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By computing the structure factor through the melting transition of a commensurate (3 X 1) phase
in a version of Baxter’s generalized hard hexagon model, we simulate what might be observed in
diffraction experiments (especially those using low-energy electrons) on chemisorption systems which
have similar Landau-Ginzburg-Wilson Hamiltonians. In the commensurate and disordered phases
we observe that the shift of the peak of the critical scattering from the commensurate position is
roughly proportional to the inverse correlation length in the reduced temperature range 0.015-0.15.
The proportionality constant appears to depend on the position of the transition on the phase bound-
ary (i.e., on the chemical potential). We see no sign of an incommensurate floating phase between the
disordered and commensurate phases. Effective critical exponents are consistent with those expected
from the three-state Potts model. To the precision of this calculation (a few percent), the structure
factor scales over approximately 10% of the Brillouin-zone area.

I. INTRODUCTION

A single-scattering diffraction experiment on an ad-
sorbed system measures the structure factor:

S(k)=< En(r)e"k'r 2> , (1

where r denotes the possible positions of the adsorbed
atoms, and n (r) is the occupancy (0 or 1) of the binding
site at r. In the first paper of this series,' hereafter called
I, we analyzed the behavior of the structure factor
through the continuous disordering transitions of triangu-
lar lattice gases with p (22) and (V'3 X V'3)R 30° ordered
states. Our goal was to simulate what might be observed
in low-energy electron diffraction (LEED) experiments on
chemisorption realizations of these systems. In this paper
we similarly examine a different type of system. In many
adsorbed systems with commensurate ordered states, the
peak of the structure factor in the disordered state need
not be at the same k’s as the 6 functions of the commens-
urate state. The behavior of systems with this type of
freedom [lattice gases with ‘‘chiral” terms in their
Landau-Ginzburg-Wilson (LGW) Hamiltonians] has been
the subject of much recent discussion.”? One example of
such a system is a centered rectangular lattice gas with an
ordered (3 1) phase. A possible experimental realization
was thought to be H/Fe(110).> Figure 1 shows a
schematic picture of the (3 1) phase. The ground state
is threefold degenerate. If one neglects gradient terms in
the LGW Hamiltonian of this system, it is equivalent to
the three-state Potts model. However, in the Potts model
the interfaces between two phases are independent of the
phases involved. In the 3 X1 state there are three possible
sublattices in which the system can order. Simple con-
siderations* of interface energies for the 31 lattice gas
show that 0|1, 1|2, and 2|0 walls are not equivalent to
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1]0, 2|1, and 0|2 walls, where n |n' represents a wall
between a region ordered in sublattice n and a region or-
dered in sublattice n’. Thus there is a new uniaxial chiral
term in the LGW Hamiltonian*> which distinguishes this
system from the Potts model.

A fundamental question is whether a transition is possi-
ble directly from the 3X1 commensurate state to the (in-
commensurate) fluid state if there is nonzero chirality.
Mean-field arguments,® as well as some calculations for
model systems,” suggest that there will be an intermediate
incommensurate (floating) phase with algebraic decay of
correlations (i.e., infinite correlation length) for any chiral-
ity. On the other hand, a study of the quantum version of
the chiral clock model shows no floating phase for any
size chirality.® Numerical studies of the chiral clock mod-
el, using Monte Carlo,’ finite-size transfer-matrix scal-
ing,'o'll and Monte Carlo renormalization group,12 all
suggest that the floating phase does not appear until
moderately large chirality (indicating a Lifshitz point).
Huse and Fisher* argue that direct transitions are possible
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FIG. 1. The 31 phase on a centered triangular lattice stud-
ied in this paper, with the interactions producing the ordered ar-
ray.
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but in new universality classes. Much is known about the
Potts model, and den Nijs has shown that the uniaxial
chiral term is relevant,'> in contrast to the triaxial chiral
term which distinguishes the (V'3 V/3)R30° lattice gas
from the three-state Potts model,* so there is at least the
possibility that the behavior is not Potts-like immediately
away from the Potts point. So far, numerical work has
been inconclusive. Kinzel et al.'* and Kinzel’> have
studied a lattice gas similar to the one we introduce in
Sec. II. Standard finite-size-scaling methods which work
well at the Potts point worsen away from it.!® Our Monte
Carlo calculations are no more enlightening on this basic
question; our purpose instead is to simulate what might
actually be observed in LEED experiments on chemisorp-
tion systems.

