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We test the pairwise adatom-adatom interaction sets for H/Ni(lll) computed by Muscat by 

using Monte Carlo techniques to determine the lattice gas phase diagrams they imply and then 

comparing with experiment. Although the correct ordered phase is reproduced and the maximum 

disordering temperature is approximately correct, there remain topological discrepancies with the 

experimental phase diagram. The origin of the main discrepancy is a relatively strong long-range 

attractive interaction. We describe the behavior this interaction causes and outline the cir- 

cumstances under which similar phenomena might occur in other systems, developing insight 

through (re-)examination of the square-lattice Ising metamagnet problem. Finally we show how 

two previously studied interaction sets with relatively weak sixth-neighbor attractions lead to more 

accurate phase diagrams. One appendix collects some results on the metamagnet. Two others 

present transfer matrix scaling calculations of the critical properties of the disordering of two 

ordered states on a honeycomb lattice: hard hexagons (nearest neighbor exclusion) is Ising-like to 

high precision, while graphitic (2 X 2) is 4-state-Potts-like. 

1. Introduction 

During the last decade, considerable progress has been achieved in the 
calculation of the interactions between chemisorbed atoms on transition metal 
surfaces. Early efforts, aimed at understanding qualitative trends, simplified 
this complicated problem by treating either only substrate d-bands (typically 
via tight-binding) or the s-electrons (with jellium) [l]. With the recognition 
that both contribute substantially to the adsorption energy has come a search 
for ways to include both aspects in a computationally tractable scheme. 
Muscat and Newns [2-41, have approached this problem by embedding in 
jellium several spheres containing atomic potentials; the I = 2 phase shifts then 
give an account of d-band effects. Other efforts have been carried out with (1) 
effective medium theory [5] (which Muscat [4,6-91 has also used recently to 
replace the infinite-barrier jellium model in computing the s-electron contribu- 
tion) and (2) a semi-empirical approach, the embedded atom method [lo]. This 

* Permanent address: Department of Physics, Haverford College, Haverford, PA 19041, USA. 

0039-6028/86/$03.50 0 Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



296 L. D. Roelofs et crl. / Phase drcrgrums for H / Ni(l I I) 

paper makes no attempt to compare the relative utility of these state-of-the art 
approaches. However, Muscat has applied his method most broadly, studying 
hydrogen - the easiest adsorbate to treat in these approaches - on a variety of 
late transitions metal faces [6&9]. To assess the accuracy of the energies 
obtained, one can compare the phase diagram predicted by a set of interaction 
energies with that measured by experiment (typically LEED). 

Earlier embedded cluster calculations [3] generally seem to have the correct 
signs to predict the ordered phases [but not for H/Pd(lll), where a (2 x 2) 
phase is predicted [ll] but not observed] and are of the correct order of 
magnitude in size. However, for the case of H/Ni(lll) those earlier calcula- 
tions have been shown [12] to predict a maximum disordering temperature 
below 70 K whereas the experimental value is 270 K. While this progress is 
impressive, the remaining discrepancies suggest that it is premature to base 
further conclusions, such as choosing between structural models [13], exclu- 
sively on interactions calculated in this way. 

These earlier calculations for (111) transition metal surfaces involved seven 
embedded spheres representing substrate atoms and only two adatoms at the 
appropriate spacings. Recently Muscat has published more extensive calcula- 
tions [4] for H/Ni(lll). The new work uses larger clusters of substrate spheres 
(12 and 19 atoms), allowing a more symmetrical grouping of (3 or 6) adatoms. 
As in other recent papers [6,7], Muscat then deduced the interactions from fits 
to the calculated total energies of these clusters. These improvements signifi- 
cantly altered the estimates for the shorter-range interactions and allowed 
further-range interactions to be extracted as well. 

