d.
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single-height steps, 1/{L )=tan(¢). Such properties
should thus exhibit scant dependence on temperature.

As noted earlier, our work is motivated by recent STM
studies to obtain terrace-width distributions. Extensive
work has recently been done on Si(111) misoriented by
1.3° and 2.5° toward the [21 1] direction'? and on Si(001)
miscut 1.3° toward [110],'°© and data on cleaved
GaAs(110) is just becoming available.'®* At present, it is
possible to make such rigorous measurements only at or
near room temperature, at which the mobility of the sam-
ple is usually small. The observed distributions are thus
characteristic of much higher, but ill-defined, tempera-
tures at which the samples are annealed. When the kink
density is low, we have shown® that the free-fermion
model is an excellent approximation. In this model tem-
perature does not influence P(L); this fortunate feature
thus facilitates comparison with experiment.

While it is not hard to generate numerical data for the
TSK model using Monte Carlo simulations,® we would
like to gain deeper insight into the form of the distribu-
tion. If only one type of step is allowed (usually single-
layer steps), the problem is equivalent to that of the
domain walls of a striped incommensurate two-
dimensional phase.”'* As in this analogous problem, we
can treat the steps as world lines of particles in a spinless
one-dimensional (1D) fermion quantum field theory.!®
Essentially, we have a many-body quantum-mechanics
problem. The direction along the steps is that of imagi-
nary time, while that perpendicular to the steps is the 1D
space along which the fermions are located at a given
time. The meander excitations are related to the kinetic
energy of the fermions or, more specifically, since this
will be a discrete model, the hopping energy of the fer-
mions. In the simplest situation the fermions are nonin-
teracting, hence the appellation “free fermions.”

The free-fermion model is a good approximation to the
TSK model only at low temperatures. The temperature
at which it breaks down depends on (L ): Once the
mean-square deviation at a possible kink site becomes
comparable to (L ), the approximation becomes poor.
With Monte Carlo simulations,® we have verified for
(L)=8 that the terrace-width distribution obtained
from free-fermion theory accurately describes the com-
puted TSK distributions over the range of temperatures
for which the TSK model itself is a viable approximation
(to, for example, the solid-on-solid model, which admits
terrace excitations®).

In this paper we adopt the following plan: In Sec. II
we develop, within the formalism of the 1D free-fermion
model, the correlation functions necessary to write P(L).
In Sec. III we show that the scaled form (L )P (L) plot-
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ted versus L /(L ) has negligible dependence on (L ) and
describe the properties of this universal curve. In Sec. IV
we use the scaling properties leading to the universal
curve in order to set down a sequence of analytic approxi-
mants. The nth approximant takes into account correla-
tions between n + 1 fermions and accurately describes the
distribution until L /{L ) moderately exceeds n /2. We
find that the third approximant accurately describes the
physically important range of terrace widths and present
an explicit expression. In Secs. V and VI we explore the
behavior of the distribution at small and large values of
L /{L), respectively. The asymptotic expression merges
smoothly onto the third approximant, so that (L )P (L)
can be well represented analytically for all L/{L ). In
the concluding section we indicate how interactions be-
tween steps modify our results. An appendix discusses
some aspects of multiparticle correlations in this prob-
lem.

II. CORRELATION FUNCTIONS
IN 1D FREE-FERMION THEORY

Our main interest is in the correlations of the particles.
The problem is most easily considered a (discrete) ring
with N sites. We begin with the well-known density-
density correlation function or the two-particle correla-
tion function:

Go(L)=(0la}, ;a,, ala,l0), (1)

where a,:r creates and a, annihilates a fermion at site n.

To obtain the correlations at equivalent positions along
the steps, we seek the correlations at equal times for the
two fermions. This correlation function is just the expec-
tation value of the density operators with respect to the
ground state of a 1D tight-binding model. >~ !" The cal-
culation of Gy(L) is then easy. Introducing the Fourier

transforms in Eq. (1) yields!>!8
1 K — K o
GO(L)Z?V_Z— > (Ola,fak,a,Ta,,e"k kD +L)piI=In|y
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Only two pairings contribute: (1) k =k’ and / =1’ and (2)
k =1"and k'=I. Hence,

