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Abstract. Using a modified version of a Monte Carlo algorithm proposed by Sterling and 
Greensite, we obtain the exponents 6 = 1.51 i0.25 and U = 0.502i0.024 for planar self- 
avoiding surfaces with fixed boundary in three dimensions, consistent with the conjectured 
exact values for branched polymers. We show how the modifications are needed to obtain 
a viable distribution of surfaces. 

The present letter is intended to settle a recent controversy concerning the statistical 
properties of self-avoiding random surfaces (SARS) with a fixed boundary in low 
dimensions. Such objects appear naturally in the high-temperature expansion of lattice 
gauge theories (Balian et al 1975). In three dimensions they may also elucidate some 
pathological interface problems where the common idealisation of neglecting overhangs 
is not invoked. For a comprehensive review and many further applications of random 
surfaces, see Froehlich (1985). 

In the following, we consider self-avoiding surfaces with empty boundary on the 
cubic lattice Z 3 .  Each surface S consists of a set of pairwise different elementary 
plaquettes in Z 3 ,  each of which is connected by each of its four edges to exactly one 
other plaquette of S. S is anchored at a fixed plaquette p o .  Self-avoiding means that 
each elementary bond in Z 3  occurs at most once in S. S is, however, allowed to touch 
at ‘corners’; a site in Z 3  may be the boundary of six elementary bonds of S. 

Furthermore, we require S to be planar, i.e. topologically equivalent to a sphere. 
We are interested in the number N ( n )  of configurations of such surfaces that can be 
made out of n plaquettes and in the dependence of the radius of gyration R ( n )  on n. 
Asymptotically, for large n, these are expected to behave, respectively, as 

N (  n )  - n-’p“ ( l a )  

R ( n ) -  n”. (1b)  
Durhuus er a1 (1983) have actually proven that N (  n) is exponentially bounded and 
have given the estimate 

[ 3 ( d  - 2 ) ] ” 4 ~ p ~ ( 2 d  - 3 )  d z 3  ( 2 )  

for p, where d is the dimension of the embedding space. They also showed that p is 
independent of the shape and size of the fixed boundary as of S. 
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The controversy centres around the values of the 'critical exponents' 6 and v. In  
the absence of a self-avoiding constraint on the surfaces, Durhuus et a1 (1984) have 
given strong arguments that the corresponding model ( PRS model) collapses into 
non-interacting branched polymers in all dimensions, implying f3 = 2 and v = $. These 
values were also obtained by Drouffe et a1 (1980) from a mean-field theory for SARS, 
expected to become exact as the dimensionality d goes to infinity. By a real space 
renormalisation group calculation, Maritan and  Stella (1984) obtained values for v in 
3 s d s 8 for a SARS model that were considerably lower than the ones expected for 
branched polymers. A Flory argument for v agreed roughly with their RG calculation. 
By a Monte Carlo calculation to be described below, Sterling and  Greensite (1983) 
obtained e = 0.5 * 0.05 for SARS with fixed boundary in three dimensions, very different 
from the conjectured exact values 6' = 5, v = f for branched polymers (Parisi and Sourlas 
1981). Estimates close to 8 = 5 ,  v = f were obtained by Glaus (1986) with Monte Carlo 
and Redner (1985, 1986) with exact enumeration for a SARS model with free boundary 
in three dimensions. Baumann and Berg (1985), using the Monte Carlo method, found 
v =$, 6 = for a PRS model without spikes in d = 4. They concluded that this model 
does not collapse into non-interacting branched polymers. 

