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We present a method of computing coverage discontinuities in two-dimensional lattice-gas phase
diagrams using transfer matrices. By applying the method to Baxter’s generalized hard-square
model, we find good agreement with exact results. This method also can be used to estimate the po-
sition of multicritical points, and we again find good agreement with exact results and with previous
work on the Ising metamagnet. We discuss the transfer-matrix eigenvalue spectrum around an Ising
tricritical point and verify the prediction of conformal invariance that the finite-size scaling
behavior of each of the leading eigenvalues is governed by a different critical exponent at the critical
point. We show numerically that the finite-size convergence of the free energy at the (Ising-like) tri-
critical point of Baxter’s model is consistent with a conformal anomaly of %. We show that the

justification of a commonly used method to locate multicritical points using simultaneous scaling of
the correlation length and the “persistence length” is misleading. Finally we suggest a method of es-
timating the position of multicritical points using information from only one strip width.

I. INTRODUCTION

Systems of atoms chemisorbed on single-crystal sur-
faces can be modeled as two-dimensional lattice gases. To
compare models with experiment, temperature-coverage
phase diagrams for the lattice gases must be computed.
Phase diagrams for systems with attractive interactions
usually have a low-temperature line of coexistence be-
tween dense and dilute phases which terminates at higher
temperatures at a critical or multicritical point. Estima-
tion of the coverage discontinuity! =3 along the coex-
istence line and the location of the multicritical point! ~!!
have been the subject of several recent studies. In this pa-
per we demonstrate a different approach which appears to
yield accurate results and to be simple to apply. Essen-
tially, we extrapolate finite-size estimates of the appropri-
ate “Onsager-Yang” magnetization, applying a method
proposed by Hamer.!> We locate the multicritical point
directly by finding the temperature at which the discon-
tinuity vanishes, in contrast to other methods®*®—%1!!
which look for the divergence of appropriate correlation
lengths. An advantage of the method presented here is
that from a single approach the entire temperature-
coverage phase diagram can be computed.

The model we use to demonstrate the technique is the
square lattice gas with nearest-neighbor repulsions and
second-neighbor attractions. The Hamiltonian in the
grand-canonical ensemble is

%:—,uEn,--{—El 2 n,-nj+E2 2 ninj . (1)
i Gj), (ij),

The occupancy (0 or 1) of the ith site is #;. The chemical
potential ;1 determines the coverage. The sums over (ij),
are sums over sites i/ and j which are nth nearest neigh-
bors. Here we consider two specific cases with E, <O0:
E, infinitely repulsive (interacting hard squares) and
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E,/E,=—~. In both cases there is a high-density
¢(2X2) ordered phase which coexists at low temperatures
with a dilute disordered phase. The ¢(2x2) phase per-
sists to higher temperatures than the coexistence line,
which terminates at a tricritical point. In the first case, as
Huse has pointed out,'? the tricritical point, tricritical ex-
ponents, and the line of first-order transitions is known
exactly from the work of Baxter.!*!> This allows us to
determine the accuracy of our approximation. As the
second case has been studied with other tech-
niques,"*>710 we can also make comparisons.

II. METHOD

First we discuss the problem of finding coverage
discontinuities in the transfer-matrix formalism. The
transfer matrix we consider is that between rows of a
square lattice with N rows and M columns with periodic
boundary conditions. Figure 1 shows the u dependence of
the three largest eigenvalues of the transfer matrix of the
interacting hard-square system for M'=6 at a temperature
10% below the tricritical temperature. The eigenvalues
denoted by A, and A, have eigenvectors which are even
under cyclic permutations of the columns of the lattice;
A _ has an eigenvector which is odd under cyclic permu-
tation. In the limit N— o, M finite, only A;, contri-
butes to the coverage:

kT OlnA, ., A
=t 1+) . 2
M o (1+[p|1+) ()
The density operator g is defined by
M
p=3 |IOM™'S (n)i i}, 3)
i k=1

where (ny); is the occupancy of the kth column of a row
in state i. As M becomes large, a discontinuity in the
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FIG. 1. Dependence of the largest eigenvalues of the transfer
matrix of the interacting-hard-square problem on u for M=6
and T=09T,.

slope of the largest eigenvalue develops as the two largest
even eigenvalues become degenerate: In the infinite-
system limit the two largest even eigenvalues cross. Our
problem is to estimate this discontinuity from results for
finite M. Applying degenerate perturbation theory to the
M — « limit, one finds that the two slopes, and thus the
limits of the coverage discontinuity, are given by the solu-
tions of