Go(L)=—L [ (0la, 2,100 — 3 &/ ~*IL(0|a, i, 10)
N* % Gk

(3)
The sums are evaluated for the ground state of the Fermi

gas. Hence both particle-number operators have to be 1
for a term to contribute, and we have
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Ny being the total number of occupied states and Q the
fraction of occupied states, while (L ) is the average sep-
aration between steps, i.e., fermions. Note that
(L )G,(L) is a conditional probability (giving the proba-
bility of finding a fermion n sites away from a given fer-
mion) and that (L )2G,(L) is the scaled probability,
which we could write

or
where x =QL =L /{L ). This scaled probability is in-
dependent of (L ). It, however, does not exclude the
possibility that there is an additional fermion or step be-
tween O and x, and this possibility becomes significant as
x increases. To obtain the probability of having a terrace
width of a given length, we must calculate the correlation
between nearest fermions with no fermions in between;

ie.,, for L 22 we have to calculate the multiparticle
correlation function

G(L,Q)=(0lalas(1—ala,) - (1—a) _,a;, _)aja, |0} .
®)

2

sin(mwx) )

mX

Using particle-hole symmetry,
G(L,1-Q)=(0l(1—alag)ala; - -af _ja; _,(1—a]a,)I0),

9)

where a,:r and a, are now creation and annihilation opera-

tors for the holes. Expanding,

G(L)=8(L+1)—28(L)+ 8L —1), (10)
where
9(L)=(O|a2;a0a;ral "'aIT—ZaL~2az—laL—1IO> (11

is the probability of having L particles (or L holes) occu-
pying L consecutive sites. To evaluate 9(L), one
proceeds as previously. We transform to k space, per-
form the L? pairings, then integrate up the Fermi level to
obtain a Toeplitz!*?° determinant of order L. This is a
determinant whose elements depend only on the
difference between the row and column indices. The ele-
ments of $(L) are

(sin[m(1—Q)(i —j)]
(i —j)
1—Q ifi=j.

if i7]

The (conditional) probability of finding the first step L
sites away from a given step can be written

p)=9LQ2) (13)

where we have introduced the additional variable which
fully defines G,. P(L) is the terrace-width distribution
we have been seeking.® Note that P (L) is independent of
temperature; i.e., the equal-time correlations are indepen-
dent of the “mass” of the fermion.
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III. PROPERTIES
OF THE SCALED FUNCTION (L )P(L)

Figure 2 shows the scaled distribution function (L ) as
a function of x =L /(L) for a wide range of values of
(L)=1/Q. A rather surprising scaling is observed even
for the smallest value of (L ) =2. If we define

f(x)=<L1§m (L)P(L), (14)
then the absolute error in approximating any point of
f(x) by a value of {L )P (L) is at most 0.002. For com-
parison, Fig. 2 also shows the large-(L ) results for
straight noninteracting steps, namely, exp(—x), and for a
single particle confined to a 1D box of length 2(L),
namely, sin®(7x /2). The latter result, obtained long ago
by Gruber and Mullins?! for a single step confined be-
tween two rigid walls separated by 2{L ), already cap-
tures most of the physics of the entropic repulsion,’
which drastically reduces the probability of finding ter-
races with small L (and so also terraces with very large
L).

From the numerical study the following observations
can be made about f(x).

(1) For small x the function increases quadratically, as
in the Gruber-Mullins?! model, but the coefficient is
different: Instead of their 7°x%/4 behavior, we have

sin’(mx)  wx>
— —
(mx)? 3
For a given small x, (L)P(L) is a (slowly) decreasing
function of (L ).
(2) The peak
f(x,,)=0.9353.
(3) The tail decays rapidly. The exact form is given in

1

location is at x, =0.8840 and
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FIG. 2. Scaled terrace width distribution (L )P (L) generat-
ed with the formalism of Sec. II, for (L )=2, 5, 15, and 20. The
scaling of this plot is dramatic. For comparison the solid curve
shows the distribution for straight noninteracting steps (i.e.,
random placement of a fixed density of particles), while the
dashed curve is for a single step meandering between fixed walls
(i.e., a particle in a 1D box).
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FIG. 3. Fit of the limiting “universal” terrace-width distribu-
tion f(x) (solid curve) by a Lorentzian and two different Gauss-
ians. The two parameters of the Lorentzian (dotted curve) were
fit to the peak and the width at half maximum of f(x). One
Gaussian (short-dashed curve) was fit to the peak and its curva-
ture. The other (long-dash—dotted curve) was determined from
the mean and the variance of £ (x).

linear, with slope < —1. For equal (large) values of x,
(L)P(L) is a (slowly) increasing function of (L ): In-
creasing (L) is equivalent to decreasing the effective
core size or the smallest relative distance of approach.
This in effect makes large terrace widths slightly more
likely.

