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The controversial 2-d, 3-state chiral Ports model is studied using transfer matrix finite 
size scaling. At A =0, we find dqN/dA ocN -4/5, where q is the "wavevector," A the chiral 
field, and N the strip width (N=4-10). The result is consistent with den Nijs's crossover 
exponent q~ = 1/6. With surface fields on the infinite free boundaries, exponents associated 
with bulk magnetization Yu, surface magnetization y~, and surface susceptibility % are 
computed vs. A; results are similar for z] I] or • to the infinite direction. Preliminary 
results are given for the bulk specific heat critical amplitudes, to test the universality 
of amplitude ratios. The interface wetting line is located for 0_<A _< 1/4 using simple 
transfer matrix calculations of surface tensions in the solid-on-solid approximation. Over- 
hangs or bubbles seem relatively unimportant at all temperatures. 

I. Introduction 

We have undertaken the study of several properties 
of the chiral 3-state Potts model [1-12]. In spite of 
the many reports on this model, a full understanding 
has still eluded statistical mechanicians. Much of this 
work was motivated by a desire to understand better 
the melting of a (3 x 1) overlayer on a centered rectan- 
gular substrate, which serves as a prototype of a sur- 
face phase with commensurate order which can melt 
continuously to an incommensurate-disorder phase 
[13]. Explicitly, the Hamiltonian we consider is [1, 
2] 

(2~(ni- nj + A" Rij)) H = -  ~, cos , ni=0,1,2.  (1) 
<i j> 

Because of the symmetries of the free energy, it 
is well-known that only the regime 0 _  A _< 1/2 need 
be treated. There is considerable controversy over 
whether there is a Lifshitz point [14], as suggested 
by most numerical studies [4, 6, 10, 12], or whether 

the incommensurate phase extends down to zero chir- 
ality A [5, 9, 15]. Our goals in this work are the 
following: 1) We determine using transfer matrix fi- 
nite size scaling [16] how the incommensurability 
scales as a function of strip width N. The motivation 
is to investigate whether chirality, no matter how 
small, introduces a new universality class, as sug- 
gested by Huse and Fisher [8]. 2) Since chirality 
changes interface properties dramatically and since 
surface (i.e. edge) exponents are presumably more sen- 
sitive to interfaces than bulk exponents, we compute 
them, using transfer matrix finite size scaling [17], 
as a function of A. 3). We report on preliminary stud- 
ies of critical amplitude ratios for the free energy, the 
first attempt to obtain them within the framework 
of phenomenological renormalization for a model 
other than 2-d Ising. Our results for this more elusive 
property are poorly convergent, but at least as good 
as Monte Carlo calculations. 4) We calculate the wet- 
ting line by computing the surface tension using the 
solid-on-solid, Mfiller-Hartmann Zittartz [18] 
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(MHZ) approximation, which ignores bubbles and 
overhangs. We find excellent agreement with Monte 
Carlo results. We have also obtained some Monte 
Carlo results for the (3 x 1) overlayer of central inter- 
est, which will be reported elsewhere [13]. 

II. Scaling of the Incommensurability 
for Small Chirality 

As one approaches the critical line from within the 
incommensurate fluid phase, it is expected that the 
product  of incommensurability q and correlation 
length ~ approach a finite value, as opposed to being 
zero within a commensurate phase and infinite in a 
floating phase. Since according to finite size scaling 

,-~ N at a critical point, one then concludes q ~ N-1 .  
Indeed, Duxbury et al. [10] have reported such be- 
havior in transfer matrix scaling. At A = 0, q = 0, even 
in the disordered regime. The chiral field has been 
argued to be relevant by a variety of approaches; 
den Nijs [19] showed that the associated crossover 
exponent ~b is 1/6. We find using transfer matrix scal- 
ing with chirality in either direction (parallel or per- 
pendicular to the infinite direction) that the slow 
crossover is reflected in notable behavior for the in- 

commensurability at small chirality: d q  N_4/s Us- 
dA 

ing scaling arguments we show that this exponent 
is a direct consequence of q5 = 1/6. This is the first 
numerical illustration, to our knowledge, of this small 
crossover exponent. We compute the estimator 

ln~--~A ~/~Ys ). (2) 