At his suggestion [14] we have undertaken Monte Carlo studies of the phase 
diagrams of honeycomb lattices with his refined interaction energies. While we 
do now find the correct ordered phase with about the right maximum 
transition temperature, there are important yuulitatiue discrepancies between 
the topology of these phase diagrams and the experimental one. indicating that 
further study of these interaction energies is warranted. An unusual feature of 
Muscat’s lateral interactions is that they do not decay with increasing sep- 
aration; the shortest-range attraction is not “stabilized” by shorter, stronger 
repulsions. There are two possible consequences. The ordered phases induced 
by strong attractive interactions at the associated relatively long inter-adatom 
spacing may be unstable to collapse to denser phases when there are not short 
range repulsions. This sort of effect will be immediately obvious in LEED due 
to the absence of the spots distinguishing the sparser from the denser phase. 
Secondly, even when this collapse does not occur, the ordered phase will exist 
only for a small range of coverages near its saturation coverage. with large 
mixed-phase regions on both higher and lower coverage sides. Since the 
boundary between the long-range ordered and these mixed-phase regions is 
not obvious in LEED, this effect must be inferred from the phase boundary 
with the disordered region. 
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Our plan in this paper is first, in section 2, to set the stage by describing the 
H/Ni(lll) system, including the experimental phase diagram and Muscat’s 
interactions. In section 3 we bring out our essential points by recalling similar 
results from the simpler, classic problem of the Ising metamagnet. We il- 
lustrate these comments with transfer matrix calculations on the equivalent 
square lattice gas with strong second-neighbor attraction and weaker first- 
neighbor repulsions. In section 4 we present Monte Carlo calculations of the 
phase diagram generated by Muscat’s interactions. For completeness, in 
section 5, we discuss further work bearing on the H/Ni(lll) phase diagram, 

including refinement of a previously presented [15] phase diagram for this 
system. Section 6 offers a brief conclusion. Three appendices provide further 
discussions. Appendix A collects additional results on the Ising metamagnet, 
including comments on its critical point of order four, the crossover behavior 
associated with the nearest neighbor interaction, generalizations to a triangular 
lattice, and comments on why tricritical points rather than critical endpoints 
are expected. Appendices B and C report transfer-matrix finite-size scaling 
calculations for the disordering transition of two ordered states on a honey- 
comb lattice. In appendix B, the hard hexagon problem, i.e. nearest neighbor 
exclusion only, is treated with much higher precision than in previous studies. 
The transition, which is presumably unobservable in experiments, is shown to 
be Ising-like. In appendix C, the observed ordered phase [called h(2 x 2)] is 
shown to melt with 4-state-Potts-like behavior. 

2. General features 

The phase diagram obtained by Christmann et al. [16] is reproduced as fig. 
1. The ordered phase has been identified as the 2 x 2 honeycomb phase, i.e. a 
(2 X 2) net with a two-atom basis [for brevity hereafter called h(2 X 2)]. We 
will treat this system as a classical lattice gas [17] defined on a honeycomb grid 
(see fig. 2). 

Based on the total energies of several symmetric clusters of H atoms, 
Muscat fit to obtain the interaction energies of the pairwise bonds shown in 
fig. 2. Following Muscat, we denote the mth-neighbor pairwise potential by 
urn; we will also use wm terminology to refer to the mth-neighbor bond. Then 
the energy of a specific configuration of the adlayer is given by 

ff= cw* c n,n,+iA c n,- c n, , 
m (ii)“8 iGH iGF i 

(1) 

where n, is the occupancy variable for each site, taking on values 0 and 1 and 
the notation (ij),,, denoted a mth neighbor pair of sites i and j. F(H) denotes 
the set of fee (hcp) binding sites. Muscat’s values for the w,,,‘s are given in 
table 1, which also relates his notation for the honeycomb lattice “bonds” to 



29X L. D. Roelofs et 01. / Phase diagrams for H / Ni(1 i I) 

0.0 0.2 0.4 0.6 0,8 1.0 
H COVERAGE 

Fig. 1. Phase diagram for H/Ni(lll) adapted from ref. 1161. The inset depicts the 

(graphitic) phase of H/Ni(lll). The saturation coverage of this phase is l/2 (one H atom 

Ni atoms). 

h(2 x 2) 

per two 

0 0 0 o- 3 0 

Fig. 2. Hexagonal (honeycomb) lattice of binding sites for H/Ni( 111). Open circles denote hcp 

sites (above second layer Ni atoms) and filled circles fee sites. There may be a small binding 

energy difference. A, between these sites. See text for discussion of bond energies. 