(ajplar—p (alp|b) |
(b|pla) <(b|p|b)—p|

where |a) and |b) are two even independent eigenvec-
tors associated with the degenerate largest eigenvalue.
The largest odd eigenvalue also becomes degenerate with
the first even two. As the eigenvector of this eigenvalue is
orthogonal to the even ones, it does not affect Eq. (4).
The role of this eigenvalue will be discussed further below.
The essential observation'? is that the finite-size estimates
of the matrix elements in Eq. (4) allow estimates of the
coverage discontinuities to be made. Finite-size scaling at
first-order transitions is discussed in detail by Privman
and Fisher.'® They consider the case of two coexisting
phases and argue that the rounding of the discontinuity
occurs for fields (chemical potentials) of the order
e ~“M/kT where o is the free energy per unit length of an
interface between the two phases. In this problem we
have three coexisting phases (two ordered and one
disordered)—our coexistence line is a line of triple
points—and two distinct interface free energies. Inter-
faces between ordered phases do not, however, significant-
ly affect the coverage, so we expect the finite-size round-
ing of the transition in u to be governed by the interface
free energy between the disordered and ordered phases.
At low temperatures the rounding is small, and accurate
estimates of the coverage discontinuity can be made by in-
spection of the isotherms.!"? This cannot be done near the
tricritical point. Figure 2 shows the dependence of
(14 |pl1+4), (1+]|p|2+), (2+|p|2+), and
(1—|p|1—). To estimate the triple-point chemical po-
tential pyp, we find the chemical potential where

4)

(1+|p|1+)=(24|p|2+). As examination of Fig. 1
makes clear, this can only occur in the finite-size rounded
region, and thus from the arguments above this method
yields estimates prp(M), which approach pyp exponential-
ly in M. Making the identification |1+ )= |a) and
|24 )= |b), with the eigenvectors evaluated at prp(M),
yields

p+=(1+|p|14+) {1+ |p|2+) . (5

The p dependence of {1+ |5 |2+ ) is shown in Fig. 2. It
peaks at putp because it is proportional to the (reduced)
compressibility k: From perturbation theory,

~ 2 ~ 2
Kz_agmxﬂlﬂptnﬂl A+ p2+) ]
op 4 My —Any

Ay =Ry
(6)

Since we expect the compressibility not to diverge as
p—prp (A4 —Ay,) in the large-M limit, {1+ |5]2+)
must be peaked at pp with a width exponentially small in
M. By comparing Figs. 2(a) (M =6) and 2(b) (M =10),
this size dependence of the matrix elements can be quali-
tatively seen.
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FIG. 2. p dependence of the matrix elements for the
interacting-hard-square problem at 7=0.97,: (a) M=6 and (b)
M=10.
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III. RESULTS

Our procedure for computing the coverage gap was to
find the values of (14 |p|2+) and {1+ |p|1+) when
(14 |p|1+) equaled {2+ |p|2+ ) for three different
strip widths and then to extrapolate each to the infinite-
system limit by fitting to the form b +aM ~*. A justifica-
tion of this extrapolation will be given below. The 12-14-
16 estimate of the interacting-hard-square system’s T-p
phase diagram is shown in Fig. 3. The matrix element
(14 |p|2+) extrapolates to zero at 0.999 85T, where
T, is the exact value of the tricritical temperature,

E,/In[(3—V/5)/4]~0.60402 | E, |

from Baxter’s exact results. Except for values very close
to T,, the low-density side of the coverage gap of Baxter’s
result is reproduced. Baxter does not compute (at least ex-
plicitly) the high-density side. The estimates of p, as
0.276 55 and (u/kT), as —3.2543 are also close to the ex-
act results p,=(5—V'5)/10=0.27639... and (u/kT),
=—3.2538.... These estimates of the critical parame-
ters are at least 2 orders of magnitude more accurate than
the results from recent low-temperature-series expan-
sions.>® Above the tricritical temperature we estimated
u. for each temperature as the u where the maximum in
(14 |p|2+) occurred. This method works because the
compressibility [Eq. (6)] diverges along the critical line
above T,. At 1.2T,, this estimate of the critical line
reproduced the results obtained by the standard method of
scaling the leading correlation length. Similar results
were obtained by estimating p. as the point where
(1+|p|14)—(2+|p|2+) extrapolated to zero.