Using sparse matrices [20], we can obtain an N up 
through 10, whereas with symmetry reduction [21] 
we would be limited to a strip width of 5 or so. Our 
results are listed in Table 1. Extrapolating our results 
by fitting 3 consecutive strips to the form q'(N) 
=q'(oo)+aN -~ [15, 19, 20], we obtain 0.7994 for 
8-9 10 and 0.8000 for 7-8 9, and so 7.997_+0.0003 
for our estimator, indicating dqN/dA ocN -4/5. 

To understand this result, we note [8] 

where ~i  1 denotes the real part, in 2o/1211. (3) 

If we write the crossover form for the correlation 
length [8] 

= t-~X+ (A/t ~) (4) 

T--T~ 
where t ~ is the deviation from the critical tem- 

T~ 
perature, we expect [22] 
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Table 1. Derivative of incommensurability with respect to chirality 
at zero chirality, for various strip widths 

N dq/dA Estimator [cf. (2)] 

4 0.409908330 
0.863 

5 0.338080367 
0.840 

6 0.290085517 
0.826 

7 0.255423653 
0.817 

8 0.229017548 
0.812 

9 0.208124756 
0.809 

10 0.19112206 

q~t~Y• Y• (5) 

Then 

dq  = ~ dqN ~N-(~-4~)/~ 
,~t ~-~ or dATc (6) 

using finite size scaling. Since v =  5/6 for the 3-state 
Potts model, q~ = 1/6 implies that the exponent is - 4 /  
5, as we found. 

It is perhaps worthwhile remarking that the above 
dq 

result for the finite size scaling behavior o f ~  at 

A = 0  does not contradict our expectation that for 
a finite system at criticality q ~ N -  1 ~ ~- 1 as N ~ oe. 

Oq 
Indeed, for such a system, we can always put q ~ A ~ 

(since q(A =0)=0) ,  for small A. Taking into account 
that for small A and t, and large N, the homogeneity 
o fq  is: 

q(t,A,N)=l-lq(tlyT, AlX,1) 

with x = 1/5 and YT = 6/5 (characteristic of the 3-state 
Potts model), it is easy to realize that, for t = 0, l ~  N, 
and A approaching zero as N- l / s ,  the last equation 

~q -1 implies A ffA-~ N , as expected. 

For  the system sizes studied by Duxbury et al., 
/~ (where q ~ t  ~) was poorly convergent for general 
A. Because of the type of crossover behavior discussed 
above, one expects for each A that a range of N will 
give poorly convergent estimates of ~; only for suffi- 
ciently large N does one get beyond the crossover 
regime. Thus it is conceivable t h a t / ~  v in the studied 
system might be a relic of the system crossing over 
from /7=4v. The discussion highlights the unusual 
caution needed in this system in obtaining exponent 
estimates from a limited range of strip widths. 
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III. Surface Magnetic Exponent 

We expect [17] the singular part of the [dimension- 
less] free energy per spin of an infinite strip of width 
N to have the following scaling form: 

f ( t ,  h, hs, N ) = l - d  f(lYTt,  lYnh, lY'~hs, Nil)  (8) 

where hs is field applied only at the surfaces (edges) 
of the strip and yh is the associated exponent. Then, 
at criticality, using standard finite size scaling argu- 
ments [17], we have 

~2f N -d+2y~ 

02f  N-a+Y~+Y'~=N x. (9) 
Oh~h~ 

For finite chirality, T~ was estimated by invoking 
the phenomenological matching condition for the 
bulk susceptibility Z using periodic boundary 
conditions: We computed [10, 23] the XU(T)  
- In (Z N + a/ZN)/ln ((N + 1)/N) and determined T~ from 
the condition XN(T~)=XN+~(T~) for N=5 ,  i.e. strips 
of width 5, 6, and 7. This approach proved better 
convergent than estimates based on the more typical 
scaling condition for the correlation length, and cir- 
cumvented the issue of possible anisotropic scaling 
[13, 24]. 