(4) The mean of the distribution is 1 and its variance
02=0.1800. The skewness (with its definition) is given by

=2 0.4972
o

where p; is the third central moment of the distribution.
Figure 3 shows that the distribution because of its non-
negligible skewness cannot be fitted to any of the well-
known distribution functions. The Lorentzian has been
fitted to the half width at half maximum, while a Gauss-
ian has been fitted to the peak region. The fit is much
worse for the Gaussian if the mean and variance are
matched rather than the peak region. Because of the un-
satisfactory fit obtained with these two distributions and
other functions, finding an analytical fit to the distribu-
tion is particularly worthwhile.

IV. ANALYTICAL APPROXIMANTS
OF (L)P(L)

The almost total lack of dependence of (L )P(L) on
(L ) will be used in this section to construct approximate
forms for f(x). G(L,Q) is a function of both L and
Q=1/(L). Since QL =L /{L ) =x, the scaled variable,
we can write G(L,Q) as G(L,x), where rigorously
G (L,x) gives the appropriate correlation function or the
scaled probability G (L,x)Q ~2 only for the set of discrete
values x =L /(L ). L is the number of lattice spacings
between steps, and (L ) is in units of lattice sites. For
L =1, for instance,
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s 2
G (1,0)=0>— Sn1Q9m) (1s)
o

or

)
%#L )ZG(l,x)=1——Sl—r;2(x—7T2x—)
is valid only for x =1/, where [ is an integer: one value
of x for each possible value of (L ), that value corre-
sponding to fermions side by side in the discrete lattice.
Note that this function is the same as the scaled two-
particle correlation function of Eq. (7). Because of the
scaling observed in Fig. 2, we can use G (1,x)Q 2 to ap-
proximate f(x) over a continuous interval of x. We ex-
pect from the above to get good agreement for x <1, 1
being the largest allowed value in the above sequence.
This is what is seen in Fig. 4. Actually, very good agree-
ment is observed up to x =0.65 (error less than 1%).
This interval corresponds to the region where the proba-
bility of having a second fermion in between O and x is
small.
If we now consider G (2,Q), which can be evaluated
directly

(16)
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FIG. 4. Illustration of the viability and eventual breakdown
of analytic approximants to the scaled distribution f(x) (solid
curve) of Eq. (14). As described in the text, the approximants
have the form Q ~2G(n,x) and take into account correlations of
up to n +1 fermions. The dotted and long-dash—-dotted curves
correspond to n =1 and 2, respectively. The n =3 curve is in-
distinguishable from f(x) over the range of this plot, but grows
positive for larger x. These curves are analytical continuations
of forms rigorously valid only for the discrete set of values
x =n/l, where the I’s are all positive integers starting with 2.
We also show as (dashed) curve A the asymptotic scaled form
given in Eq. (32). The circles show the full asymptotic § forms
of Eq. (30), substituted into Eq. (10), for (L ) =20. Over most of
the range of the plot, they are indistinguishable; for
2.0<x <2.6, the former is slightly below f(x). To assess the
degree of breakdown at small (L ), we show for (L )=2 and 5
the results of Eq. (30) at x =I/(L) using squares and dia-
monds, respectively.
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—(0latan(1—ata)al
G(2,0)=(0lalay(1—ala,)ala,|0) 17) G(2,2x) —1—h20)—2 [1—=202 | X | —h2x)
0 2 2
=<O|agaoa;a2|0>—<0|a8a0a;’a1a;a2|0> x
+2r% | = (h(x)| . (20)
. 22
=Q? I—LWQZ) This function gives the scaled terrace-width distribution
(27TQ) for
_2 _,22 2
0 sin(Qw) sin(2Qw) x (L) 13747
. m . 2m where / is an integer. An analytic extension of this func-
_ | sin(Qm) o) sin(Qm) . (18) tion for a continuous set of values of x is then expected to
™ ™ give good estimates of f(x) for x up to 1. As Fig. 4
sin(2Qw) sin(Qw) shows, 1% agreement persists up to 1.4. This is the ap-
2 T Q proximation which has been used to locate the peak posi-
tion. Note that G (2,2)Q “>=0, and as x —2,
or with x =QL =20 and defined G(2,x)Q 71— . 1)
B ) sin(7u) (19) Similarly, we consider G (3,Q). Using Eq. (10), we find
u)=———-,
T G(3,0)=9(4,1—0Q)—29(3,1—-Q)+8(2,1—Q) . (22)
Evaluating the three determinants and replacing Q by
we can write x =3Q yields the function
J
GOx) oy p2— 2 1= (12 |2 (402 |22 {4200 | +20 |2 [0 |22 (o)
[0) 3 3 3 3
? 2 2
x — 2| X 2| 2X 2 2| X X
+ 3 ll 3h 3 +2h +h(x)|+4h 3 h 3
+ah |5 |k 2 o+ht | Z | =20 | E h o —2m2 < | 33&]
2| X 2 X 2x 4 2x
+h 3 h“(x)—2h 3 h EY hix)+h"|— . (23)
The permitted values of x are
3 3.33 3 ..
=—=r==1,-=,...,5, .
x )y 2035 ,llmteger