The chiral term in the LGW Hamiltonian of the three-
state Potts model is the following*:

H. =g, [ d* ,,,_IL

is the horizontal direction in Fig. 1 and #(r

the complex order parameter density: if we describe the
three possible values of the local order by n (r)=0, 1, or 2
then ¥(r)xe>™ /3 To see how this term is related to
the asymmetric domain wall energies, we write dy/dx as
[¥(r)—y¥(r—aX)]/a. Equation (2) then becomes

(2)

where X

== [ ar [ (DPr—aR) — U r—aR)] . )
Thus nonzero {#,) implies that

(P)P*(r —aR))£(P*(D)p(r—aX)) ,

leading to the domain wall asymmetries. !’

II. MODEL SYSTEM

Our 31 structure on a centered rectangular lattice
was created with E| (see Fig. 1) as infinitely repulsive and
E;=—E,, with E, >0. This is a version of Baxter’s gen-
eralized hard hexagon model.'®~2° Baxter has computed
the partition function of this model when

—Ey/kgT Es/kgT
__eu/kBT__(l—e 2EBTY (1 —e P2 BT

(l_e*Ez/kBT_

eEz/kB T) (4)

The critical point in Baxter’s solution, which is three-state
Potts-like, is located at

2, /(1—2,)=(1145V'5)/2 .

This gives kgT.~0.650E, and z,~0.741. Also at this
point the critical coverage is (5—V'5)/10=0.276. The
special behavior along the line of exact solutions and its
relationship with the rest of the phase diagram is dis-
cussed by Huse.?! We have examined this model away
from Baxter’s solution, especially at z =2.5. (The corre-
sponding critical coverage we find to be around 0.331.)
As the activity increased the correlation time in the
Monte Carlo simulations increased:**> The reason we fo-
cused on the transition at z =2.5 was that the activity was
sufficiently large so that behavior distinctly different from
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that at Baxter’s point was observed, yet small enough so
that obtaining good statistics was not a problem.

We computed the structure factor given by Eq. (1) us-
ing the Monte Carlo techniques described in I. The cen-
tered rectangular lattice had rectangular boundaries with
periodic boundary conditions. The number of columns,
which must be a multiple of six to support the 3X1
phase, was chosen to be three times the number of sites in
a column, as illustrated in Fig. 1. In the ordered state the
number of unit cells is the same in both principal direc-
tions, and thus the number of points in k space is
enhanced along the incommensurate direction [the direc-
tion of A in Fig. 2 or the % direction of Eq. (2)]. Most of
the simulations were performed on lattices with 3888 sites
which, again, we feel typifies the size of defect-free regions
on metal surfaces prepared using standard methods.

Figure 2 shows the surface Brillouin zone of the cen-
tered rectangular lattice with the lines along which S (k)
was computed. The point on the A line corresponding to
the &-function position of the ordered, commensurate
(3 XX 1) phase (not a point of high symmetry) we denote by
A.. Notice that A, does not even lie on the zone bound-
ary, and thus the Llfshltz condition is not satisfied.?® If
the Lifshitz condition is not satisfied, then mean-field
theory says that a continuous transition from the com-
mensurate state is possible only to an incommensurate
state®? with algebraic decay of correlations (a “floating”
state), and thus these types of systems were omitted from
early LGW classification schemes.?* The oblique line
through A, connects T +g,—g, and T +g,; S the inter-
section of thls line with the edge of the zone, is a high-
symmetry point.

III. ANALYSIS OF MONTE CARLO DATA

Figure 3 shows the form of the data obtained from the
Monte Carlo calculations at z =2.5 for a 36X 108 lattice:
It shows the structure factor 5% below T, close to T,,
and 5% and 10% above T.. Figure 4 depicts the temper-
ature dependence of S (k) at A,.

Assuming a single commensurate-to-disorder transition,
the structure factor in the limit 8k=k—A, and
t=|T—T,| /T, small is expected to have the form

FIG. 2. Surface Brillouin zone of the centered rectangular lat-
tice, along with the positions where S (k) was computed.
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FIG. 3. Plots of S(k,T) for a 36X 108 lattice at temperatures
approximately 5% below T, (O), at T, (A), 5% above T, (O),
and 10% above T, (@).

S(k,T)=a,t "X (ayt—*8k) , (5)

where X (w) are universal, but the constants a; and a,
depend on the microscopic details of the system. The
three-state Potts model is characterized by a symmetric
scaled structure factor X (w)=X.(|w]|). As em-
phasized by Huse and Fisher,* the scaled structure factor
may no longer be symmetric with the chiral term present.
As the scaled structure factor is a characteristic of the
universality class, this would indicate a new, non-Potts,
universality class.