We next computed at this T~, with free boundary 
conditions, Yn, x, and thence y~, as listed in Table 2. 
Not unexpectedly, convergence is poorer than with 
periodic boundary conditions, even for the bulk expo- 

Table 2. Magnetic exponents as functions of chirality A, both paral- 
lel and perpendicular to the infinite direction. In the parallel case, 
the listed values of Yn and x are from the largest pair of strips 
used (6,7). Then Yn=d+x-yn was computed for this pair and 
the two next smaller pairs, (5, 6) and (4, 5); the tabulated value is 
from a power-law extrapolation. For  the perpendicular case, Yn 
is the value extrapolated from (3, 4), (4, 5), and (5, 6) 

A y• x y~ 

Exact 

Paral. 

Perp. 

0 1.867 0.2 1/3 

0 1.82 0.198 0.366 
0.05 1.82 0.196 0.367 
0.10 1.82 0.208 0.382 
0.15 1.83 0.233 0.403 
0.20 1.83 0.252 0.422 

0.05 1.83 0.209 0.377 
0.10 1.83 0.208 0.376 
0.15 1.83 0.210 0.379 
0.20 1.83 0.209 0.383 
0.25 1.82 0.204 0.388 
0.30 1.79 0.192 0.398 

nent Yu. (One generally expects that the leading finite- 
size correction in f for periodic boundary conditions 
is (9(N -2) while for free boundaries there is a surface 
term (9(N-1).) 2s In the case of zero chirality we ob- 
tained reasonable agreement with known exponents 
[17]. For finite A, we did calculations with chirality 
both parallel to and perpendicular to the infinite di- 
rection. For a given relatively modest numerical ef- 
fort, we could go to larger widths in the former case, 
as shown in the table. While in general TMS studies 
of the effects of chirality, one expects better results 
when this field is in the infinite direction, it is not 
clear that this superiority still holds when one is inter- 
ested in surface properties. Consistent with previous 
numerical studies, nothing dramatic happens for 
small A, while for larger A convergence breaks down. 
This behavior is consistent with both 1) no change 
in exponents due to the introduction of weak chirality 
and 2)  immediate very slow crossover consistent with 
den Nijs's result ~b = 1/6. It is noteworthy that there 
is little difference between the two directions of chiral- 
ity, when A is small. 

IV. Free Energy Critical Amplitude Ratio 

We mention some preliminary calculations of free en- 
ergy critical amplitudes generalizing a procedure first 
outlined by Nightingale [26]. For an infinite system 
we expect [27] 

f (t) = g(t) + l -d f  (t(1)(t)) (10) 

where g(t) is regular and t (a) is the first iterate of 
t under renormalization. The idea is to obtain g from 
transfer matrix finite size scaling. Even if g is known 
only approximately, the finite summation and the 
presence of an unstable fixed point lead to nontrivial 
approximate f 's.  For a strip of width N, then, we 
approximate 

g(t) ~--fN(t) -- 1-afw/t(t(')(t)) = go + gl t + . . .  (11) 

with till(t) given implicitly by the phenomenological 
scaling equation 

~N(t) = l~N/z(t(1)(t)). (12) 

Writing f as a sum of a regular and singular part, 
f r  and f s ing  respectively, with i f = f 0  +fl  t+ . . .  and 
f = f f  +fling, with fling ~_ A +_ I tl d/yT, it is straightforward 
to show 

