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We derive relationships between the amount of step wandering and the strength of step-step interactions to aid interpretation of 
scanning tunneling microscopy images of steps on surfaces. We make contact with well-established results for the statistical 

mechanics of interfacial wandering. In particular, we use the analogy between a step meandering in a potential and a quantum-mech- 

anical particle moving in a one-dimensional potential well. We also set out an approximate procedure for computing the 

terrace-width distribution for non-interacting steps using free-fermion techniques, and show using Monte Carlo that the resulting 

temperature-independent distribution is a good aproximation until remarkably high temperatures. 

Recent developments in surface imaging tech- 
niques, such as reflection [l] and transmission [2] 
electron microscopy, low-energy electron mi- 
croscopy (LEEM) [3], and scanning tunneling mi- 
croscopy (STM) [4] have made it possible to ob- 
serve directly the wandering of steps on surfaces. 
In principle, a statistical analysis of such images 
(similar in spirit to analysis of field-ion mi- 

croscopy data [5]) provides a method for de- 
termining quantitative values for the energies 
which determine the step configurations. In par- 
ticular, a question which has attracted recent at- 
tention [6-91 is the importance of the interactions 
between steps in determining the observed step 
configurations. In this paper, we present first a 
qualitative physical description of the relationship 
between step interactions and experimental ob- 
servations of step wandering. We then discuss a 
simple model with analytical solutions which can 
be used for estimating step interactions without 
the need for extensive computations. We conclude 
by presenting an outline of the methods needed 
for a more accurate analysis, which allow the 
accuracy of this simple model to be tested. By 
making contact with well-established results for 
interfacial wandering, we are able to expand on 
points made by previous workers [7,8]. 

Consider a wandering step trapped between 
two straight steps separated by distance 21, with 
the configuration of the step given by x(y) as in 

21 
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- 
2d single kink costs energy E 

Y 

t x 

Fig. 1. On the left, a step wandering between two straight steps 
separated by 21 is shown schematically. The interactions due to 

the straight steps limits the wandering to a width 2d. On the 

right, the kink structure in the step edge underlying the 

wandering is pictured. 
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fig. 1. This model of step wandering has a long 
history [lo]. It seems to be an especially good 
model for single-layer height steps on Si(100) 
misoriented towards the [llO] direction, where the 
wandering due to kinks is observed [ll] to be very 
small on alternate steps. Repulsive interactions 
will tend to limit the amount of wandering by 
making closely spaced steps unfavorable. Restrict- 
ing step fluctuations, however, will cost entropy. 
Before embarking on a detailed analysis, we first 
briefly discuss some of the qualitative features 
predicted by this balance between entropy and 

energy. We proceed by supposing that the straight 
steps create a potential per unit step length V(x, i) 
for the wandering step, and ask how the step 
wandering depends on temperature, the strength 
of V, and the energy z: required to create a kink. 
Interactions between steps can arise from elastic 
strain or from dipole-dipole interactions 1121. 

respect to d to find the equilibrium value of d 
gives: 

Before we discuss in detail the form of the 
fluctuations in step position for this model, we 
give a qualitative analysis of the expected behav- 
ior. Suppose V(x, I) is strong enough that direct 
collisions between steps never occur, so that the 
step wanders freely only over a range d, i.e. 1 x / 
I d < 1. The free energy cost per unit length of 
restricting the step to d has the form krh2(r)/ 
~,,r1* [13], where the diffusivity, b*(T), is the local 
mean square length of each kink perpendicular to 
the step edge ~including unkinked sites in the 
average, so that perfectly straight steps have b = 0), 
and u,, is defined in fig. 1. This diffusivity, an 
important quantity in all that follows, is a prop- 
erty of isolated steps. Suppose U(X) is the poten- 
tial between two steps separated by x, per unit 
length of the steps. The potential felt by the 
wandering step is then 

qx, I) = (/(1+x) + I/(/-x) 

= 2U(I) + c(l)x”, (1) 

where in the final form we have expanded about 
x = 0, and c(l) = U”(1). The energy per unit 
length of the step is roughly the integral of the 
potential with respect to d, divided by d, or 2U(I) 
+ c(r)d2/3. ~inimi~ng the sum of the entropic 
and energetic contributions to the free energy with 