Hence we can expect in the analytical continuation to have very good agreement up to at least 1.5. Actually,
G (3,x)Q ~?is equal to zero at x =3 and approaches that value with zero slope as (1—x /3)%. At x =3, f(x) is less than
1073, and so we get a very good agreement over the whole relevant interval of values of x. This approximation underes-
timates f (x) by less than 0.01 over [0,3]. For x >3, it starts rising. Its asymptotic behavior is (1 —x /3)2.

The next approximant G (4,x)Q ~2 goes to zero at x =4, with zero first and second derivative, behaving as (1—x /4)?
in the neighborhood of x =4. In general, G (n,x)Q ~2 goes to zero at x =n and its (n —2) first derivatives are O at
x =n. These results follow from the structure of the Toeplitz determinants. G (n,x)Q ~? is a polynomial in (1—Q) or
(1—x /n) (recall nQ =x) with leading term (1—x/n)" " !. In the neighborhood of x =n, the coefficients to powers of

(1—x /n)? are of leading order (x —n)"*1~7. In short, about x =n,
n—1
Gnx) |,_x (24)
Q’ n

This behavior gives a good indication of the kind of fit expected by the higher-order approximants. For practical pur-
poses there is no need to consider any form higher than the G (3,x)Q 2.
The way the various G (n,x)Q ~2 fit f (x) measures the probability of having intermediate steps for different ranges of
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x. G(1,x) ignores the possibility that any step may occur in between O and x, and hence is equal to the density-density

correlation function.

It is a valid approximation until the probability of intervening steps becomes significant.

G (2,x)Q ~? allows the occupancy of a single intermediate step and therefore is valid until the probability of having two
intermediate steps is appreciable, and so forth, for higher approximants.

V. EXPANSION OF G (n,x) FOR SMALL x

To obtain an idea of the analytic form of the asymptotic function f(x) at small x, we have attempted to expand
G (n,Q) in powers of Q or x =Qn. We do so by taking advantage of the structure of the Toeplitz determinant. As we

know from Eq. (10),

G(n,Q)=9n +1,1—0)—28(n, 1—Q)+8(n —1,1-Q) (25)
where we can write
n—1 102 :
UAn1—Q=(1—0)—(1—Q)" 23 (n —j)ﬂrt(j—)JZQ)+(l—Q)"“3[ [23><3 symmetric minors]+ e ] , (6
j=1 .

where the symmetric minors are all those with the same row and column indices as the 2 X2 ones which yielded the
preceding term. Similar procedures can yield the terms of any order. Making the usual replacement with x, the leading

terms in G (n,x) have the form

n—1
(n—D[1—h%x)]— 3 h?

07 %G (nx)=1—h¥x)—=
n =

2
1

x
n 2!

x
n

—(n—=1(n—=2)=Fh* )

n—1
+2h(x) 3 h

j=1

X
x —4*
n

X,
n

(27)

The coefficient of the x term can be easily evaluated in the limit # — o. In such a limit the sums can be replaced by in-

tegrals and we have
fl)=1—h¥x)—x
which can also be written as

f(xX)=1—h¥x)—x

where Si(u) and Cin(u) have the usual definitions

ar, Cin(u)= [ 1= qr .

u sint

Si(u)= [

The higher-order terms can be evaluated similarly.