Table 1 

Sets of interaction energies for H/Ni(l 11) 

Muscat [4] (large, 

symmetric cluster) 
d=O 

d = 0.2 

Muscat [3] 

(small cluster) 
d=O 

d = 0.25 

Roelofs [15] (set VIII) 

Nagai [41] (set III) 

14001 1.5 

I2201 6.4 

14501 2 

Cc -2 

CC 1 

00 1 

-6.0 0.1 0.7 -18.1 - [ -4.91 [ r: 201 

-4.5 0.6 0.5 -- 15.0 - [ - 3.61 [ c: 201 

-9 _ _ - _ 

-9 - - _ 

0.2 0.2 0.2 -0.2 - - 0.05 

0.4 0.8 0.1 -0.02 - _ 0 

Muscat’s numbers are in meV; the other two are in units such that w2 = 1; U, refers to the nrth 
neighbor interaction while A is the binding energy difference between the two kinds of three-fold 
sites. The notation in parentheses was used in our previous work on honeycombs to distinguish 

between pairs of adatoms on the same or opposite types of sites. Muscat’s numbers in brackets 

were set to cc or 0 in our computations. 
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ours [15] for O/Ni(lll). Note that our Fm’s refer to pairs of adsorbates on 
different binding sites (one on fee, the other on hcp) while E,,,‘s refer to both 

on the same kind of site; as in our work, Muscat assumes that E,,, is the same 
for equally separated pairs on fee sites as on hcp sites, which is in fact the case 

in single-band tight-binding models [18]. Muscat’s calculations were done for 
four values of his only adjustable parameter d, the distance from the center of 
the sphere for the hydrogen atom to the jellium edge. We have used his values 
[4] for the choices d = 0 and d = 0.2 au. 

Lattice gas Hamiltonians for chemisorbed atoms should at least in principle 
also include multisite terms. At least in tight-binding models, one can estimate 
the magnitude of these terms in comparison with the pairs [19]. The issue of 
which to include, particularly when relatively long-range pair interactions are 
significant, is subtle and important. For computing phase diagrams, the 
smallest-perimeter triangular configuration expected to contribute is shown as 
T, in fig. 2; “shorter” trios with wi legs are probably appreciable in magnitude 

but occur rarely because of the large oi repulsion. (In our approximation, 

a1 = cc, they will never occur.) The most potent effect of mulfisite interactions 

is to introduce new ordered phases or to break lattice gas symmetries. [Cf. 
studies of H/Fe(llO) [6,20] (but see ref. [13]), O/W(llO) [19,21], and 
H/Pd(lOO) [22].] For H/Ni(lll), phase diagrams consistent with experiment 
can be obtained with just pair interactions. Trios and higher order interactions 
also, of course, simply shift phase boundaries. Such effects are clearly vital if 
quantitative results are to be achieved, but they entail greater expenditure of 
computer time and lead to burgeoning parameter space. For H/Ni(lll), no 
explicit calculations of trio energies were immediately available, but Muscat 
[4,6] claims that the lateral interaction energies of multi-adatom clusters are in 
“excellent agreement” with just the sum of the pair energies. We restricted our 
calculations to pairwise energies, as in eq. (1). N.B. a problem arises whenever 
one deduces lateral interactions from differences in total energies of various 
groupings of adatoms or of several sorts of ordered (not necessarily in 
physically observed patterns) overlayers in slab calculations. Phase boundaries 
are determined by excitation energies (and so differences between ordered and 
disordered states). Therefore the interaction energies from fits to symmetric 
clusters or ordered overlayers may lead to discrepancies because of the 
different ways in which neglected interactions cause changes in the effective 
values of the included interactions. 

We (and Muscat [14]) suspect that his [4] relatively large value of ws may be 
an artifact of the pairwise-interaction fit; we omit it, as does Muscat in later 
work. (Its size, however, might engender worries about the included couplings.) 
It does not introduce any new ordered states. 

The interesting general feature of this set of interactions, to which we 
alluded above, is the relatively long range strong attraction energy wg(E3). 
This attraction clearly lowers the energy of the p(2 X 2) phase compared to the 
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e 

Fig. 3. Schematic “expected” phase diagrams for (2X 2) honeycomb phases on an hexagonal 

lattice: (a), (b) two cases possible with no p(2 x 2) phase; (c) including a [low temperature], unseen 
to date p(2 x 2) phase. 