We will make this relationship more precise be- 
low, but first we offer some preliminary comments 
on the general form of the dependence of step 
fluctuations on mean step separation I and tem- 
perature. For elastic or dipole-induced step-step 
interactions, U(X) decays as Ax-’ 1121. From eq. 
(1) c(l) then varies as A/f4. Thus from eq. (2) the 
width of thermal step fluctuations will be propor- 
tional to the average terrace size I, with the pro- 
portionality constant depending on A, T and b’. 
(Indeed such a proportionality has been observed 
on Si(ll1) [9].) On Si(lOO), because of the ani- 
sotropy of the (2 x 1) reconstruction. U(x) = 
B ln( ] x / ) + C, which leads to c(I) = B/i’ [6] and 
thus d - 1 ‘I2 Hence by studying the I dependence . 

of d, one should be able to deduce the form of the 
step-step potential. As discussed in more detail 
below, for steps with net orientation along a high 
symmetry direction and with kink energy c. one 
expects at low T that b2 - exp( -c/kT) - kink 
density. This prediction that the amount of 
wandering should increase as the one-fourth power 
of the kink density could in principle be verified 
by STM measurements on surfaces with kink den- 
sities obtained by quenching from different tem- 

peratures. 
To be more precise, we can compute the actual 

probabilities of step fluctuations for the simple 
model of fig. 1. The coarse-grained free energy 
functional, or effective Ha~~tonian, for a config- 
uration x(_v) can be written as [7,14] 

where Z,(T) is the free energy per unit length of a 
step oriented in the average direction (i.e. with 
normal _?), and e(T) is the step-edge “stiffness”; 
both are properties of isolated steps. The tempera- 
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ture dependence of 2 is discussed in detail in refs. 
[13-U]. In general one expects: 

where Ji, are the eigenstates of Schr~dinger~s 

equation: 

I kTall 
Z(T) = b2(T) f 

where a,, is the lattice constant along the step-edge 
separating possible sites of kinks. The coarse 
graining of eq. (3) assumes implicitly that h +z a I. 
What happens when this condition is not satisfied 
will be discussed at the end of this paper; the 
assumptions of eq. (3) do not cause serious error 
until remarkably high temperatures. 

The step edge stiffness could be determined 
directly by measuring b from atomic resolution 
STM images of an “isolated” step. One can also 
estimate b from an STM or LEEM image of an 
isolated step without requiring atomic resolution 

by using 

(ix(O) - x(Y))2) = $Y. 
Alternatively, given a model which specifies the 
energies of kinks of various lengths, b (and hence 
z(T)) can be straightfo~ardly calculated. For 
example, if the only allowed kinks have length u i 
and cost energy e, as illustrated in fig. 1, then b 
can be estimated from 

b’= ((x(y+a,,) --Y(Y),‘) 

2~: expf -c/kT) 

= 1+2exp(-E/kT)’ (6) 

(Note b vanishes, and hence 2 diverges, as T 
becomes small.) Generalizations to more com- 
plicated step geometries and kink Hamiltonians 
are easily made. 

Expectation values for the position of the step 
can be conveniently obtained by transcribing the 
statistical mechanical problem given by eq. (3) 
into one of one-dimensional quantum mechanics 
[15-171, using, for example, the methods of ref. 
[IS]. In this transcription the probability of a step 
passing through x at y and x’ at y’ is 

p(x, x’; y, y’) 

= C”“PK&-K) I#-Yll 

(8) 

and s = 0 denotes the ground state. In this con- 
text, the “mass” of a step segment is proportional 
to bm2, i.e. step stiffness translates to the inertia of 
massive particles, and the y-axis corresponds to 
imaginary time. The probability of a step to pass 
through x, for any y, is just 

P(x) =Jm dx’P(x, x’; y, JJ’) = ]&,(x) 1’. 
-cc 

(9) 

For the simple harmonic oscillator potential of 
eq. (l), we find the familiar Gaussian ground-state 
wavefunction, yielding a step dist~bution function 

P(x) = 1 X2 
exp i i - - 

wfi 2w2 ’ 

with the width of the Gaussian given by 

WV 

(11) 

This expression has the same form anticipated by 
eq. (2), and provides the relationship between 
coarse-scale deviations and mciroscopic fluctua- 
tions. Notice that values of x a few times w are 
extremely rare: the repulsions act effectively as 
exclusions, as observed explicitly on vicinal Si(ll1) 
in ref. [9], and implicitly on vicinal Si(100) in refs. 
[4,7], for example. 