VI. ASYMPTOTIC TAIL
OF (L)P(L)OR f(x)

The above observation about the asymptotic behavior
of {(L)>G(L,x) brings us to the investigation of the
asymptotic tail of f(x). The numerical evidence as indi-
cated in Sec. III shows that the leading dependence of the
tail is exp(—ax?), where a 2 1. For very large values of
x, one begins to see small deviations from this simple
form, but it can be difficult to assess how much is due to
numerical difficulties.

The asymptotic limit of the distribution can be calcu-
lated rigorously using an extension by Widom?? of the
strong Szego limit theorem, which gives the large-L limit
of the Toeplitz determinant defining $(L) in Eq. (12).
The elements of $(L) are the Fourier coefficients of a

1=h20)—2 [Tk )~k (x)h (x —w)]du
X Y0

1+ h2(x)— —=Si(2mx)[ 1 —h X(x)]—
T (

+ -, (28)

2
X

h(2x)Cin(2mx) |+ -+ , (29)

)2

f

square-barrier distribution. The square barrier reflects
the fact that we are dealing with the occupation function
of a fermion gas at O K.° For such a distribution, the
limit takes a relatively simple form:?%23

Q(L)~21/123¢ 1L cos0)~4(sin6)L’ , 30)

where 6=7(1—Q)/2 and ¢’ is the derivative of the
Riemann ¢ function.

If sin(wQ/2) can be approximated by 7wQ/2 and
cos(7Q/2) by 1—X(wQ/2)?, the asymptotic form for
G(L) becomes a function of only x =QL and takes the
simpler form

—1/4
mx e—1r2x2/8 . (31)

g(x)~21/1293§'('—1) 5

Thus, at large L, this Gaussian scaling expression must
eventually break down, the larger Q the sooner.

The distribution function G (L,Q)/Q? as a function of
x will have a similar asymptotic form since it is the
second derivative with respect to x of the above distribu-
tion:
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2 7/4
G(L,Q) i 3g-n | T | | TX |~
0? 2 2
. 2 —4
mX mX
X [1—+ T2 | 42 |7x
2 2 16 2 ]

(32)

As shown in Fig. 4, Eq. (32) gives remarkably good
agreement with f(x) above the peak region and even
reproduces a peak, albeit with smaller magnitude, before
diverging at small x. Over the entire plotted range, the
scaled form is in excellent agreement with the exact
asymptotic form of Eq. (30), for Q = 5, inserted into Eq.
(10). For Q =1 the agreement is fine; even for Q =1, it is
very good until near the peak. For these larger values of
Q, the asymptotic points are smaller than f(x) by in-
creasing amounts, but so are the curves for G(L,Q)/QZ,
as shown earlier in Fig. 2.

As a general statement, one can state that as discrete-
ness becomes less important the tail behavior converges
to a universal form fairly rapidly, although a non-
negligible Q dependence persists. The main result to be
remembered is that for free noninteracting steps, the tail
is Gaussian. This is reminiscent of the behavior of a set
of self-avoiding walkers starting at adjacent sites along a
line. The asymptotic distribution of these walkers also
contains a Gaussian term.*

VII. CONCLUDING COMMENTS

This paper has assumed implicitly that the spatial and
timelike directions of the steps lie along principal direc-
tions of a square lattice. Recent work?® has shown how
to generalize to arbitrary directions. We have checked?®
that the scaled distribution of terrace widths does not
change significantly if the misorientation (tilt) is in an ar-
bitrary azimuthal direction.

The analysis of this paper has assumed an (infinite)
defect-free surface. Consequently, P(L) is independent
of temperature—temperature and kink energy enter the
problem only as a dimensionless ratio determining the
characteristic® distance d (cf. Fig. 1). Thus, defects might
significantly influence P(L), e.g., if they pin the step
edges at intervals smaller than d. Since d increases rapid-
ly with decreasing temperature,>® this problem could be
important for a (fully) equilibrated surface at low temper-
ature.

In comparison to STM data for Si(111),!? the above
distribution, which assumes no energetic interactions,
overestimates by a significant amount the probability of
finding terraces with small widths (as well as, concomi-
tantly, the probability of finding very wide terraces). The
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energetic repulsions presumably responsible for this be-
havior can be approximated by exclusions at separations
of a small number of unit spacings. In the free-fermion
context, the repulsive hard core L, is increased from O to
3 or 1 in the cases of 1.3° and 2.5° misorientations, respec-
tively. The modified distribution function is easily ob-
tained by replacing the variable L by L —L_ everywhere,
including in (L ). The resulting distributions describe
the data quite well, except perhaps at the largest excluded
spacing. So long as we restrict ourselves to infinite repul-
sions, we can maintain our temperature-independent for-
malism. For finite energetic interactions, most physically
important mechanisms®’ have the same L ~2 form as the
entropic repulsion.’