To address this question we performed a least-squares
fit of the data above T, to the form of Eq. (5). We
parameterized the function X by the constants ¢, and
d, defined by

X, (w,R+w,9)=[ 1+ (w, —wy)*+c3(w, —wp)®
+eg(w, —wo) +dywi+daw)17, (6)

where the § direction is perpendicular to the X direction
defined above. Including a c¢s5 or d¢ term does not appre-
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FIG. 4. Temperature dependence of S(A.). T here and

below in units of E,.
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ciably improve the fits or change the results. A similar
expansion for the scaled structure factor of the Ising mod-
el®® using the ¢, from the known small-w expansion
reproduces the exact scaling function to 5% for w S11.
Adjusting the ¢, in a least-squares fit, as we do here,
would have given even better accuracy. (We estimate, a
posteriori, that our data scales to 5% for w’s up to around
15.) For large |8k | or ¢ (and also for small z, because of
the finite lattice size), the data does not scale. Performing
the fit, we find that Eq. (5) can account for the data®® with
0.015 <t <0.15 and with 8k less than 1 of A_S, less than
L of A Y, and less than 1 of A.T and A.(T+g,). At
small ¢ the data does not scale because of finite-size
effects; at large t and |8k | it does not scale because of
corrections to scaling. From a least-squares fit using the
data that does scale we find (T,).=0.787+0.007E,,
Yer=1.35£0.10, v,4£=0.85+0.10, and wy=1.0%0.2.
The given uncertainties are our estimates of those due
only to the statistical error in our Monte Carlo data. The
effective critical exponents are consistent with those ex-
pected from the three-state Potts model (where
y=24~1.44 and v=:~0.83), and Fig. 5 shows some of
the data above T, scaled with three-state Potts exponents.
The satisfactory scaling of the data with three-state Potts
exponents is consistent with other studies'*?’ of similar
models. Here, however, the effective scaling function is
clearly asymmetric, with a peak at nonzero wy.

The situation beneath T, is different in that there is no
extended data range over which Eq. (5) is satisfied. This
is consistent with our observations in I: For these models
the amplitudes of corrections to scaling seem to be greater
beneath 7,.. Fixing 7T, to the value estimated from the
data above T., and choosing arbitrarily the reduced tem-
perature range 0.015 to 0.15 to analyze, we find the mani-
festly effective exponents Yer=1.15£0.2 and
Veg=0.610.1 with wy=0.5+0.1. This type of deviation
from the pure three-state Potts model exponents is con-
sistent with what we observed in I for a transition in the
three-state Potts model universality class.

To explore the behavior of the structure factor in more
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FIG. 5. Structure factor above T,, scaled with three-state
Potts exponents. Notice the peak of the scaled structure factor is
evidently not at r "6k =0.
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detail, we computed the correlation lengths and suscepti-
bilities explicitly. At each temperature we performed a
least-squares fit of the structure factor to a Lorentzian:

X
1+£2(8k, —q) +E2k}

We used data with the same 8k which scaled in the
preceding analysis. The units of k, and k, were chosen
so that g,-X=2w/a,=g,"§=2m/a,=1. Only when the
data was obviously above T, did we use the point at
8k=0. By fitting the structure factors to Lorentzians we
are not claiming that the scaled structure factor is purely
Lorentzian: Indeed, deviations of the scaled structure fac-
tor from Lorentzian behavior are evident at large |8k |.
We are just finding the Lorentzians which best describe
the structure factors. From Eq. (5) the correlation lengths
&, and £, defined in this way will be proportional to ¢ ="
(and given in units of @, and a,) and the susceptibility X
will be proportional to ¢ =7, as usual. (These definitions of
the correlation length and susceptibility are not standard
choices, however.?’) If the scaling function is anisotropic,
then ¢ will be proportional to £~'. Baxter?® observes that
g «< £~ along his line of exact solutions, which Huse and
Fisher* interpret as meaning that the chirality vanishes at
the transition of the solved model. That ¢ <£;? at the
Potts point can be viewed as a lattice-constant effect: An
atomic form factor which is not spherically symmetric
would lead to the same behavior because
(14+b8k, )X (£,8k,) has a g which goes to zero as £ 2,
As in I, we obtain effective exponents from log-log plots.?®
From log-log plots of &£, and X (see Fig. 6), we find that

L(k,T)= )]
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&x, ©) g7, and (d) £,. The units of g and £ differ slightly from
Eq. (7) and Table 1.
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veg=0.87£0.08 and y.4=1.551+0.12, respectively, with
(T,)ey=0.789+0.006 E,. Defining B by g «t?, we simi-
larly find Bg=0.97+0.10. Analysis of £, gives
veg=0.95+0.09. These results are consistent with the
analysis presented above which simultaneously used all
the data.