We applied the same procedure for the case
E,=—E,;/2. Measuring temperature in units of |E, |,
the T-p phase diagram is virtually indistinguishable from
that of the interacting-hard-square phase diagram in Fig.
3. The 6-8-10 estimate of the tricritical temperature is
0.60123 | E, |, very close to the value quoted above for
the interacting-hard-square model. (The temperature
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FIG. 3. Estimated T-p phase diagram for the interacting-
hard-square problem compared with Baxter’s exact results
(dashed line) for the low-density side of the coexistence region.
The critical line continues smoothly to p~0.368 at T= o (Ref.
4), the noninteracting hard-square limit.
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of the tricritical point is insensitive to E,: It appears to
vary monotonically from the hard-square limit of
T,~0.60|E,| to |E,|/2In(14+v2)~0.57|E,| at
E| =0, when the two tricritical points merge at a “critical
point of fourth order.”!” This is perhaps not surprising as
E, is responsible for the existence of the coexistence line
and thus sets the energy scale for its termination.) The es-
timates of (u/kT), and p, were —1.9659|E,| and
0.276 79, respectively. At low temperatures the coverage
gap is consistent with Monte Carlo calculations' and with
previous transfer-matrix estimates.” The estimate of the
tricritical point is within the smaller error bars of the esti-
mates from the correlation-length scaling of Ref. 2 (using
the same strip widths).

Figure 4 shows the odd and even eigenvalue spectrum
for M =6 at a temperature half of 7,. It strongly sug-
gests that the second and third eigenvalues are degenerate
in the infinite-system limit for chemical potentials smaller
than the chemical potential of the triple point. Thus the
second eigenvalue is parallel to the largest eigenvalue in
the dense phase and so the matrix element (1— |5 |1—)
is an estimate of the high-coverage limit of the coverage
discontinuity—extrapolating this matrix element in the
manner described above yields essentially the same results
as extrapolating p, of Eq. (5), as used to generate Fig. 3.
As the tricritical point is approached, the “avoided cross-
ing” involving the second, third, fourth, and fifth eigen-
values approaches the triple point (presumably in a way
analogous to the approach of the avoided crossing at fi-
nite magnetic field of the second and third eigenvalues of
the Ising model as the critical point is approached'®).
Thus near the tricritical point we expect the fourth eigen-
value to be degenerate with the largest in the M- o lim-
it. This expectation will be verified below.

Privman and Schulman'® suggest that the second-
largest eigenvalue near a first-order transition gives the
free energy of a metastable phase. The (near) degeneracy
of the second and third eigenvalues at chemical potentials
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FIG. 4. The seven largest eigenvalues for the interacting-
hard-square system at T=0.5T, as a function of (M =6). The
heavy lines denote pairs of eigenvalues which are degenerate on
this scale.
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smaller than that of the triple point is consistent with the
picture of a metastable phase with ¢(2X2) order at these
chemical potentials.

We now discuss the generalization of the above treat-
ment of coverage discontinuities to other lattice-gas sys-
tems. In the treated models the ¢(2X2) state breaks the
translational symmetry of the lattice and is characterized
by a degeneracy of the two largest eigenvalues of the
transfer matrix. In general, we characterize the states
having broken translational symmetry by the & functions
occurring in their structure factors. For every indepen-
dent 8 function there will be an eigenvalue degenerate
with the largest eigenvalue. For example, in the p(2X2)
ordered state, the largest four eigenvalues become degen-
erate in the infinite-system limit [eigenvalues associated
with k=(7/a,w/a), (w/a,0), (0,7 /a) become degenerate
with the largest eigenvalue!®]. Near a position in a phase
diagram associated with a coverage discontinuity, we ex-
pect that these three eigenvalues will have the same quali-
tative behavior as A;_ in Fig. 1. Thus the eigenstate
which plays the role of 2 + in Eq. (5) does not necessarily
correspond to the third-largest eigenvalue or even the
second-largest eigenvalue which is invariant under lattice
translations in the finite lattice direction. It will be the in-
variant eigenstate with the largest eigenvalue not degen-
erate with A, in the ordered state.

IV. CONVERGENCE PROPERTIES

To discuss the convergence of the matrix elements to
the infinite-system discontinuity, we first give an alternate
derivation of Eq. (5). At low enough temperatures we ex-
pect'® the dominant configurations of the strip at the
transition point of the infinite-system limit to have the
features indicated in Fig. 5: regions of dense or dilute
phase are separated by narrow domain walls. The average
distance between domain walls, &, is determined by the
interfacial tension between the dense and dilute phases.
For x >>¢£,, we thus expect the density-density correlation
function to have the limit

2
P+tp-
2

lim {p(0)p(x))= @)

x>>§“

For x <«<§; but x >>E%, where £ are the correlation
lengths in the single phases (which diverge at the tricriti-
cal point), we expect the correlation function to have the
limit

2 2
+p_
lim (p(O)p(x))=£+——p——.
x<<§H 2
x>>E

(8)

In the transfer-matrix formalism the row-row density-
density correlation function can easily be shown to be

Z‘n'n

($(0)d(x)) = lﬁ

00
- : 1
b,b,e mn+2n+n"))x/M
n'=0

n,n’'

TRANSFER-MATRIX APPROACH TO ESTIMATING COVERAGE . ..