Once the interactions have become sufficiently strong,6
a Gaussian approximation provides a better description
of the data. This “single-particle” form is the generaliza-
tion, to a harmonic oscillator potential, of the particle in
a box (Gruber-Mullins) discussed in Sec. III. In essence,
for strong interactions it is more important to provide a
good treatment of the single-step effects than to include
multistep effects. For the physically important AL ~2 in-
teractions between fermions in 1D, Sutherland?® finds the
explicit form of G4(L) for two special values of 4 and
shows more generally that one can evaluate the correla-
tion functions in these cases in closed form by using
Dyson’s quaternion-determinant technique for the eigen-
values of random matrices.?’ (The third special case is
just the free-fermion problem considered in this paper.)
In the special case with repulsive interactions,
A =4kyTz/(1+2z)= ARx(T), where z is the Boltzmann
weight of a single kink. The case with attractions re-
quires 4 =— Ax(T)/8. To evaluate the scaled distribu-
tion for these interacting fermions, we cannot simply in-
voke the particle-hole symmetry used in Eq. (9). In prac-
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0.4

TTT T T T[T T T T T T
~
-

0.2 E/ )/ SO
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/
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FIG. 5. Illustration of the alteration of the scaled ‘“free-
fermion” terrace-width distribution (solid curve) by energetic
interactions proportional to L ~2, for the two other special cases
for which the correlation functions can be evaluated in closed
form (see text). The dashed curve shows the special case for
repulsions; the scaled distribution is sharpened. The dot-dashed
curve shows the special case for attractions.



8160

tice, adequate numerical accuracy can be achieved by
truncating the series of multiparticle correlation func-
tions implicit in Eq. (8). Scaled terrace-width distribution
functions for the three special cases are plotted in Fig. 5.
The most striking qualitative difference in these curves is
the leading behavior for small x: The scaled distributions
rise as x?, where B=1, 2, and 4 for the special cases of at-
tractive, free, and repulsive fermions, respectively. Con-
sistent with intuitive expectations, repulsions lead to a
sharper P (L), while attractions produce a broader distri-
bution. Finally, when energetic interactions are impor-
tant, temperature does influence P (L).
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APPENDIX: ROLE
OF MULTIPARTICLE INTERACTIONS

The role of multiparticle correlations can be crudely
gauged by calculating the conditional probability P (L)
from a common probabilistic argument for random pro-
cesses. Recall that the probability of having a step at L,
if there is one at 0, is just (L )G,(L) or, equivalently,
(L )G (1,x). We denote this probability P,(L) to distin-
guish it from P (L), for which there is no step between 0
and L. Now, if there are intermediate steps, suppose the
first one is at L’, which by definition has (conditional)
probability P(L’). The probability of having steps at L’
and at L (without regard to intermediate steps) is just
Py(L —L’'). Summing over all the possibilities yields the
identity

L—1
Po(L)=P(L)+ 3 P(L")Py(L—L").
L'=1

(A1)

This same equation is obtained in the Ornstein-Zernike
theory of two-particle correlations in a liquid, 3* as well as
other problems: (i) the probability of return of a lone
random walker to his starting point [see Eq. (2.10) in Ref.
24] and (ii) the propagator of a particle scattering on
equal s-wave § function scatterers,*! like an idealized pin-
ball machine with identical pegs producing random
scattering. All these situations share the common idea
that correlations between two elements of the problem,
positions, times, or particles, are sums of all possible
pairs, with no three- or higher-body terms. For the ran-
dom walker or the scattering particle, it means a total
loss of memory at each step; for the liquid the direct
correlations between two particles are independent of the
positions of the other particles. The total correlation in
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the Ornstein-Zernike liquid is the sum of all possible tra-
jectories linking two particles. In other words, the proba-
bility of each subsequent event is independent of previous
events; not only multievent correlations are neglected,
but so are two-event correlations. In the present context,
the validity of Eq. (A1) would require that Py(L) be Q
rather than Q —(Qw*L?) 'sin>7QL; in that case, P(L)
would decay exponentially, following a Poisson distribu-
tion, amounting to the case of straight noninteracting
steps illustrated in Fig. 2. Similarly, the Ornstein-
Zernike theory of liquids neglects the oscillations in the
direct correlations. Thus, when we include these effects
below, we should not be surprised to find some unphysi-
cal effects from an approximation that seems sensible, but
is somewhat inconsistent logically.