In order to explicitly compare the behavior of g and &,,
Fig. 7 shows g&, as a function of T for z =2.5 and two
other activities. It appears that g§, approaches a constant
as T, is approached from above or below. There is no
sign of it tending to vanish as it would in a Potts-like
transition.

The behavior of g§, versus T also contrasts with what
one expects for a double transition with an intermediate
incommensurate phase. In such a floating phase g is
finite, whereas &, is infinite, and thus g&, would be ex-
pected to diverge as the floating phase is approached from
the disordered phase. We see no sign of this occurring.
Moreover, £, appears to diverge as a power law rather
than exponentially in ¢, the behavior expected in ap-
proaching a floating phase from a disordered phase.?’

The observed behavior is evidently independent of lat-
tice size for the, lattice sizes we have studied: We varied
the system size from 12X36 to 72X216 and see only
small finite-size effects in g§, 10% above T, at z =2.5.
Table I lists g, £5', g&,, and £, /&, at (T,z)=(0.855 E,,
2.5) as a function of system size; we estimate the uncer-
tainty in § and g due to statistical error to be around 5%.
Plots of g&, are roughly independent of system size ap-
proximately 1.5% above T, for systems of sizes greater
than 36X 108. In an incommensurate floating phase &,
(and g§&,) would increase linearly with system size. We
see no sign this occurs for an extended temperature range.
The finite-size effects we do observe seem to be well ac-
counted for by standard finite-size scaling theory for a sin-
gle critical point: In Fig. 8 we show the standard finite-
size scaling plot*® for S(A.), using data from four
different system sizes. The finite-size-scaling behavior of
S(A,.) is well accounted for by three-state Potts ex-
ponents. Thus our data seems to be inconsistent with a
floating phase with a width greater than about 1% of T..
With this conclusion there is an important caveat, howev-
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FIG. 7. Temperature dependence of g&, for three activities:
z=4.0(X),z=2.5(0),and z=1.62 (A).
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TABLE 1. The dependence of the peak shift g, the inverse
correlation length £5', g€, and &, /€, on system size at z =2.5
and T =0.855E, (=8% above T,).

System size q & g6« 5x/6y
1236 0.0269 0.0501 0.536 0.257
1854 0.0292 0.0457 0.641 0.252
2472 0.0305 0.0470 0.648 0.244
3090 0.0326 0.0458 0.712 0.242
36108 0.0323 0.0443 0.728 0.248
72216 0.0320 0.0448 0.715 0.225

er. We cannot preclude the possibility that there is a
floating phase over a much larger temperature region be-
cause such a phase introduces a new length scale, the
average distance between dislocations, which could con-
ceivably be much larger than our system sizes. The scal-
ing behavior we observe could be characteristic of the be-
havior when the correlation length is much smaller than
the system size and dislocation size. This possibility
would imply that we (and the experimenter) would need
much larger systems to see behavior characteristic of a
floating phase, although floating phases have been ob-
served in lattice-gas systems with sizes comparable to
ours. 3! =3

Figure 9 shows the temperature dependence of the ratio
of correlation lengths £, /£, for z=2.5. In a transfer-
matrix study of a similar centered-rectangular lattice gas,
Kinzel'® concluded that sufficiently far from the critical
point of zero chirality the scaling itself could become an-
isotropic with the exponent describing-the divergence of
the £, different from the exponent governing §,. There is
no indication of this type of behavior at this activity: If
such anisotropy were present one would expect £, /€, to
become large or small near the critical point, while Fig. 9
shows little change. The observed behavior is also incon-
sistent with £, /¢, o« 1173 as observed by Howes* near the
Lifshitz point of a related model. That the £, /§, above
T, appears to be different from £, /£, below is additional
evidence that the scaled structure factors are not Potts-
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FIG. 8. Finite-size scaling plot of S(A.). The values of B and
v used were those of the three-state Potts model. 7, was taken
to be 0.7875E,.
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FIG. 9. Temperature dependence of &, /&, at z =2.5.

like. For Potts models on anisotropic lattices one expects
that a simple change in the units of k, and k, will make
the structure factors isotropic. (The structure factor of
the Ising model with anisotropic interactions has this
property.?®) If this change of units sufficed to make the
structure factor isotropic, the ratio £, /£, would be the
same above and beneath T, contrary to what we observe.

