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We describe a latticegas model of adsorption on a square substrate in which an adsorbed 

p(2 X 2) phase disorders through an intermediate ~(2 x 2) phase as the coverage is lowered from 

l/4 of a monolayer. The occurrence of the low coverage ~(2 X 2) phase can be understood in terms 
of a relatively small interfacial free energy between pairs of the four types of ordered domains in 

the ~(2x2) phase. The diffraction features of this phase are indistinguishable from those of 

standard ~(2 x 2) phases. 

Overlayer phases of c(2 X 2) symmetry are often observed on square 
metallic surfaces [l]; they are often described in terms of lattice-gas models of 
adsorption [2]. Usually c(2 x 2) phases occur when nearly half of the available 
binding sites are occupied, as shown in fig. 1. In this paper we describe a 
lattice-gas system in which a c(2 X 2) phase occurs at much lower coverages - 
less than I /4 of a monolayer. This phase is curious in that it lacks “local 
c(2 x 2) character”: there are essentially no pairs of occupied second-neighbor 
sites. These aspects are so counter-intuitive that when we first encountered this 
phase in calculating the phase diagram of a lattice-gas model for Se/Ni(lOO) 
[3,4], we regarded it as spurious. The phase is, however, well defined and is an 
intermediate stage in the melting of a p(2 x 2) phase. In a diffraction experi- 
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Fig. 1. Square lattice of binding sites depicting the standard structures and pairwise interaction 
energies discussed in the text. 
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ment, this phase would display sharp beams at the positions characteristic of 
long-range c(2 x 2) order, with only diffuse intensity around those positions 
characteristic of p(2 X 2) order. This generic type of behavior is possible, of 
course, in the melting of any phase which can disorder through a sequence of 
phases of progressively higher symmetry *I. 

The interactions of the specific lattice-gas model we consider are shown in 
fig. 1. The interactions are chosen to yield a p(2 x 2) phase. The nearest 
neighbor interaction (E,) is taken to be an exclusion and the second-nearest 
neighbor interaction (E,) is assumed to be repulsive. The temperature-cover- 
age phase diagram for the model with only E, and E, nonzero has been 

estimated by Kinzel and Schick [5]; it contains a c(2 x 2) phase near a 
coverage (19) of l/2 and a (2 x 1) phase around ~9 = l/4. To make the p(2 x 2) 

phase favorable compared to the (2 x 1) phase, either (1) E3 < 0, assuming 
E4 = 0, or more generally (2) 2E, > EJ. Models with attractive E, interactions 
have coexistence regions at low temperatures and coverages [6] and thus do 
not readily exhibit the low-coverage c(2 X 2) phase. For convenience, we have 
taken E, = 0, and thus E4 repulsive. As mentioned above, this model has been 
used to discuss Se/Ni(lOO): for the case E4 = O.lE,, the phase diagram is 
given in refs. [3,4] for k,T > 3E,. 

Fig. 2 shows the low-coverage phase diagram computed for the general case 
E, x=- Ed. The phase-boundary estimates were obtained by standard transfer- 

matrix scaling techniques [3-51 (for a review see refs. [7,8]); we compared 
strips of width 8 and 10. When T x=- Ed/k,, the p(2 X 2) appears to disorder at 
a single temperature (or coverage): the distance between the two phase 
boundary estimates decreases with increasing strip width and does not depend 

sensitively on temperature #*. Once T 5 E4/kB, however, a c(2 x 2) phase 
appears between the p(2 X 2) and disordered phases. The existence of this 
phase can be best established at T = 0, where all the repulsions become 

exclusions; the consequent reduction in the number of allowed configurations 
makes it possible to work with larger strip widths, allowing more accurate 
estimates of the phase boundaries. Table 1 shows, for a sequence of pairs of 
increasing strip widths, the coverages at which long-range order appears at the 
(l/2, l/2), (l/2, 0) and (0, l/2) beams, as estimated by the scaling of the 
associated correlation length calculated using transfer matrices. Although the 
convergence with increasing strip width is not good enough to allow confident 

*‘We have observed similar behavior in the melting of a 2 X 1 phase in the square lattice-gas with 
equal first and second neighbor repulsions. In this case, the four-fold degenerate 2 x 1 phase 
sometimes melts via a phase with broken rotational symmetry (and no broken translational 
symmetry). 