Sterling and  Greensite (1983, hereafter denoted by SG) have proposed an efficient 
Monte Carlo procedure to generate self-avoiding surfaces with a fixed boundary. Their 
algorithm produces S A R S  with an empty boundary in a grand canonical ensemble at 
a fixed plaquette activity p. Each n-plaquette SARS has the probability p " / Z ( p )  of 
occurring in the ensemble, where 

X 

5 ( p ) = C p l s 1 = ~  C N ( n ) p n  (3 1 
S n = 6  

is the grand partition function. Here, (SI denotes the number of plaquettes in S and 
the proportionality constant M is equal to the number of sites stored in the computer, 
because N (  n )  counts only the number of different configurations modulo lattice 
translations. The SG algorithm has been used extensively for various surface models 
(Schrader 1985, Karowski and  Thun 1985). Berg and Billoire (1983) and Glaus (1986) 
use a data structure, which only stores the surface in the computer and is therefore 
especially useful in high dimensions. Recently, a MC simulation was performed on a 
triangulated version of self-avoiding surface model ( Kantor et a1 1986). 

Given a surface S, the SG method consists of sweeping sequentially through the 
sites dual to the cubes of Z 3 .  Each site is checked to see whether the original lattice 
cube C has one or more of its faces belonging to S. If this is the case, an attempt is 
made to produce a new surface S' obtained from S by simultaneously reversing the 
occupied/empty status of all six plaquettes bounding C. S' is accepted if it is self- 
avoiding and planar and passes the standard Metropolis test that produces surfaces 
according to the equilibrium distribution of equation (3).  

We have simulated the fixed-boundary SARS model in three dimensions using a 
modified version of the SG algorithm. The modifications, the motivations for which 
will be discussed shortly, are as follows. 

(i) One plaquette p o  is kept fixed; the two cubes having po  as one of their faces 
are never visited during the simulation. 

(ii) Instead of sweeping sequentially through all the cubes of the lattice, the cubes 
that have faces belonging to S are accessed at random. 

(iii) The simulation is actually not performed in Z 3  but in a large cube L of size 
(20 x 20 x 20). In order to eliminate any finite-size effect we used 'pseudoperiodic' 
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boundary conditions. If the surface S leaves L, it is periodically continued into L. At 
each step, we keep track of the maximal extension of S in all three coordinate directions. 
The activity p is then chosen such that all surfaces created by the simulation fit into 
the cube L. In this way, all finite-size effects are eliminated. 

With these modifications, it follows that the transition probabilities for our Monte 
Carlo algorithm are 

1 
- p (  p, s+ s ’ )XSA(s ’ )  

- ( l -p(P,  S + S ’ ) )  

SI- s 
(4) [ :;: S’ = s. 

W ( S +  S ’ )  = 

Here, C ( S )  denotes the number of cubes in L that have faces belonging to S and do 
not contain p o ,  xSA(S’) is the characteristic function for S’ to be self-avoiding and 
planar, and S ’ - S  means that S’ can be obtained from S by reversing the 
occupied/empty status of all plaquettes forming the boundary of a single elementary 
cube. Furthermore, 

and p (  P ,  S + S’)  is determined by the equations of detailed balance for the modified 
grand canonical ensemble: 

The probability P (  S )  for a surface S to occur in the ensemble now satisfies the equation 

From equations (4) and (7)  and the detailed balance condition 

W ( S +  S ’ ) P ( S )  = W ( S ’ +  S ) P ( S ‘ )  (8) 
we obtain 

We next explain the reason for introducing these modifications to the original SG 

algorithm. We first note that, since C ( S )  denotes the number minus two of cubes that 
have plaquettes belonging to S, it follows that 

C ( S )  - ISI. (10) 
Therefore, the probability for a surface with n plaquettes to occur during the Monte 
Carlo simulation is 

00 

P(ISJ= n) - n ’ h i ( n ) p n (  m = 6  c m 2 N ( m ) p m ) - ’  (11) 

where one factor of n in (11) comes from C ( S )  and the other results from keeping p o  
fixed, because N (  n) counts different configurations modulo lattice translations. Using 
( 1  a ) ,  we see that 

P(IS(  = n) - n-O+*( p p y  (12) 
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which, as a function of n, has a maximum at 

n ( P ) - ( 6 - 2 ) / ( 1 n ( p P ) )  (13)  

e - 2 < 0 .  (14) 

provided that 

In other words, if inequality (14) holds, the algorithm will generate mainly surfaces 
of size given by equation (13). Moreover, as p + p- '  this typical size diverges and the 
scaling region becomes accessible. 