From the discussion above, it is clear that the 
step distribution function will narrow with in- 
creasingly repulsive interactions. To find the limit 
of the distribution function when the interaction 
becomes very weak, we consider the high tempera- 
ture limit of eqs. (10) and (11). As the temperature 
increases, b (and hence w) increases. When w 
becomes comparable to I, the harmonic-well ap- 
proximation should break down. At sufficiently 
high T, the only important interaction is the non- 
crossing condition for the steps, i.e. the steps do 
not interact except that they cannot cross. In this 
case V(x, I) becomes an infinite square-well 



potential of width 21. 
known, and 
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The wavefunctions are well- with the correlation length 6 given by 

Ix] rI. (12) t 

k’l”rr,, 1 
l/2 

E(T, 1) = 
2h2(T)c(l) 

This expression was derived in ref. [lo] for steps 
using slightly different methods. Thus in the limit 
of no energetic interactions, the step distribution 
function becomes independent of T. (This inde- 
pendence arises because P(x) is an average over 
y, and thus does not depend on the amount of 
step wandering. Ultimately, the temperature inde- 
pendence comes from the assumptions of eq. (3): 
in the absence of energetic step interactions, 
changes in temperature correspond merely to 
changes in the scale of the y-axis. The breakdown 
of these assumptions causes a small temperature 
dependence discussed below.) Thus, large temper- 
ature dependences of P(x) only occur when en- 
ergetic step interactions are important in de- 
termining the distribution of step positions. It is 
possible to invent potentials which show the cross- 

over from eq. (10) to eq. (12) analytically [19]. We 
emphasize that even with no energetic interac- 
tions, the distributions are small at small sep- 
arations due to the “entropic repulsion” between 
steps. To deduce interactions between steps, one 
must observe more than a peaked distribution; 
one must see differences from eq. (12) or its 
generalization discussed below. Information about 
~uctuations transverse to the step edge can be 
obtained using eq. (7) along with knowledge of the 
excited states of the potential. The correlations in 
x as one moves along the step are 

(X(0)X(Y)) 

For the harmonic oscilIator potential, only the 
s = 1 state in eq. (7) contributes because of the 
orthonormality of Hermite polynomials. By ex- 
plicit substitution of the simple harmonic wave- 
functions into eq. (13), it is straightforward to 
show that 

(x(O)-~(y?) = w2 exp( -v/E), (14) 

(15) 

Eq. (14) is similar to eq. (23) of ref. [7]. (The two 
differences are the temperature dependence of 4 
and numerical factors in ut.) 

Kochanski f8] argues, from equipartition, that 
c(I’)w2 is proportional to kT/& and indeed uses 
this proportionality to define 5. Combining the 
correlation length of eq. (15) and the probability 
distribution of eq. (lo), we explicitly verify this 
result; eliminating b” from these equations yields 

kT 
w2(T)c(0 = 45(7., I). 

The large correlation length found numerically be 
Kochanski is related to the vanishing of b at low 
T (13-151. Eq. (16) provides a way of estimating c 
without directly determining h: If one measures .$ 
and w, one can use eq. (16) to solve for c (a 
procedure adopted in ref. [7], with a version of eq. 

(14)). 
For the case of noninteracting steps, the corre- 

lation length can be similarly found to be 

(17) 

This equation provides an interpretation of ,$: 
from eq. f5), one expects the average distance 
between step collisions along the step to be pro- 

portional to (1/b)“, which is proportional to 4. 
For interacting steps, the role of / is replaced by 
in; from eqs. (10) and (15): 

Thus decreasing w decreases E by increasing the 
number of effective collisions between steps. 