disordered phase, but because of the w1 attraction, other phases have even 
lower energy. Of relevance here are the p(2 x 2), h(2 x 2), and p(1 x l), with 
energies per adatom of 3w,(E-,), $w,(F,) + 3w,(E,), and 3w,(E,) + 3w,(E,) 
+ 3w,(E,). Notice that all three phases have the same strong attractive oh 
component. Since wg is negative, the p(2 X 2) has higher per-particle energy at 
coverages below a half than (islands of) h(2 x 2). Since islands of h(2 x 2) will 
have at least the entropy of an equivalent coverage of the less dense p(2 X 2). 
no p(2 x 2) phase should exist. For simplicity we replace the strongly repulsive 
wr by an exclusion, thereby precluding coverages above 1. The importance of 
this point is summarized below. We defer the computations and actual phase 
diagram to sections 4 and 5. The experimental phase diagram, however, 
suggests an unobserved low-temperature p(2 X 2) phase: figs. 3a and 3b give 
schematic temperature-coverage phase diagrams one might expect if no 
p(2 x 2) phase occurs. Either one should have disorder at a coverage (fig. 3a) 
not much less than 8 = 0.5 if w5 is repulsive, or one should have a coexistence 
phase of islands of h(2 X 2) and a low intensity disordered phase (fig. 3b) if ws 
is attractive. Neither case resembles experiment, which is more consistent with 
fig. 3c, which includes a p(2 X 2) phase probably at a temperature below the 
lower limit attained in the experiment. 
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3. Stability of a c(2 x 2) square lattice phase 

If o3 were repulsive instead of attractive, a p(2 X 2) phase would exist at 
coverages around l/4. At zero temperature negative w3 causes this phase to 
vanish into a region of h(2 X 2) and gas coexistence. In Muscat’s interaction 
set the w6 bond, which is fully saturated in the p(2 x 2) ordered state, is much 
larger than w) and the other interaction energies. Thus at temperatures large 
compared to w3 but small compared to w,, one still might expect to see 
p(2 x 2) diffraction features at a coverage of l/4. In order to put these 
questions in a more general context and to enhance physical insight, we first 
consider a case with fewer complications: the simple square lattice gas with 
nn( E,) and nnn( E2) interactions as shown in fig. 4: 

H, = E, c ninj+ E2 c n,nj. (2) 
Cd, (ii)2 

This is the lattice gas equivalent of the venerable Ising metamagnet problem 
[23-271: a square lattice Ising model with antiferromagnetic nearest neighbor 

interaction and second neighbor ferromagnetic interaction. When E, -c 0 

(attractive) and E, > 0 there is a coexistence region at low temperatures 
between a dense c(2 X 2) phase (fig. 5) and a dilute disordered phase. If E, < 0 

there is no c(2 X 2) phase. We show below that the temperature where the 
coexistence region vanishes is determined by the attraction, E, and independ- 
ent of E,, as expected, but that the disordering temperature of the c(2 X 2) 
phase for small E, is not on the order of E,, contrary to expectation. The 
phase diagrams for small E, have distinctive features which appear in those 
we generate for H/Ni(lll). 

We have studied the phase diagram of the Hamiltonian in eq. (2) using 
transfer matrix finite size scaling, which has been described in several places 
[28,29]. The method allows fast and accurate calculation of phase diagrams 
and critical exponents in the case of short range interactions and reasonably 
dense ordered phases. It has been quite successful (i.e. rapidly convergent) for 

x l x l x 

. x ’ x l 

x - x * x 
Fig. 4. c(2x2) phase in square lattice gas, with nearest and next nearest neighbor interactions 

indicated. 
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a 

- r =O.O 

COVERAGE (monolayers) 

;‘ig. 5. (a) Temperature-chemical potential phase diagrams for the lattice gas system defined by 

eq. (2). Heavy lines denote second-order lsing transitions, light dotted lines are first-order 

transitions. The region inside the phase boundary (which vanishes in the limit r ---t 0) is of c(2 X 2) 

character. (b) Temperature-coverage phase diagrams for the same cases as in (a). For l/2 < 0 c 1. 

the figure would be symmetric about 8 = l/2. In the three cases with r > 0, there is a pure (i.e. 

long-range ordered) c(2 X 2) wedge-shaped region (bisected by the heavy solid line) bounded above 

by a second-order line and below by a first-order boundary with the coexistence region. The light 

dotted segment just above each tricritical point is sketched rather than computed. In the limit 
r = 0, the pure c(2 X 2) region has shrunk to a line at 0 = l/2. 
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treating models with Ising critical behavior [28]. Computation of the phase 
boundary at temperatures below the tricritical point goes beyond routine 

transfer matrix scaling procedures. We developed a generalization of Hamer’s 
method [30], which we describe elsewhere [31]. 