**Another possibility is that the 2 X 2 phase disorders through a 2 x 1 phase rather than a ~(2 x 2) 
phase. This might be expected to occur when the interaction which stabilizes the p(2 X 2) phase 
becomes much smaller than the temperature; it is observed to occur in models with small 
attractive Es, for example. 
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Fig. 2. Low-coverage portion of the phase diagram for the lattice-gas model defined in the text. 

The temperature is given in units of E,: for E, > E, this phase diagram is independent of E,. 

(For example, on the scale of the figure, the diagram for E4 = O.lE, is indistinguishable from the 

diagram for E, an exclusion.) 

extrapolation to the infinite-system limit, it appears the onset of c(2 x 2) order 
is at 19 3 0.15, followed by p(2 x 2) order above 8 = 0.18. The finite-size 
scaling estimates for the critical exponent v [7,8] are also given in table 1. 
Although the convergence is not good, the numbers seem consistent with a 
value of 1, characteristic of the Ising universality class. Ising behavior is 
consistent with the LGW classification of these two transitions [9] #3. 

The most interesting question about the low-coverage c(2 x 2) phase is its 
spatial character. If one started with a saturated c(2 x 2) phase and deleted 
2/3 of its atoms to reach the coverage of this phase, the remaining “structure” 
could obviously not sustain order. To determine the nature of the low-cover- 
age c(2 x 2) phase, we performed Monte Carlo simulations #4. Fig. 3 shows an 
illustrative sample configuration in the low-coverage c(2 x 2) phase. There is 
considerable local p(2 x 2) order, but no long-range p(2 x 2) order: Fig. 4 

*3Much like the higher-coverage problem discussed in refs. [3,4], the phase diagram depicted in 

fig. 2 is expected to be topologically equivalent to the Ashkin-Teller model. Not only are the 

two boundaries of the low-8 c(2 X 2) region predicted to be Ising-like, but the p(2 x 2)-disorder 
boundary is expected to be in the class of the XY model with cubic anisotropy (as already 

predicted from the higher-coverage region [3,4]), while the point at which the lines join should 

be Cstate-Potts-like. 

P4We performed 2 X 10’ Monte Carlo steps per site in the grand canonical ensemble on a 96 X 96 
lattice starting from an initially empty lattice. Fig. 3 is the final lattice configuration. Fig. 4 was 

obtained by averaging over every twentieth configuration of the final 150000 lattices. 
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Table 1 
Critical-point estimates at zero temperature obtained with transfer-matrix scaling by comparing 
infinite strips of sites of width N and N’ 

(l/Q> l/2) 6, 8 0.142434 2.315586 0.7887 
8, 10 0.144615 2.469382 0.8514 

10,12 0.146208 2.570049 0.9008 
12,14 0.146990 2.624710 0.9404 
14,16 0.147226 2.650405 0.9728 
16,18 0.147162 2.660012 0.9969 

(I/Z 0) 

(09 169 

6, 8 0.156653 2.873917 0.8405 
8, 10 0.163620 3.189939 0.8586 

IO,12 0.168234 3.376986 0.9617 
12,14 0.171632 3.503852 0.9547 
S4,16 0.174245 3.596935 0.9962 
16,18 0.176297 3.668678 1.0245 

6, 8 0.182807 4.173081 0.9755 
8, 10 0.181838 4.025126 0.9413 

10,12 0.181352 3.946312 0.9617 
12.14 0.181352 3.905662 0.9987 
14,16 0.181304 3.886889 1.0361 
16,18 0.181529 3.880351 1.0656 