2
M m,m’'=1

)

1619
T P+ P- P+ P-
M
| GRS

—
FIG. 5. Expected dominant configurations of the strip at the

triple point showing only domain walls between phases of dif-
ferent density.

(PLOpx)) =(1+ |p|1+)?

+3

n=2

X
}‘n+

9)
Ay

|1+ 1pln+) )2

(distinguishing the row density from the site density by
placing a tilde over the p). Identifying!® &' with
In(A,,/A,,) and assuming that &5 <<x with
(| Az4 | /A14)* << 1, we reproduce Eq. (5). The important
observation now is that p, and p_ are expected'® to differ
from their values in the M — « limit by terms propor-
tional to (some power of) e “M%« Thus we expect the es-
timates of Eq. (5) to converge exponentially in M. For
this case our power-law extrapolation can also be shown
analytically to converge exponentially; our numerical re-
sults are consistent with such rapid convergence. Far
beneath T,, where there is no problem with convergence,
fits directly to an exponential improved the convergence
to the exact results, but such fits gave much poorer results
near T,.

At the tricritical point we anticipate power-law conver-
gence of the coverage discontinuity to zero. For these
Ising-like tricritical points, along the line of triple points
the coverage discontinuity is expected'® to vanish as
(1—T/T,)® with o=+ and the inverse correlation length
as t¥ with v==. Thus finite-size scaling theory predicts
that at the tricritical point

P+—P

5 — = | {1+ |p|2+) | =aM ~*"Y=aM "' . (10)

For the interacting-hard-square system, our 12-14-16 ex-
trapolations at the estimated tricritical point yield
©0/v=0.20021. For the case E,=—E,;/2 we find
©/v=0.1953 from 6-8-10 extrapolations.

The density-density correlation function at large r de-
cays to p? as Ar ~7 in the infinite system at the tricritical
point. Using conformal invariance the constant 4 can be
related to the constant a, defined above, which determines
the convergence of {1+ |5 |24 ). To do this we first re-
call?®?! that a pure, refined, scaling operator ¢(r) which
has scaling dimension 7 and spin s has correlation func-
tions in the strip given by

M
2 e21rl(s+n»n m—m')/M , (11)
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where ¢(r) is normalized by ($(0)¢(r)) =r ", and where

b — I'(p/2+4n) (12)
" T(n/2)n!

However, the site density operator is not refined or nor-
malized; for example, it contains a part proportional to
the critical energy operator’? (for a discussion of the re-
finement of critical operators, see Ref. 23). We can ex-
pand the density operator in terms of refined critical
operators ¢;,2>

p(r)=a;I(r)+ 3 a;$;(r) . (13)
J

We define the ¢, so that at criticality (¢; ) =0; the identi-
ty operator is necessary because {p)=0. Thus

(p(0)p(r)) =af+ 3 aja;{$;(0);(r)) . (14)
j’j'
Conformal invariance predicts®' that (¢;(0)¢;(r)) is zero
unless ¢; and ¢; are in the same conformal block of
operators. If they are in the same block, then

($;(0)g;(r))=Byr " T
with 7 the lowest-scaling dimension in the block (the scal-
ing dimension of the primary operator) and n; an integer.
If, for the moment, we consider only primary operators,
the site-site density-density correlation function will have
the form

An

) (15)
M

{p(0)p(1)) =p*+ 3,
nr

where 7, are the primary-operator critical dimensions.
Applying the same arguments of conformal invariance to
this sum as were used to derive Eq. (11) yields an expres-
sion for the row-row densities in the strip:

(pl0)E(x)) =p*+ S, 4,($n(0),(x)) , (16)

with ($,(0)$,(x)) given by Eq. (11). We identify each
term of the sums of Egs. (11) and (16) with a term in Eq.
(9). Each inverse correlation length, In(A, , /A, , ), is asso-
ciated with a different 1 even though they all have the
same symmetries. If r is measured in lattice constants,
comparison of Eq. (9) with Eq. (11) yields
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n/2

2T |, 2 (17)

1+ 152 = |
[ {1+ 1512+ | v;