The temperature versus chemical potential phase diagrams for various 

values of r = - EJE, are shown in fig. 5a. The region inside the phase 
boundary has c(2 x 2) symmetry. Outside this region is a disordered phase, 
dilute to the left and dense to the right. At both its ends the second-order 
Ising-like line joins a first order line at tricritical points. (See appendix A for 
further discussion.) As r goes to zero the c(2 x 2) phase becomes unstable with 
respect to segregation into dense (1 X 1) and dilute gas coexistence. The energy 
per atom of the (1 X l), 2E, + 2E,, approaches that of the c(2 X 2), 2E,; 
entropy favors the collapse. One sees this decrease in stability in fig. 5 in the 
shrinking of the c(2 x 2) region as r gets smaller. When r = 0 we have a 
standard first-order liquid-gas type phase transition, just as one would have 
for the case of nearest-neighbor attractions only. The two tricritical points 
which occur for r > 0 merge to form an Ising critical point, which terminates 
the line of first-order transitions. 

The I = 0 limit is also intriguing when the phase diagram is viewed in the 
temperature-coverage plane, where the first-order lines open into broad 
coexistence regions, as shown in fig. 5b. We have displayed the phase diagrams 
only for 8 -Z 0.5; the diagram for 0.5 < 8 Q 1.0 is a mirror image of the part 
shown. Only the narrow wedge near 8 = 0.5 (for r > 0) is a pure c(2 X 2) 
phase. The large low-temperature region is the mixed phase coexistence 

between c(2 x 2) and dilute gas. For r = 0 this pure phase has disappeared 
entirely and at first glance one would suppose that the coexistence changes 
character to become a mixture of dilute gas and dense (1 X l), since these are 
the two phases on either side of the phase boundary. The situation is, however, 
more subtle. When r = 0, E, = 0, so that the system really consist of two 
noninteracting, interpenetrating, Ising-type lattice gas systems. Hence the 
critical point occurs at the Ising temperature, kT,/I E, 1 z 0.567 and the 
limiting curve (heavy trace) is given by the Onsager-Yang formula 

f - 8= i[l -sinhP4(E,/2kT)]“‘. 

See appendix A for a discussion of the critical behavior near r = 0. At r = 0 we 
have simultaneous “gas-liquid” coexistence separately on the two inter- 

penetrating sublattices, where the dense or liquid phase on either sublattice 
corresponds to a c(2 X 2) phase on the full lattice. Since the two sublattices do 

not interact, their coexistence behavior is uncorrelated, and so they overlap in 
a merely statistical fashion. For example, near 8 = 0.5, in equilibrium, we can 
expect about l/4 of the lattice to contain the dense phase on both sublattices 
and thus have dense (1 X 1) overall character; another l/4 of the surface will 
contain the dilute phase on both sublattices and thus will have dilute gas 
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overall character; and the remaining l/2 will be divided between c(2 X 2) on 
the two sublattices. More generally the fractions of the surfaces exhibiting the 
above characters are respectively 8*, (1 - 8)’ and 28(1 - 13). In this context it 
is worth mentioning that in a LEED study, presuming that equilibrium has 
been obtained at least to the extent that the size of the islands is comparable 

to or greater than the resolution of the instrument, one would still see sharp 
c(2 X 2) beams throughout the coexistence regions in fig. 5b (except near the 
critical temperature where they would no longer be sharp) [32]. These beams 

would be arising of course from the 28(1 - 8) fraction of the surface contain- 
ing c(2 X 2) order on one or the other sublattice. while the remaining area 
would contribute only to scattering near integer beams. Thus the kinematic 

c(2 x 2) intensity in crossing the coexistence region at low temperature would 
be proportional to 28(1 - 0). 

For kT B- 1 E, 1 (but below kT, a E,) we still expect to see this sort of 
behavior with a probe of finite resolution. With small negative E,, the c(2 x 2) 
LEED intensity would decrease because the two sublattices are attractively 
coupled. Similar behavior is expected in any system dominated by (un- 
frustrated) long-range attraction. In the honeycomb lattice gas, the role of E, 

is played by o3 (but with the dense phase having h(2 X 2) order). 
This difference in the character of the coexistence has less obvious ramifica- 

tions for the H/Ni(lll) phase diagrams because the p(2 x 2) and h(2 x 2) 
phases have the same set of diffraction beams. Kinematically there is a 
difference in intensity between the first and the second circle of half-order 
diffraction beams for the h(2 X 2) phase but no difference for the p(2 x 2) 
phase. However, multiple scattering would probably frustrate an attempt to 
distinguish these phases in a real experiment. 