One first computes the appropriate correlation length &, = 2a/ln(Xo/ 1 A, I), where A, is the 
leading (real, non-degenerate) eigenvector of the transfer matrix for strip width N; the normaliza- 
tion by twice the lattice spacing (i.e. 2~) arises because two rows at a time must be transferred 
(due to Ed). The estimate z’, or more precisely z’(N, N’), of the critical value of the activity 
(z = eplkr) is the solution of the scaling condition N-‘&,(zC) = (N’)-‘&,(z”). In this problem 
there are three 6’s associated with long range order, corresponding to diffraction spots at (0, l/2), 
(l/2,0), and (l/2,1/2), and so three independent criticality conditions. Using rC(N, N’), one 
then computes the critical coverage @j, = (z’/N) dX,/dz 1 zc and obtains the correlation length 
exponent Y from (N’/N)‘+‘/‘= (d~~,/dz)/(d~~/dz) 1 LE. To determine X, one identifies the 
subblock of the transfer matrix which behaves approp~ately under symmetry operations of the 
strip and finds the largest eigenvafues therein. In this case the important symmetry operation is 
cyclic permutation of the sites in a strip by one lattice constant. Taking the (0,l) direction as the 
infinite direction of the strip, the eigenvector for (0, l/2) is even under this operation; the 
associated h is the second largest, A, being the largest. The eigenvalues associated with (l/2,0) 
and (l/2, l/2) are the largest two in the subblock which is odd under the operation. 

shows the result of a Monte Carlo computation of the structure factor *’ in 
the low-coverage c(2 x 2) phase. There is clearly a delta function characteristic 
of ~(2 X 2) long-range order at the (l/2, l/2) position, but only diffuse 
intensity characteristic of short-range p(2 X 2) order around the (l/2, 0) 
position. As depicted in fig. 3, the reason there is long-range c(2 x 2) order is 

P5For the particular definition of the structure factor used in fig. 4, see ref. [IO]. 
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Fig. 3. Sample Monte Carlo configuration in the low coverage c(2X 2) phase at ti = 0.162 

(n = 0.23&) and k,T = 0.2E, on a 96 X 96 lattice. There is considerable short-range p(2 x 2) 

order, but two of the four possibIe p(2 X 2) domains (calted A, B, C, and D in anticipation of fig. 

5a) are preferentially occupied, leading to long-range ~(2 X 2) order. In the figure, the occupations 

of sublattices A and D are comparable and well over an order of magnitude greater than the 

occupations of B or C. 

6 

0.0 

(0,O) 
k 

Fig. 4. Result of a Monte Carlo computation of the structure factor, S(k), in the low-coverage 

c(2 X 2) phase at the same T and 0 as in fig. 3. 
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Fig. 5. Domain walls relevant to the structure of the low-coverage ~$2 X 2) phase. Fig. 5a labels the 
four sublattices. Fig. 5b shows the A-D type of domains walls along with a polar plot of the 
orientational dependence of the interfacial tension f(cp) in the limit of T + 0 and 0 -D l/4. Dots 
marking empty sites are included in the interface to help the reader visualize the “excess” free 

energy associated with the interface (see footnote #6); within a domain there would be one row 

of dots between each row of letters. Fig. 5c shows the the same picture as (b) but for A-B type 

interfaces. In this case f(0) = 2f(90), and f(W) is the same as in fig. 5b (see footnote #7). 

that two of the four possible p(2 x 2) sublattices, lying on the same c(2 x 2) 
sublattice, are preferentially occupied. 

From another viewpoint, the phase occurs due to the vanishing of the free 
energy of a particular type of domain wall in the p(2 x 2) phase. It is easy to 
see there are two distinct types of domain walls in a p(2 x 2) phase: Divide up 
the square lattice into four sublattices, A, B, C, and D, as shown in fig. 5a. 
Denote p(2 X 2) phases with predominant A, B, C, and D sublattice oc- 
cupancy as A, B, C, and D phases, respectively. In the zero-temperature limit, 
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it is not hard to compute the interfacial (free) energy #6. Then, as seen in figs. 
5b and 5c, A-D interfaces are rather different from A-B and A-C interfaces, 
the latter two possibilities being symmetrically equivalent. The difference can 
be seen, for example, in the dependence of the free energy on orientation, as 
shown to the right in figs. 5b and 5c #‘. (The domain walls are drawn to avoid 
all E4 bonds, as well as the even-more-repulsive E, and E, bonds.) The A-B 
and A-C walls are generally less dense than the A-D (or B-C) walls and so 
have a higher free energy near a coverage of l/4. As one decreases the 
coverage below l/4, the free energy of all walls decreases, with those of A-D 
character vanishing before those of A-B or A-C character. At and below the 

coverage at which the free energy of A-D walls vanishes, A-D walls will 
proliferate as shown in fig. 3, and the A and D (or B and C) sublattices will 
reach essentially equal occupancy of the A and D sublattices and very low 
occupancy of B and C (or the reverse). The resulting phase manifestly has 
long-range c(2 X 2) order. Remarkably, the phase exhibits no short-range 
c(2 X 2) order whatsoever - there are no E, bonds in fig. 3! (Thus, p(2 x 2) 
order will still be suggested by probes which are sensitive to order over a range 
less than a characteristic domain size; this size is related to the p(2 x 2) 
correlation length and so decreases as one moves away from the p(2 x 2) phase 
boundary.) 