In all of the above, the neighboring steps of the 
wandering step act as rigid, straight walls. On real 
surfaces, all steps wander simultaneously. How- 
ever, following ref. 1151, we expect that the depen- 
dence given by eqs. (lo)-(18) of the P(X) and .$ 
on temperature, interaction strengths, and angle of 
misorientation will be qualitatively correct. Before 
transcending the fixed-wall approximation, we 



show that the equations derived for the fixed wall 
case give a convenient method of estimating step 
interactions: we consider vicinal Si(lOO), on which 
steps alternate between two types, one wandering 
much more freely than the other. Swartzentruber 
et al. [20] have determined the kink Hamiltonian 
for the more freely wandering steps: from their 
results we estimate b = 11 A. Alerhand et al. [6] 
propose that elastic step-step interactions of the 
form U(x) = B ln( x) exist Obetween these types of 
steps, with B = 3 meV/A. This value can be 
checked by comparison with STM results for 
Si(100) steps separated by - 250 A presented in 
ref. [20]. Using eq. (l), c(l) = B/l2 = 4.8 X 1O-5 
meV/A3 for I = 250 A. Using these values of c 

and b in eqs. (11) and (15) with T = 900 K [2C$ 
yields the prediction w = 50 A and 5 = 160 A. 
Casual analysis of the STM image in ref. [20] 
yields results not obviously inconsistent with these 
values. The reverse calculation, in which existing 
STM data [6,7] is analyzed to determine B, could 
be used to put experimental limits on the true 
value of B. 

To go beyond the approximation of a single 
wandering step, we appeal to results of many-body 
quantum mechanics in one-dimension [12,21], i.e. 
by associating every step with a quantum mecha- 
nical particle. To insure that steps do not cross 
through each other (which would give rise to pre- 
sumably unphysical overhangs), it is sufficient that 
these particles be [spinless] fermions, i.e. they obey 
the Pauli exclusion principle. From knowledge of 
the correlation functions of non-interacting ferm- 
ions in one dimension, we shall compute the ter- 
race-width distribution functions P(x) of steps 
which have no energetic interactions. This calcula- 
tion serves as a starting point in deducing interac- 
tions between steps, and also to check the impor- 
tance of some of the assumptions made in the 
preceding analysis. 

The pair correlation function for fermions sep- 
arated by distance x = ma I can be written as 

go(m) = (al a+(O>a(O)a+(m)a(m) IQ>, (19) 

where at(m) and a(m) are creation and destruc- 
tion operators, respectively, at position x = ma I , 
and 152) is the many-particle ground state. For 
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non-interacting fermions, g,(m) can be easily 
calculated [21,22]: 

sin2( p57m) 
g,(m) = p2- (Tm)2 . (20) 

Here p is the inverse of the mean separation 
between the fermions, I, which is the average 
surface slope in the stepped-surface analogy. The 
probability of finding steps separated a distance 1, 
regardless of whether there are other steps be- 
tween 0 and ma I is given directly by g,(m). 
Knowledge of go(m) is not, however, sufficient to 
compute the terrace width distribution function. 
We must determine multiparticle correlation func- 

tions: 

g(m)=(S2Ia+(O)a(O)[l-a+(l)a(l)] ... 

X [l - a+(m - l)a(m - l)] 

xa+(m)a(m) IQ), (21) 

i.e. the correlation function for the case of no 
fermions between 0 and x = ma I. Using the par- 
ticle-hole symmetry of free fermions, we can re- 
write this expression as 

g(m)=(DI[l-a+(O)a(O)]a+(l)a(l)... 

Xa+(m - l)a(m - 1) 

X [l - a+(m)a(m)] Ifi). (22) 

Expanding the right hand side, we then find 

g(m)=G(m+l)-2G(m)+G(m-l), (23) 

where G(m) is the correlation function for m 
consecutive fermions. Following standard proce- 
dures, G(m) can be easily computed, at least 
numerically as the determinant of a m x m 
[Toeplitz] matrix qj given by 

((I- P>3 if i=j, 

, otherwise. 
(24) 

The distribution function P(x) is actually a con- 
ditional probability, viz. the probability that, given 
a step at position 0, the next occurs at x. Thus, 
P(x=ma,) =g(m)/p = fg(m), since p is the 
chance of finding a step at any position. Fig. 2 
shows terrace width distribution (scaled to the 
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Fig. 2. (a) Scaled terrace width distributions for many non-in- 

teracting wandering steps (solid line) compared with the case 

of non-interacting straight steps (dotted line). The scaled distri- 

bution IP(x/l) is insensitive to I [23]. The approximation of 

eq. (12) for a single wandering step is also shown (dashed line). 