That the scaling functions above and below T are no
longer Potts-like automatically implies that some ampli-
tude ratios will be different from those of the Potts mod-
els. Assuming three-state Potts exponents we find
£./6_=5.0%1.7 and X, /X_=160£80. The suscepti-
bility amplitude ratio is considerably larger than the value
found in I for the three-state Potts model (43+3), while
the correlation length ratio is approximately the same
(4.1£0.3). Again we note that the large value of X | /X _
will make measurement of critical scattering much more
difficult below T, than above.

Low-resolution LEED instruments, which integrate the
structure factor, measure the energy singularity.’®> With
this motivation, we present in Fig. 10 the temperature
dependence of the energy at z =2.5. Fits similar to those
of Ref. 35 (not including a linear background term) yield
the ratio above and below T, of the amplitude of the 7! ~¢
term as 3.2+1.3 and a.4=0.45%0.05. The effective a is
close to what is typically observed for the three-state Potts
model.>® The amplitude ratio is different from the value
of unity characteristic of the Potts models and from the
values observed for the lattice gases of Ref. 35 (and also
Baxter’s exact solution?®). If there were an incommensu-
rate (I) or floating phase between the commensurate (C)
and disordered incommensurate (DI) (i.e., with exponen-
tial decay of correlations) phases, the C-I transition is ex-
pected to be Pokrovsky-Talapov-like,*”*® and the I-DI
transition is expected to be Kosterlitz-Thouless-like.>” In
the C-I transition the specific heat diverges as 7, is ap-
proached from above, but remains finite as it is ap-
proached from below.*® In the Kosterlitz-Thouless transi-
tion the specific heat peaks above Tt without diverging
and does not have a universal shape.”® Thus if there were
two transitions we would not expect to obtain a decent fit
of the data with the same type of singularity above and
below an effective T,, as we do, although again we men-
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FIG. 10. Temperature dependence of the energy at z =2.5.
The dashed line gives the best fit to an energylike singularity
with a=a’ and no linear background term. The thermal range
between the bars was excluded in the fit. Notice the evident
asymmetry above and below T, suggesting that at least the am-
plitude of the singularity above T, is not equal to the amplitude
below.

tion the caveat that our systems might be too small to ob-
serve the correct asymptotic behavior.

If X, (w) is universal and peaks away from w=0, then
g&, in the limit of T approaching T.(z) from above
should be universal* and thus independent of z. To test
this prediction, we performed extensive simulations at two
other activities (z =1.62 and 4.0). Plots of g&, versus T
at these activities are shown in Fig. 7. If a thermal range
3-10 % above T. is in the asymptotic scaling regime then
this figure suggests that the limit of q&, as ¢ approaches
zero, and thus the scaled structure factor, is not universal.
Figure 11 shows the dependence of g&, on the activity
5% above T, (as estimated for each z from a standard
finite-size scaling study using transfer matrices®’). Taken
at their face value these plots suggest that at least the
effective scaling function is not universal. This could
occur if the chiral field were a marginal operator away
from the line of zero chirality (as is simple lattice anisot-
ropy in the Ising model*!). The other possibility is that
we are observing crossover from the behavior at zero
chirality to something else, which would mean that none
of our data shows the asymptotically correct behavior.
This alternative would leave unexplained why the data
evidently scale, in a way different from at zero chirality,
for relatively large ranges of ¢ and 6k.

IV. FINAL COMMENTS

In the finite-sized lattice gas studied here, we observe
that the structure factor effectively scales with three-state
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FIG. 11. Activity dependence of g§, 5% above T, (where T,
was estimated through the use of transfer-matrix scaling).

Potts model exponents but with a non-Potts-like scaling
function. Whether this behavior is characteristic of the
infinite system asymptotically close to 7, is difficult to
know, but it suggests the behavior that one might expect
to be encountered in chemisorption-system realizations on
imperfect substrates.

The questions raised in this discussion are not unique
to the (3 X 1) phase of course, and any experimental mea-
surement of the temperature dependence of g§ in a system
where g is temperature dependent would be interesting.
As an example of a system where an incommensurately
disordered system has evidently been observed, we men-
tion O/Ni(111).#? At coverages slightly above + of a
monolayer, the p(2X2) ordered state makes a transition
to a state with diffuse diffraction beams peaked at non-
commensurate positions. Monte Carlo simulations*® sug-
gest that the incommensurability is coupled to the oc-
currence of two types of binding sites. It would be in-
teresting to examine experimentally the transition of the
p(2X2) commensurate state to this disordered state—
especially the coverage dependence of the incommensura-
bility. In some systems the breakdown of lattice-gas sym-
metries causes the disordered phase to be incommensu-
rate. 444
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