(We have implicitly verified this prediction for the spin-
spin correlation function of the Ising model.*) Thus
a=(2m)"%(4,,)"%. We find that 4,, =0.04065 for the
interacting-hard-square system. Of course, A4,, is a
nonuniversal quantity. That {1+ |5 |3+ ) is nonzero
means that A3, is nonzero; by extrapolating this matrix
element in the same way as {1+ |5 |2+ ), we can esti-
mate A3, and 7;,. At the tricritical point of the
interacting-hard-square problem, we find that the site-site
density-density correlation function has the form (assum-

ing now the known value—see below—of the scaling di-
mension of 73 ):

(P(O)p(r»zpz—i-%?‘ l+%+ e ] . (18)
r
The prediction of Egs. (9), (11), and (16) that
Ay T2+
In |—% |=—2%
n ™ M (19)

for M=16 yields an estimate of the smallest % contribut-
ing to the density-density correlation function of 0.4006
(with &, evaluated at the estimated tricritical point).
Table I lists the M dependence of M /7€ derived from the
largest eight even and odd eigenvalues (only the even ones
contribute to the density because {1+ |p|n—)=0)
evaluated at the exact tricritical point. They reproduce
the list in Ref. 25 of known zero-spin scaling dimensions
for the Ising tricritical point. In addition, there are two
dimensions (~4.4 and ~4.2) not associated with any pri-
mary operators. They are consistent, however, with the
higher-order terms of Eq. (11). Equations (9) and (11)
would then predict that

(14 |p14+)/{1+ |p|2+)=n,,72.

For M =16 we find that this ratio of matrix elements is
0.194 compared with the predicted 0.200. In general, the
terms of Eq. (14) involving secondary operators will also
be associated with eigenstates of Eq. (9).! They will have
the same eigenvalues as those associated with nonzero n

TABLE I. The M dependence of the scaling dimension estimates 7,+=M /7£,+ at the tricritical point of the interacting-hard-
square system. The extrapolations come from a three-point power-law fit of the final three entries in each column.

M 1— 2+ 2— 3+ 3— 4+ 5+
6 0.148 980 0.391853 1.929327 2.466 734 5.305 349 5.377699 6.832993
8 0.149 880 0.395 154 1.871208 2.431161 4.752832 4.847429 6.345874
10 0.150238 0.396 798 1.841740 2.416987 4.546 002 4.646 002 6.185 444
12 0.150391 0.397729 1.823935 2.410157 4.440540 4.569 160 6.112401
14 0.150455 0.398 306 1.812.002 2.406 451 4.377 664 4.518692 6.073 647
16 0.150478 0.398 688 1.803 436 2.404271 4.336354 4.487 602 6.050 909

Extrap. 0.1505 0.400 04 1.758 2.3992 4.195 4.404 5.9984

Refs. 21,25 > 1 . = & +4 144 6
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and n' in Eq. (11). As the amplitudes of the secondary
operators in Eq. (13) are nonuniversal, this would mean
ratios like

(14 |pl4+)/{1+|p|2+)

would also be nonuniversal. However, the amplitude of
these terms would be proportional to M ~7/2~2" rather
than M ~7/%; thus, in the large-M limit the ratio of the
matrix elements can be computed using Eq. (11), as is evi-
dently observed. The first four of these scaling dimen-
sions have been estimated numerically before using Monte
Carlo renormalization-group techniques.” The result for
the second eigenvalue, which couples to the c¢(2X2)
order-order correlation function, has been noted before.?
The eigenvalue A,, gives the 7 associated with the
density-density correlation function; A,_ is related to the
“cubic” field, which when applied creates a critical end
point;?® and A;, gives the 7 associated with the energy-
energy?? correlation function. The value of 6 is consistent
with corrections to scaling in zero staggered field found in
an analysis by Huse?’ of Baxter’s exact results. Huse pos-
tulated that it might be an irrelevant field linear in the lat-
tice cutoff. Looking at the eigenvalues associated with
eigenvectors which transformed like e2™™/M gave esti-
mates of the scaling dimensions differing from the ones
listed in Table I by m (or M /2—m in the case of the odd
block), which is consistent with the predictions of Eg.
(11).

Recently, arguments of conformal invariance were
used?® to predict

ln(?»|+) f me
M T M’

where c, the conformal anomaly, characterizes a univer-
sality class. Fitting the results from strips of width 12,
14, and 16 to this form, we find ¢=0.70003, consistent
with the identification of ¢ =15 with the Ising tricritical
point by Friedan et al.?