The above discussion of square lattice analogies is meant to clarify the 
manner in which phases disappear from phase diagrams when not stabilized 
by sufficiently strong shorter-range repulsions. The critical behavior of these 
square lattices is also interesting in its own right; some of our other observa- 
tions have been collected in appendix A. We turn now to the phase diagrams 
we have calculated from models for H/Ni(lll). 

4. Phase diagrams 

The phase diagram for eq. (1) with the choices for w as given in the first 
row of table 1, is shown as fig. 6. We obtained this phase diagram via a Monte 
Carlo simulation of a hexagonal shaped lattice gas of honeycomb symmetry 
containing 7776 adsorption sites, a size chosen to be typical of the best 
metallic surfaces that can be prepared with standard methods. The runs were 
typically 5000 Monte Carlo steps per site, with the first 1000 discarded to 
allow for equilibration. As discussed in section 2, we took o8 = 0; and since w, 
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Fig. 6. Temperature-coverage phase diagram for the hexagonal lattice gas with Muscat’s interac- 

tion energies for d = 0 given in table 1. Only the thin shaded region contains a long-range ordered 

h(2 x 2) phase. All lines are first-order except the high-temperature gas-p(1 x 1) line. Accurate 

depiction of the region near 8 = l/2, T = 27 meV/k would require much more careful study than 

undertaken (or warranted) in our calculations. 

is very repulsive, we replaced it by an exclusion. Since Muscat [9] (also 
footnote 6 of ref. [4]) finds that A is exceptionally small for Ni, we set it to 
zero. In section 5 we discuss in the context of a different set of interactions the 
sort of changes found in a phase diagram when A is small but non-vanishing. 

Consistent with our comments in section 2 and in analogy to the square 
lattice results of section 3, we see that no p(2 x 2) phase exists near 0 = 0.25. 
Instead, the system collapses into a coexistence of a dilute disordered phase [of 
(1 X 1) symmetry] and h(2 X 2). Above 8 = 0.5 one has a coexistence of 
h(2 x 2) and a (1 x 1) phase. A pure h(2 X 2) phase exists for a small coverage 
range around 8 = 0.5. The melting of this phase is expected to be in the 4-state 
Potts universality class; in appendix C we present transfer matrix calculations 
supporting this assignment. We note that the only phase seen in the experi- 
ment is reproduced by this interaction set. The maximum transition tempera- 
ture of this phase is also in approximate accord with experiment, Tern” = 27 
meV (- 313 K). Note that, from the discussion in appendix A, if only o6 were 
present then cm” - 0.911 we 1 - 16 meV; this is raised considerably by G+ and 
slightly by the others. However, the shape of the region in the T-d plane is 
quite different in the two cases, indicating that some changes are needed in the 
interaction set. As corroboration of our phase diagram in fig. 6, an isotherm 
calculated at T = 20 meV is displayed in fig. 7. When the chemical potential is 
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Fig. 7. Isotherm at T = 20 meV/k for the interaction energies used in fig. 6 

fixed, the coverage ranges of the coexistence regions are thermodynamically 
inaccessible. These ranges, given in fig. 6, are seen as the coverage jumps in fig. 
7, which occur at the values of the chemical potential on the first order lines at 
T = 20 meV in a T-p version of fig. 6. 

We note further that the calculated phase diagram contains another phase 
transition at higher temperatures, from a dilute phase with hexagonal symme- 
try (both fee and hcp sites occupied) to a dense p(1 x 1) phase with only one 
type of site occupied. This transition continues to high temperature and is 
believed to be Ising in that limit (hard hexagons on a honeycomb, where 
0, = 0.829). Transfer matrix calculations to corroborate this classification are 
presented in appendix B. In our calculations, transitions along this line appear 
to be continuous all the way down to where it joins the h(2 X 2) phase 
boundaries. This transition, if it actually occurs in the real system, would be 
difficult to detect experimentally: First, its only manifestation would be 
intensity variation and some critical scattering in the vicinity of some of the 
integer beams. Second, the H scattering is very weak compared to that of the 
Ni substrate [16]. Hence the only hope to see the transition is at a LEED 

voltage such that the clean-substrate [lo] or [Ol] beam intensity is very weak 
(especially near a minimum of the I-V profile). If we let A be finite, the low 
coverage phase will also have weak p(1 X 1) symmetry and the actual phase 
transition will be destroyed. For small A, however, a deviation from A = 0 
behavior will occur only close to the transition. 