To solve for P(L) using Eq. (Al), we start from
P(1)=Py(1), take Py(L) from Egq. (5), and then iterative-
ly generate each successive P(L). The result is shown in
Fig. 6. This approach, which would be exact if only pair-
wise correlations contributed, produces quite satisfactory
results for values of x up to somewhat above the mean
(viz., unity), indicating that multifermion correlations do
not become really important until large values of x, when
the core repulsions become important. To further eluci-
date this procedure, we take the expression for P(2),

P(2)=Py(2)—P}(1), (A2)

substitute second-quantized operators as in Sec. II, and
rearrange and cancel terms to find that Eq. (A2) is
equivalent to the Kirkwood-like approximation>’
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FIG. 6. Comparison of the limiting ‘“universal” terrace-width
distribution f(x) (solid curve) with the scaled distribution ob-
tained by straightforward iteration to solve Eq. (A1) for
(L )=20 (diamonds) and 2 (asterisks). The iteration result is
obviously insensitive to the value of (L ). Note that this pro-
cedure, based on common probabilistic arguments, works well
for small x, but begins to deviate around the mean and becomes
eventually negative for a range of large x. The dotted, dashed,
and long-dash—dotted curves show the approximants of Eqgs.
(A7), (A8), and (A9) respectively. The approximant of Eq. (A6)
is just the curve labeled 1 in Fig. 4.
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(Olalagala,ala,|0) =~ (0lafayala,|0)(0lala,ala,|0) /(0lala,|0) , (A3)

where (Ola{al |0) is just Q. The result of the iteration as a pairwise decomposition can perhaps best be described in
terms of a prescription for the sequence of P(L)’s: Write down the sequence of sites 0,1,2,3, ..., L. Construct all pos-
sible ways to hop with ever-increasing site from O to L by means of some (sub)set of the intermediate sites. Associate
each hop with the P, for the difference of site indices and each path from O to L with the product of these Py’s, i.e., a
pairwise decomposition. Then P (L) is the sum of these various products of P,’s, with the proviso that terms with an
even number of Py’s have a minus sign rather than a plus. (If instead we solved for P, in terms of P, we would not need
the minus-sign proviso, and the result is somewhat more transparent.) With this prescription, the next two interactions
are

(A4)
(AS)

P(3)=Py(3)—2P,(1)Py(2)+P3(1),
P(4)=Py(4)—[P3(2)+2Py(1)Py(3)]+3P3(1)Py(2)—P}(1) .

To appreciate the behavior of these pairwise iterations and their limit, we can produce a sequence of analytic approx-
imants, as in the preceding section:

2

G(é;x)i __smz772x —H(x), (A6)
mT°X
G2X) . gy Xp2 X | (A7)
0? 2 2
2
G (3,x) X x 2x X 3| x
—2= = = = H — s A8
0? Hi{x) 3H 3 H 3 + 3 3 A%
G (4,x) 3 2 3
, X X 2l x X X X 2l x X X 4| X
= — |= = |+2H |== |H | | |+3 |+ = |\H|= |— = | H* |~ A9
02 HGIT I HY G T H Y e [T 2 4 4 a2

These approximants are plotted in Fig. 6. They have the same behavior near x =0 and n as the previous ones [Egs.
(16), (20), and (23)], but the convergence, as rapid as for the previous approximants, is to the limiting solution of Eq.
(A1) instead of the predictions of the free-fermion model. The neglect of multiparticle correlations evidently leads to
oscillations about the free-fermion result, presumably associated with the sign of the contribution of different channels:
Near the peak, the pairwise iterative result is too small, while in the following tail it is too large (and has a curious
shoulder). For x =3, f(x) is negligible for practical purposes, but we have extended the plot to show the small negative
dip that occurs. This highly unphysical result shows that the pair approximation becomes particularly dangerous above
thrice the interparticle spacing and is a manifestation of the inconsistency of this approach, showing that in this ap-
proximation P (L) is not a well-defined probability.
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