Above the tricritical point one expects the density-
density correlations to be governed by the energy-energy
correlation function of the Ising model (p=2). Thus
above T, [cf. Eq. (17], | (14 |p|24 )| « M ~}; above
T, the coverage discontinuity vanishes with a different
power from that at T,. To summarize, at low tempera-
tures (14 |p|2+) converges to the coverage discon-
tinuity exponentially. At the tricritical point it vanishes
with increasing strip width with an exponent characteris-
tic of the tricritical point, and far above T, it vanishes
with an exponent characteristic of the Ising critical line.
Between each of these three regimes there is crossover
from one behavior to another. Using only three strip
widths at one temperature, this crossover cannot be
detected—thus the inaccuracies in the phase diagram of
Fig. 3 just below (not at) the tricritical point. (A method
of extrapolation allowing for the crossover would be
better.)

(20)

V. RESULTS WITH A STAGGERED FIELD

On the coexistence line beneath T, three phases coexist:
two dense c(2XX2) phases and a dilute disordered phase.

Thus, as remarked earlier, the coexistence line is a line of
triple points.'” Consider a staggered field (h;) which
prefers one ¢(2X2) sublattice over the other. At chemi-
cal potentials greater than that of the triple point, there is
a single discontinuity in the “staggered magnetization” at
h,=0 as hg is varied with T fixed. At chemical poten-
tials less than that of the triple point there are two first-
order transitions: For large positive A there is a dense
phase with long-range order in one sublattice, for small
| hg | there is a dilute phase with small staggered magneti-
zation, and for large negative h; there is a dense phase
with long-range order in the other sublattice. Using the
above methods we can estimate the magnitude of the
discontinuities of staggered magnetization and directly lo-
cate the position of the triple point at a given temperature.

Figure 6 shows the eigenvalue spectrum of the
interacting-hard-square system at 0.8 T, and at a chemical
potential clearly less than that of the triple point. (The
eigenvalues are labeled by their symmetry properties at
h;=0.) There is an avoided crossing at finite A; which
gives rise to a discontinuity in the staggered magnetiza-
tion. As before, an estimate of its magnitude is

mE=(1+ | [ 14) 1+ | A [1-) . Q21

The transition h; was determined from 1+ | |1+ )
=(1— | Ay |1—), the analogue of the criterion used to
estimate the transition chemical potential when h;=0.
Figure 7 shows the resulting pu-m; phase diagram. As the
triple point is approached, the avoided crossing of Fig. 6
approaches h;=0. The matrix element (14 |7, |1—)
changes from a double-peaked function of 4, to a single-
peaked function. This chemical potential serves as
(another) estimate of the triple point. For M =12,
T =0.8T,, this occurs at u/kT = —4.1187 compared with
u/kT=—4.1178. .. from Baxter’s exact solution. Above
this chemical potential there is a single transition at A, =0
with (14 | A, |14+ )=0and m;=(1+ A, |1—). Aspu

In(\)

T T

00 02 04 06 08 10
hg/KT

FIG. 6. Eigenvalue spectrum for the interacting-hard-square
system at T=0.8T7, and u/kT=—4.7 as a function of stag-
gered field (M =10). A,, and A,_ do not cross; the avoided
crossing is indiscernable on this scale.
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FIG. 7. p-m; phase diagram for the interacting-hard-square
problem at T=0.8T,. The inset depicts the corresponding -k,
phase diagram.

becomes more negative, the transition h; becomes larger.
As h, becomes large the occupancy of one of the sublat-
tices becomes small. At u/kT= —5.2 we estimate the
value of hg/kT at the transition to be 1.063, and the occu-
pancy is small enough that the discontinuity in m; agrees
to three decimal places with what one would expect if one
of the sublattices had zero occupancy (using the known
magnetization of the Ising model at this temperature).

VI. COMPARISON WITH CORRELATION-
LENGTH SCALING

Finally, we compare the methods of Refs. 2, 7, 10, and
11 for locating the position of the tricritical point with
ours. References 2 and 11 state that the correlation length
&, associated with A,, (called & or the persistence
length) does not diverge along the critical line above T,.
This is not true: &, is proportional to M /77, with 7 the
critical dimension of the energy-energy correlation func-
tion”” (n=2 for the Ising model). Thus the success of
Ref. 2 in locating T, as a single temperature where &, is
proportional to M is due to the crossover from one ampli-
tude to another and the exponential divergence below T,
rather than because there exists one temperature (the tri-
critical point) where §,, « M. (Compare the discussion at
the end of Sec. IV.) As an example of the danger in this
approach, in Ref. 7 the case |E,/E, | =+ is studied.
The temperature where both £ and § scale linearly with
system size is found not to be at a tricritical point. This is
interpreted as meaning that the tricritical point decom-
poses into two critical endpoints at small |E,/E,|. The
present calculation locates a tricritical point at all negative
values of E,/E;.