A ~ ( f  (t) - f d - f [  t) lt [ - ally (13) 

with 
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go gl and 
f(~= 1-1  -d' f ( =  1 - I  -d+y*" 

f ( t )=  ~ l-"ag(t(")(t)) (14) 
n = 0  

where t (") is the n-th iterate under the renormalization 
transformation. Thus, while go and gl are computed 
"locally" at the fixed point, f(t) must be computed 
along the RG trajectory. Applying this scheme to the 
pure 3-state Potts model yields estimates of the ampli- 
tude ratio A§ of 1.340, 1.259 and 1.194 for strip 
widths 4, 5, and 6, respectively. The extrapolated ratio 
is 0.925, in comparison with the exact value of unity, 
known from duality [28]. While the level of accuracy 
does not indicate great quantitative promise, the 
agreement is to within 10%, which compares favora- 
bly with 20% or worse error bars for amplitude ratios 
obtainable in Monte Carlo simulations of lattices of 
sizes typical of experiments (and thus indicative of 
what might be measured) [-13]. For A =0.1 we com- 
puted A+/A_, finding values of 1.357 and 1.268 for 
N =  5 and 6, respectively. While these numbers are 
quite inconclusive regarding the presence of a Lifshitz 
point, they are consistent with the general theme of 
numerical results that nothing dramatic happens as 
weak chirality is introduced. 

In further justification of these calculations, we 
note the difficulty of trying to obtain a universal 
number by computing two non-universal numbers 
and taking their ratio. 

This procedure involves global renormalization 
flow features, rather than local properties at the fixed 
point, characteristic of critical exponents. The excel- 
lent convergence obtained by Nightingale [26] for 
the nearest-neighbor Ising model is not surprising: 
the exceptional occurrence of a logarithmic singulari- 
ty for this special model avoids the need to estimate 
the free energy from a sum over the RG trajectory 
[27] (i.e. the f(t) in (14)); only the first and second 
derivatives of g(t) and of the transformations t (") at 
criticality need be calculated. 

V. Wett ing  Line 

In this section we compute the surface tension (inter- 
face free energy) a using the Mtiller-Hartmann Zittarz 
(MHZ) method and use a to determine the wetting 
line [29]. This approximation allows only solid-on- 
solid excitations, excluding overhangs along the 
boundary between different phases and bubbles with- 
in phases. Selke and Pesch [30] applied this method 
to locate the critical line with the condition a=0.  
In this problem, we estimate the wetting line from 
the Antonow [31] condition ao_2(T~,)=2ao_l(Tw), 
used e.g. by Huse and Fisher [8]. A similar approach, 

1.5' 

1.0 

0.5 

I I I I l 

I I I I k 
0.1 0.2 

Fig. 1. Values of Tw as a function of A determined in the present 
paper 

appearing recently, was taken for the ANNNI model 
[32]. To compute o- between two phases, we follow 
Selke and Pesch's treatment of the 3-state Potts mod- 
el, writing down a transfer matrix in terms of the 
size of an intercalated third phase at the interface 
and the coordinate at one end of the intercalate. The 
largest eigenvalue of this transfer matrix then deter- 
mines a as usual. The difference in the end coordinates 
between neighboring columns can be summed analyt- 
ically, leading to their [30] Eq. (4). For the chiral field 
normal to the interface, only minor modification of 
a simple prefactor is needed. Indeed, Selke and Pesch 
generated as an aside a curve of the transition temper- 
ature for the chiral clock model and noted its superi- 
ority to the free-fermion approximation. To proceed 
we limited the intercalate length to 49 and evaluated 
the eigenvalues of the resulting matrix with a pack- 
aged program. Our results are sketched in Fig. 1 ; they 
agree well with those obtained by Yeomans and Der- 
rida [12] via scaling of the "net adsorption" (i.e. occu- 
pation of 1 between 0 and 2 regions). The agreement 
with Monte Carlo results reported by Selke [33] is 
also excellent. By construction, our approximation 
gives the wetting temperature as the SOS critical tem- 
perature in the zero-chirality limit. (i.e. a(Tw)=0); 
Selke and Pesch [30] noted that this Tc of 1.53 com- 
pares well with the exact result of 1.4925. Yeomans 
and Derrida also computed by scaling methods the 
wetting line for a solid-on-solid model expected to 
be in the same universality class as the chiral Potts 
model. Their results are good for low temperature 
but the wetting curve rises sharply with decreasing 
A, behavior they attribute to the absence of a diverg- 
ing bulk correlation length. They also find a wetting 
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e x p o n e n t  cons is ten t  wi th  un i ty  for  this  model .  W e  
believe tha t  this b e h a v i o r  comes  f rom the fact tha t  
the SOS a p p r o x i m a t i o n  a l lows one to c o m p u t e  the  
surface free energy ( tension) f rom a one -d imens iona l  
mode l ;  it  is h a r d  to see how non- t r iv ia l  exponen t s  
cou ld  emerge  f rom such a model .  