The existence of two types of domain walls in the p(2 x 2) phase allows 
interesting types of equilibrium behavior in p(2 X 2) melting. We next asked 
whether the novel behavior extends to kinetics: i.e. do the two types of domain 
walls also lead to interesting kinetics for the p(2 X 2) phase #‘? For example, 
if the A-D domain walls were kinetically more difficult to remove in addition 
to being energetically favorable, they could lead to metastable low-coverage 
c(2 X 2) phases. We have in mind the rather common experimental situation of 
phase development at constant exposure. (This question occurred to us upon 
consideration of the unusual adsorption behavior seen in the system O/Pd(lOO) 

[13], where a metastable c(2 X 2) phase was observed which converted to a 
p(2 x 2) phase on annealing.) We accordingly developed a simulation to 
determine whether there are any anomalous kinetic effects intrinsic to the 

*6At zero temperature all the repulsions become exclusions for lI <l/4; hence, as 0 -t l/4, the 

free energy of an interface is proportional to the coverage deficit it causes. This is how the 

interfacial free energies in fig. 5 were obtained; that polar plots of the free energies consist of 
sections of circles is a general consequence of short-ranged pairwise interactions (cf. ref. [ll]). 

*‘The interfacial free energies in the horizontal direction in figs. 5b and 5c are the same. This 

degeneracy will be broken by fluctuations (as the coverage is decreased), however. Because the 
interfacial free energies of the A-B interfaces shown in fig. 5c are everywhere else greater than 
those of the A-B interfaces of fig. 5b, it seems natural that fluctuations will also prefer the 

A-D interfaces in the horizontal direction. 

*‘The effect of different types of domain walls on kinetics has been studied, in a very similar 

situation, in ref. [12]. 
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Coverage 

Fig. 6. Simulated time or coverage development of diffracted intensity at extra-beam positions for 
c(2x 2) [i.e. (l/2,1/2)] and p(2x2) phase [i.e. (l/2,0)] during a constant adsorption-rate 
experiment, at T = 0.2&/k,, on a 50 X 50 lattice. The curve for the (0, l/2) beam is essentially 

indistinguishable from the (l/2,0) beam on this scale. 

low-coverage c(2 x 2) phase. (Our simulation is too crude to deal with the 
variety of extrinsic factors including defects, impurities, correlated motion, 
blocking effects in disassociation, etc., that might be experimentally significant 
[14].) Our code assumes (1) that the incident particles adsorb monatomically 

with sticking probability independent of either global or local coverage (except’ 
that no adsorption occurs into already occupied sites); (2) that once on the 

surface the adatoms can hop to first and second neighbor sites on the surface 
with the same attempt rate; and (3) that as the hopping proceeds, the 
overlayer tends toward local thermal equilibrium via standard equilibrium 

Monte Carlo dynamics based on the pairwise interaction energies (i.e. satisfy- 
ing detailed balance). We chose a constant adsorption rate such that each 
adatom can attempt 600 hops in the time that the coverage increases by 0.001 
monolayers. 

The development of diffraction intensity at the high-symmetry positions as 
a function of coverage (or time) is shown in fig. 6. Under these conditions (1) 
the low-coverage c(2 X 2) phase does form in a well-ordered fashion at the 
appropriate coverage (as indicated by the parabolic increase of intensity with 
coverage); and (2) once formed, the phase does not appear to hinder subse- 
quent development of the p(2 X 2) phase around a coverage of 0.18. Thus, if 
there is a system with interactions appropriate for producing this phase, there 
is no reason to assume it will be intrinsically hard to obtain for kinetic 
reasons. Secondly, without further limitations on the movement of adatoms, 
one sees an intermediate p(2 X 2) phase while progressing from the low-cover- 
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age c(2 x 2) to the saturation coverage c(2 x 2) (contrary to the observation 
described in ref. [13]). 
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