Looking at matrix elements gives an analogous situa-
tion because at T, and above {1+ |5 |2+ ) converges to
zero. Thus the tricritical point cannot be located with just
the criterion that {1+ |5 |2+ ) converge to zero (or that
(14 |p|14+)—(2+|p|2+) converge to zero). Near

the tricritical point there is crossover between the powers
of the convergence rather than its amplitudes in the
correlation-length method. A disadvantage of the
matrix-element method is that it needs information from
at least three different strip widths. (For any particular
M, {14 |p|2+) is nonzero for all T, so an extrapolation
is crucial.)

Reference 10 proposes that the tricritical point can be
estimated as the temperature where the compressibility
k(M), is proportional to a power of M. Near the tricriti-
cal point the free energy has the scaling form"

Flu,T)=t>"X (gt ~%), 22)

where the scaling fields ¢ and g depend analytically on T
and u. For the (Ising-like) tricritical point studied here,
a=—+ and ¢==." The compressibility along the line

g =0 (the line of triple points beneath T) thus diverges as

3’ 2—a—2p_ 2
Ko —= ~t =t"°. (23)
o’

Similarly, the correlation length along g=0 diverges as
t~v with v=(2—a)/d==, so one expects K(T e, M)
=M?-a-2)/v_M3/5  Equivalently, one can directly ar-
gue that k.« M2~ ", with 7 the scaling dimension of the
density-density correlation function (3 from Table I). We
have verified this behavior: comparing M =14 with
M =16 yields the estimate of (2—a—2¢)/v as 1.601.

Above T,, k diverges like the specific heat, so k « In(M).
In more complicated lattice gases, the transfer matrix
becomes large with increasing strip width. Thus the tech-
niques of locating a multicritical point discussed above
can be difficult to apply because they require two or three
strip widths. This problem is encountered in Ref. 10, for
example. To get around this difficulty, we suggest yet
another technique of estimating the position of (multi-)
critical points which needs only one strip width. In the
Ising model in zero field beneath T, the third eigenvalue
provides an estimate of the (standard) correlation length
because the first two eigenvalues are degenerate. (In the
picture analogous to Fig. 5, the third eigenvalue estimates
£, Above T,, the third eigenvalue, because of its
eigenvector’s even symmetry under spin inversion, gives
the correlation length associated with the energy-energy
correlation function. Thus the third eigenvalue peaks
close to T, (in the finite-size rounded region) and thus
provides an estimate of 7,—from a single strip width. (It
actually peaks exactly at T, but this is presumably a spe-
cial property of the Ising model.) We expect similar
behavior along the line of phase transitions in the lattice-
gas models discussed above. On the line of first-order
transitions, the fourth eigenvalue gives an estimate of & .
[See Fig. 5. Because of the degeneracy of the first three
eigenvalues, the fourth gives both density-density and
¢(2X2) order-order correlation lengths.] This correlation
length increases as the multicritical point is approached.
If the value of 7 associated with this eigenvalue is greater
on the line of second-order transitions than at the mul-
ticritical point, then from Eq. (19) there will be a max-
imum in the associated correlation length. The position
of this peak provides an estimate of the location of the
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FIG. 8. Dependence of the fourth and smaller eigenvalues on
temperature along the line of transitions of the interacting-
hard-square system.

multicritical point. This indeed happens with the fourth
R . e . 7
eigenvalue at the Ising tricritical point (where 77 = and

N1,51,22), as shown in Fig. 8: The correlation lengths

of a narrow strip (M =6) associated with the fourth and
smaller eigenvalues are plotted along the line of transi-
tions determined from (14 |p|1+)=(2+|p|2+).
The correlation length associated with the fourth eigen-
value peaks at 0.9996T, and the one associated with the
fifth peaks at 0.88151T,. The accuracy of the fifth in-
creases with increasing system size, but is already accept-
able for the narrow widths where this method would be
applied. We emphasize that this method of estimating the

position of the multicritical point only requires informa-
tion from one strip width. Notice that neither the suscep-
tibility, the compressibility, nor the specific heat of the fi-
nite systems peaks at the multicritical point.