In fig. 6 (and in fig. 9, to be discussed shortly) we have drawn the 
high-temperature line to intersect the highest temperature of the h(2 X 2) 
region, reminiscent of fig. 5. Monte Carlo simulations (and any experiment) 
are problematic near the intersection point. There is no basis to exclude the 
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CHEMICAL POTENTIAL COVERAGE 

Fig. 8. Sketch of a phase diagram if the gas-(1 X 1) iine does not intersect the h(2 X 2) at its peak. 
(a) Temperature versus chemicai potential; the dashed line is first-order while the solid line is 

second-order. (b) Same system in temperature versus coverage. 

possibility that the high-temperature line intersects below the peak, at a 
critical end point, as sketched in fig. 8. In this case there would be a small 
wedge-shaped h(2 x 2) + gas phase on the high-coverage side of the long-range 
h(2 X 2) phase. 

In fig. 9 we show the phase diagram for Muscat’s d = 0.2 au set. From table 
1, we note that the most significant change is the quadrupling of the c+(E,) 
repulsion. In comparing fig. 9 with fig. 6, the most noticeable change is in the 
high-coverage side of the h(2 X 2) phase: the increased o2 suppresses the 

p(1 X 1) phase, making the boundary nearly vertical. Similarly, the high 
temperature transition from the gas to the p(1 X 1) phase is shifted to higher 
coverage. Unfortunately, as noted above, this line, which would provide a 
good gauge of w2, is not readily seen experimentally. The transition from the 

70 I I I I I 1 I I I 

60 - 

Fig. 9. Temperature-coverage phase diagram for Muscat’s interaction energies for d = 0.2 au 
(thick lines). For ease of comparison, the phase boundaries from fig. 6 are reproduced (thin lines). 
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mixed phases is suppressed in temperature, consistent with the decrease of the 
energy needed to excite from h(2 x 2) ordering (due to the decrease in the 
attractions responsible for the ordered phases). 

5. Other interaction sets 

It is not hard to produce a set of interaction energies that will yield a phase 
diagram the high-temperature part of which will be consistent with experi- 
ment. The details of the low-temperature part ~ for which we have no 
experimental information - are sensitive to the competition between the several 
interactions. Hence, rather than producing several types of such consistent 
diagrams, we restrict ourselves to discussing two treatments in the literature. 
Both calculations used similar parameters in that (1) wh is the only attractive 
interaction, (2) 1 w6 1 is smaller than the shorter-range repulsions, and (3) 
nearest-neighbor exclusion (0, = co) is assumed. 

The first calculation, by one of us [15] relied on Monte Carlo. We have 
refined this study somewhat with larger lattices (1944-site hexagonal, as above, 
rather than 1152-site rhombohedral), and some longer runs at intermediate 
temperatures, where we have looked more closely at this unmeasured region. 
The temperature versus coverage phase diagram is sketched in fig. 10. The 
inset shows the corresponding temperature-chemical potential phase; as in fig. 
9, this experimentally less accessible plot is simpler to grasp. All solid lines are 
first-order transitions. The higher-coverage, low-temperature coexistence phase. 
corresponding to the short interior solid line in the inset, was not previously 
noted [15]. If A were zero, as in the other interaction sets considered, then the 
phases labeled (2X2) would be h(2 X 2). In this case, the thin dotted line in 
the inset would be a critical line rising from a tricritical point to join the 
“outer” boundary at a critical end point. Since A is finite, the (2 X2) is a 
(higher-density) p(2 X 2) phase, with the fee sites preferentially occupied. As 
for the gas-p(1 x 1) line. the finite A destroys the second-order transition 
(leaving only a critical point at the top), since the “honeycomb” phase 
develops p(2 x 2) symmetry; nonetheless we find broad, weak peaking of the 
specific heat in the region near the line. Above the saturation coverage. the 
decline in transition temperature is not so precipitous as we originally con- 
cluded. Particularly careful and long runs are needed here since disordering 
from the honeycomb requires a two-step process. We studied the high-temper- 
ature region to see whether the transition might be continuous rather than 
first-order. Histograms of a 10000 MCS run at p = 0.79. T = 0.6 showed a 
two-peak order parameter distribution. While this behavior can sometimes 
occur at second-order transitions [33-351 one would expect the peaks to move 
together with increasing lattice size [34]. For a 15000 MCS run on a smaller 
864-site hexagonal lattice, we did not see the peaks separate significantly, 
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COVERAGE 