We tested the validity of (14) by measuring the distribution of surface sizes during 
the simulation. It did peak at n (  p )  > 0, consistent with (13). 

We performed a main run at p =OS6 with a total of 10' MC steps requiring 75 
minutes of CPU time on the National Bureau of Standards Cyber 205. After every 
2 x lo3 such MC steps, the number of plaquettes /SI, the radius of gyration Rs and the 
volume Vs enclosed by S were measured. Rs is defined to be the root-mean-square 
displacement of the midpoints of all plaquettes belonging to S. The analysis of the 
statistical and systematic errors is based on the methods described in detail in the 
Monte Carlo study of the self-avoiding walk in two dimensions by Berretti and Sokal 
(1985). The autocorrelation time T for the observable IS[ is estimated to be 

T = (5.6k0.8) x lo3 MC steps (15 )  

(/SI) = 50.26i0.40. (16) 

N ( n )  = a,pfln--y1 + a , / n )  (17)  

and the mean number of plaquettes 

In order to determine 6 and p, we assume that for all n 2 nmin we have 

i.e. that the correction-to-scaling exponent is equal to unity. Here, nmin is an adjustable 
parameter that can be raised to diminish corrections to scaling. For an observable A 
that depends only on the number of plaquettes, we can then define the 'theoretical 
average' 

On the other hand, using the Monte Carlo data, we obtain the observed average 

Here t labels the sampled surfaces and T denotes the sample size, which is T = 5 x lo4. 
x ( m )  is the characteristic function for m to be Z-0. 6 and p are obtained by the 
maximum likelihood method which is equivalent to solving (A)rh = (A)ohs for A = 1st 
and A = l n  [SI. In figure 1 ,  8 is plotted against (nmJ1 for al=O.O, 0.5, 1.0, 1.5,  2.0, 
where for decreasing a, the curves are moving towards the top of the figure. We obtain 

6 = 1.51 *0.1 f0.15 

p = 1.733 * 0.005 f 0.006. 

The leftmost numbers on the right-hand sides of (20) and (21) denote our estimates, 
obtained by extrapolating 6(nmin, a,)  and p(nmin, q), respectively, to (nmin)-I = O  as 
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Figure 1. 0 for various values of a ,  against (nm,")- ' .  Circles denote values obtained as 
explained in the text. Lines are guides to the eye. The arrow denotes the central estimate 
and broken lines indicate the estimate for systematic error. The top and bottom curves 
are labelled by their value of a , .  

depicted in figure 1 for 6. Our first error bar accounts for the corrections to scaling. 
The second error bar denotes the statistical error and is twice the variance for nmin = 13 
obtained from the explicitly known covariance matrix for p and 0, multiplied by (27)"' 
(Berretti and Sokal 1985). 

The estimate for v was obtained by minimising 

with respect to v and bo for various b, and nmin.  We obtain 

v = 0.502 f 0.012 * 0.012 (23) 

where the statistical error here is twice the variance for nmin=25 obtained from 
least-squares theory times (27)"'. In table 1, we list the averages of /SI, V, and IS(/ V,, 
along with the statistical error bars for /SI/ V .  for various nmin, where surfaces with 
1st < nmin were discarded in calculating the averages. 

Our values for 6 and v are consistent with the exact values 6 = i, v = f conjectured 
by Parisi and Sourlas (1981) for branched polymers in three dimensions. Moreover, 

Table 1. Some observed expectation values for various nmln together with the statistical 
error for (IS// Vs).  N,  denotes the number of surfaces with IS12 nmln.  