VIII. CONCLUSION

We have shown how matrix elements obtained from
transfer matrices can be successfully used to estimate cov-
erage discontinuities in square lattice gases when the
dense phase has ¢(2X2) order. Extension to other lattice
gases, as described in the text, is straightforward and
should yield the same exponential convergence. The tri-
critical points of the square lattice-gas models are also lo-
cated precisely by this method. However, whether or not
similar accuracy can be expected in locating the multicrit-
ical points of more complicated models is hard to know,
a priori. For example, as we show, the Ising-like tricriti-
cal point studied here has many special properties predict-
ed by conformal invariance, while the multicritical point
of general (anisotropic) lattice gases need not be confor-
mally invariant.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy under Grant No. DE-FGO05-84ER45071. Com-
puter facilities were supplied by the University of Mary-
land Computer Science Center. We thank A. L. Stella
and U. Glaus for helpful conversations and P. H. Kleban
for illuminating comments about conformal invariance.
One of us (T.L.E.) thanks the Surface Science Division of
the National Bureau of Standards for its hospitality and
support during the final stage of this work.

*Permanent address: Dept. of Physics, Haverford College,
Haverford, PA 19041.

IK. Binder and D. P. Landau, Phys. Rev. B 21, 1949 (1980);
Surf. Sci. 108, 503 (1981).

2P. A. Rikvold, W. Kinzel, J. D. Gunton, and K. Kaski, Phys.
Rev. B 28, 2686 (1983).

3D. Poland, Phys. Rev. B 28, 5285 (1983).

4W. Kinzel and M. Schick, Phys. Rev. B 24, 324 (1981).

5D. P. Landau and R. H. Swendsen, Phys. Rev. Lett. 46, 1437
(1981); Phys. Rev. B 33, 7700 (1986).

6B. Derrida and H. J. Herrmann, J. Phys. (Paris) 44, 1365
(1983).

7H. J. Herrmann, Phys. Lett. 100A, 256 (1984).

8P. D. Beale, J. Phys. A 17, L335 (1984).

9E. V. Aksenenko, J. Phys. A 17, L593 (1984).

10p, A. Rikvold, Phys. Rev. B 32, 4756 (1985); 33, 6523 (1986).

1P, D. Beale, Phys. Rev. B 33, 1717 (1986).

12C. J. Hamer, J. Phys. A 15, L675 (1982); 16, 3085 (1983).

3D. A. Huse, Phys. Rev. Lett. 49, 1121 (1982).

4R J. Baxter, J. Phys. A 13, L61 (1980).

I5R. J. Baxter, J. Stat. Phys. 26, 427 (1981).

16V, Privman and M. E. Fisher, J. Stat. Phys. 33, 385 (1983).

17A. Aharony, in Critical Phenomena, edited by F. J. W. Hahne
(Springer-Verlag, Berlin, 1983), p. 210.

18V, Privman and L. S. Schulman, J. Stat. Phys. 29, 205 (1984).

19As an aside, we note that these eigenvalues can all become

nondegenerate at the same point, signaling a (possibily
second-order) p(2X2)-disorder transition. Another possibili-
ty is that the (7/a,7/a) eigenvalue can remain degenerate
with the largest eigenvalue with the (7/a,0) and (0,7/a)
eigenvalues nondegenerate, signaling a ¢(2X2)-p(2X2) tran-
sition. See P. Bak, P. Kleban, W. N. Unertl, J. Ochab, G.
Akinci, N. C. Bartelt, and T. L. Einstein, Phys. Rev. Lett. 54,
1539 (1985) for an example.

203, L. Cardy, J. Phys. A 17, L385 (1984).

21, L. Cardy, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic, New York,
1986), Vol. 11. We thank P. H. Kleban for providing a copy.

22For the tricritical point, we define the energy operator as the
first derivative of the free energy along the direction parallel
to the line of coexistence below T,.

23M. E. Fisher, in Collective Properties of Physical Systems, edit-
ed by B. Lundvist and S. Lundqvist (Academic, New York,
1974).

24N. C. Bartelt and T. L. Einstein, J. Phys. A 19, 1429 (1986).

25D. Friedan, Z. Qui, and S. Shenker, Phys. Rev. Lett. 52, 1575
(1984). Their list is in terms of x =7 /2.

268, Sarbach and M. E. Fisher, Phys. Rev. B 18, 2350 (1978).

27D. A. Huse, J. Phys. A 16, 4357 (1983).

28H. W. J. Blote, J. L. Cardy, and M. P. Nightingale, Phys. Rev.
Lett. 56, 742 (1986); 1. Affleck, ibid. 56, 746 (1986).

29M. P. Nightingale and H. Blote, J. Phys. A 16, L657 (1983).