(b) Scaled terrace width distribution for steps interacting 

through a repulsive A/x2 potential (solid line) with Ae= 

2(kT)2, compared to the approximation of eqs. (10) and (11) 

(dashed line). 

average terrace separation) calculated numerically 
from the above equations in the continuum limit 
of 1 large. (On the scale of the figure, this limit 

turns out to describe any I accurately [23].) It is 
peaked near (but slightly below) the mean terrace 
width [23]. Contrasted with this distribution is the 
exponential distribution expected for a sequence 
of straight, non-interacting steps, and the result of 
eq. (12) for a single wandering step. (We have 
shifted the origin of x by 1 to make the compari- 
son.) As with the wandering step trapped between 
two straight steps, the absence of closely-spaced 
steps is symptomatic of entropic repulsions be- 
tween steps, and must be considered in deducing 
step-step interactions. The approximate form of 
eq. (12) is likely to be experimentally indis- 
tinguishable from exact many-step results in many 
cases. 

The free-fermion prediction of P(X) of fig. 2 
for non-interacting steps is temperature indepen- 
dent - again a consequence of the assumption of 
the Hamiltonian of eq. (3). To ascertain the tem- 
perature range of the validity of this approxima- 
tion, we have performed Monte Carlo simulations 
[24] of the terrace-step-kink model directly (see 
fig. 3 for sample Monte Carlo configurations). In 
the particular model used [24], kinks of size * na I 

cost energy nc, and the average terrace length I is 
8a I. Fig. 4 shows the calculated P(x) at a variety 
of temperatures (being careful to chose system 
sizes greater than 5). As discussed above, one 
expects eq. (3) and thus the above expression for 

Fig. 3. Sample Monte Carlo configurations for TSK mode1 at temperatures equal to (a) O.&/k and (b) 2.46/k. In both cases the 
average terrace width I is 8n I. 
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0.127 Finally, we note that in all the above we have 
0.10 0 kT=oAr (bO.waJ 

x kT=O.Sr (b0.750,) 

0.08 + kT=O& (b=1.060,) 

0 kTT=,.ZC 

%’ 
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k 
0.06 0 kT=1.6< (LK?.51a,) 
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0.04 * kT=*.4E (b=X37a,) 

0.02 

0.00 
0 5 10 15 20 25 30 

z 

Fig. 4. P(x) for the temperatures corresponding to the temper- 

atures of fig. 3, and several intermediate temperatures (points), 

compared with the free-fern-non prediction of fig. 2. The step 

position x is measured in units of a I. The free-fern-non 

approximation is good until the temperature is considerably 

above the kink energy (i.e., even when b becomes large). 

P(x) to be valid only when b is small. However, 
fig. 4 shows that the low temperature result is 
valid at surprisingly high temperatures: at kT = 
0.4~ (b = 0.44~ l) the free fermion approximation 
is excellent. Even at kT = 2.46 (b = 3.4~2 l), it is 
qualitatively correct. These Monte Carlo simula- 
tions also verify the dependence of E [25] on b(T) 
and I anticipated by eq. (17) [24]. 

As pointed out by Sutherland [26], one can 
readily compute correlation functions for fermions 
interacting with A/x2 potentials, for special val- 
ues of A, using the results of Dyson [27]. From 
these correlation functions we have computed the 
terrace-width distribution function for the case 
A2 = 2( kT)2, as shown in fig. 2b. This calculation 
allows the assumptions leading to eqs. (10) and 
(11) to be tested: the dashed line in fig. 2b shows 
that eq. (lo), with w computed using the ap- 
propriate value of c(l), is an excellent approxima- 
tion! More details of this calculation are presented 
in another publication [23]. We point out again 
that this distribution for interacting steps will in 
general be temperature dependent. (Indeed, at low 
enough temperatures the repulsive interactions can 
force the steps to have long-range order below a 
roughening temperature [28]. The impact of this 
transition on the terrace-width distributions should 
be minor: the remarkably weak singularity in the 
energy, i.e. local correlations, at a Kosterlitz- 
Thouless-like transition would be extremely dif- 
ficult to detect experimentally.) 

assumed thermal equilibrium. This assumption is 
far from obviously true in any particular situation. 
Indeed, manifestly non-equilibrium features are 

observed in refs. [1,2], for example. Analysis of 
such structures would require a different theory 

1291. 
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