5 50 000 50.06 13.50 4.097 f 0.008 
9 47 188 52.68 14.25 3.984 i 0.005 

13 44 298 55.47 15.04 3.9 17 * 0.005 
17 41 150 58.62 15.96 3.864i0.005 
21 37 844 62.14 16.99 3.8 18 i 0.004 
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from the small error for ISl/ V, in table 1, it follows that the volume enclosed by S is 
typically proportional to [SI, indicating that typical surfaces have a treelike structure. 

Our estimate for p is consistent with the known crude but rigorous bounds (2). It 
is barely consistent with the estimate p = 1.701 * 0.005 of SG. More crucially, the result 

(24) 

obtained by SG is distinctly different from our estimate (20). From (3), it can be seen 
that the probability in the SG algorithm to produce an n-plaquette surface is 

e = 0.5 * 0.05 

Since we found 6 > 0, it follows that in this algorithm small surfaces are most probable 
for p < p - ' .  Moreover, once p > p- ' ,  P(/SI = n )  will have a minimum as a function 
of n at 

n * ( P )  = e / ln(pP) .  (26) 

Since E( p )  = CO for p > p- '  in the thermodynamic limit, we would have P(ISI = n*) = 0; 
for finite system size, P(lSl= n * )  will instead be a very small number. Starting with 
a single cube, there is very little chance of producing a surface with ISI> n * ,  i.e. to 
enter the regime where /SI diverges. Due to this 'lack of ergodicity' one is therefore 
led to believe that even for p > p - ' ,  (IS/) is still finite because only surfaces with 
IS1 < n* are produced. This accounts for the p dependence of (IS/)-' shown in figure 
2 of SG, because our estimate for p- '  is well within the region in which their (ISl) is 
still finite. Moreover, SG run their MC algorithm at various temperatures p and extract 
their estimates for 0 and p from the p dependence of (IS/), which according to ( l a )  
should be 

Replacing these sums by integrals and extending the lower limit of the integrals to 
zero, one finds 

(ISI)-(l - e ) / ( l - F P )  (28) 
which is, of course, only valid for 0 < 1. Our modified SG algorithm avoids the two 
problems of 'lack of ergodicity' for p > p- '  and implicit assumptions of the value of 
8. In obtaining 8 = 1.51, we clearly find that the assumption 8 < 1 is not valid, which 
accounts for the dramatic difference between our estimate (20) and that of SG given 
by equation (24). 

Baumann and Berg (1985) noted the problems encountered in the SG method of 
extracting 8 from their Monte Carlo data. Their way should, in principle, yield correct 
values for the exponent 8. However, they obtained 8 by using a previously determined 
value for p. It is obvious that 8 depends very sensitively on p, and these two quantities 
should in fact be estimated simultaneously. Our results indicate that, by eliminating 
the spikes from the PRS model, one cannot prevent the resulting surfaces from collapsing 
into non-interacting branched polymers in the continuum limit and are therefore 
contradictory to Baumann and Berg (1985). Regarding Maritan and Stella (1984), it 
is well known that RG calculations are i l l  controlled and should not be taken at face 
value and the Flory theory for branched polymers (Lubensky and Isaacson 1979) is 
actually more appropriate to describe SARS models such as those we have considered. 
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The important point then is that one has to be careful in devising a Monte Carlo 
algorithm for a grand canonical ensemble of a lattice geometrical problem. For bond 
problems, one is usually guided by the n + 0 limit of ferromagnetic lattice spin systems 
(de Gennes 1972, Lubensky and Isaacson 1979) that provide a direct link to critical 
phenomena. In problems involving elementary plaquettes, the relation to lattice gauge 
theories is much less clear, and the correct field theories for these surface models have 
yet to be found. Our results, especially when combined with GIaus (1986), indicate 
that presumably all lattice surface models with short-range self-avoiding interactions 
will in the continuum limit collapse into branched polymers, for which a field theoretic 
description has been proposed by Lubensky and Isaacson (1979). 

We thank Jacques Amar for assistance in using the NBS Cyber 205. This work was 
supported by the Department of Energy under Grant No DE-FG 05-84ER45071. 
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