VI. Concluding Remarks 

The  resul ts  of the  presen t  inves t iga t ion  leave us still 
far f rom the goal  of  de t e rmin ing  cor rec t ly  and  com-  
plete ly  the  phase  d i a g r a m  and  cr i t ical  behav io r  of  
the chi ra l  3-state  Po t t s  model .  Never the less  we believe 
tha t  we have m a d e  clear  p rogress  concern ing  some 
pa r t i cu l a r  bu t  i m p o r t a n t  issues, which  were ei ther  ig- 
no red  or  no t  careful ly cons ide red  by  the p rev ious  lit- 
era ture .  In  the  second  sect ion we o b t a i n e d  the first 
numer ica l  con f i rma t ion  of  the s low crossover  due to 
chiral i ty ,  as p red ic t ed  by  den  Nijs.  

The  d e t e r m i n a t i o n  of  surface cri t ical  exponen t s  for 
finite ch i ra l i ty  is an  in teres t ing  test  which  was never  
app l i ed  before.  T h a t  these resul ts  ev ident ly  do  no t  
a l low clear  conclus ions ,  l ike for the  bu lk  case, is a 
fur ther  i nd ica t ion  of  the puzz l ing  na tu r e  of  the  model .  
W h a t  seems to be a p p a r e n t  is tha t  ch i ra l i ty  does  no t  
lead  to the suspec ted  s t rong  effects on  the  scal ing 
p rope r t i e s  of  the  surface free energy.  

Some  p re l im ina ry  p rogress  is r e p o r t e d  of  an  at-  
t empt  to  gain  quan t i t a t ive  ins ight  a b o u t  t h e  ampl i -  
tude  ra t io  of  the m o d e l  by  p h e n o m e n o l o g i c a l  scal ing 
methods .  A ser ious  m o t i v a t i o n  for this d e v e l o p m e n t  
was to  test  poss ib le  different un iversa l i ty  d o m a i n s  for 
different chiral i t ies  in the model .  In  M.C.  ca lcu la t ions  
the accuracy  one can  get for these ra t ios  is no t  ade-  
qua te  ( ~ 2 0 % )  [13, 34]. The  s i tua t ion  is no t  rea l ly  
s ignif icant ly  be t t e r  in a T M S  f r a m e w o r k ;  new ideas  
seem to be needed  to  improve  the c o m p u t a t i o n a l  
power.  

The  ca lcu la t ions  in the  last  sec t ion show tha t  at  
least  the  wet t ing  aspects  of  the  m o d e l  can  receive a 
r e a sonab ly  conv inc ing  g loba l  desc r ip t ion  wi th in  a sin- 
gle and  phys ica l ly  sound  a p p r o x i m a t i o n .  As  to the  
p r o b l e m  of  wet t ing  exponen t s  [12], however ,  we no-  
tice tha t  they shou ld  be add res sed  in a m o r e  real is t ic  
f r amework ,  because  the SOS a p p r o x i m a t i o n  canno t  
lead to non t r iv i a l  scal ing for the surface tension.  
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