Fig. 10. Temperature-coverage phase diagram for interaction energies of Roelofs’s set VIII 
described in table 1. Inset depicts the chemical potential versus temperature phase diagram. AI1 
solid lines are first-order. The dotted lines suggest remnants of a continuous transition destroyed 
by the finite A. The label (2 X 2) denotes h(2 X 2) when A = 0 and p(2 X 2) when A is finite. See 

text for discussion. 

consistent with the original designation. The only way to be certain about the 
order of the transition is to perform exhaustive calculations for several lattice 
sizes [36]. We also studied the high-coverage side at this temperature for 
p 5 4.4. Two-peaked order parameter distributions were again found some- 
times. We faced the added complication of slow dynamics noted above. A 
clear resolution would have required very long runs, possibly aided by a 
continuous-time method [37]. While we may carry out more extensive compu- 
tations in the future, our goal here is to explore how calculations can be used 
to elucidate experimental data, for which rigorous finite-size studies are rarely, 
if ever, an option. Instead, it is more relevant to see what information can be 
gleaned from a lattice of size comparable to the plateau size or typical 
defect-free area of the actual sample. For example, fig. 11 shows a plot of the 
intensity at the center of the outer half-order spot versus coverage for 
kT = 0.6 x w2, about 3/4 of the maximum T,. Since this intensity is an order 
parameter squared [38], we expected that in an infinite system the curve is 
concave down until it vanishes for a second-order phase transition. In a finite 
system, rounding develops when the correlation length becomes comparable to 
the system size; the resultant point of inflection provides an estimate of the 
critical coverage [39]. In fig. 11 we observe instead a broad change from 
concave down to concave up, consistent with our conclusion that the transi- 
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COVERAGE 

Fig. 11. Plot of intensity (small circles) of the outer half-order becomes coverage computed at 
T= 0.6 wz/k. This sort of plot might be measured (cf. fig. 2 of ref. [16]). 

tion of this interaction set is first-order, (A mixed phase region is manifested 
on such a plot by a region of quadratic dependence of I on (0 - 8,) where 0, 
is the coverage of the disordered phase near the transition. Very long runs 
would be needed to characterize the dependence of I on 8 with confidence, 
but the gradual variation of curvature suggests that both transitions ~ below 
and above saturation coverage - are first-order.) If an experimentalist meas- 
ures the integrated spot intensity near a second-order transition, one expects 
an energy-like anomaly [39], i.e. const. + 1 B - 8, ) ‘-’ - the tilde is a reminder 
that the specific heat exponent must be Fisher renormalized [40]: i5 = -a/(1 
- a). Hence, unless the transition is Ising-like, there will be no sharp anomaly 
even for a second-order transition. Consistent with this discussion, in fig. 2 of 
ref. [16] (at half the maximum T,) nothing remarkable happens at the critical 
coverages. 

Nagai et al. [41] analyzed a rather similar set of interactions and produced 
phase diagrams that would be similar to fig. 10 if the high-temperature 
boundary were a continuous transition. The first version [Jla] would then be 
topologically essentially identical to ours, although they take no note of the 
experimentally elusive high-temperature continuous transition between gas 
and (1 x 1) that should be present for their interactions, since A = 0. [The 
p(2 X 2) to h(2 X 2) continuous transition is observed.] Curiously, a later 
detailed exposition [41b] does not mention this earlier letter but omits the 
high-coverage tricritical point that ushers in the mixed h(2 x 2)-(1 x 1) phase 
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as well as the lower-coverage, lower-temperature one associated with the 
mixed p(2 x 2)-h(2 x 2) region. These phase diagrams were constructed using 
the method of Berker and co-workers [42]: a prefacing transformation fol- 
lowed by Migdal-Kadanoff real space renormalization. While this procedure 
is a powerful and elegant way to survey parameter space, our experience in 
comparisons on square lattices [43] has suggested that quantitative predictions 
should be checked. In the present case we computed with Monte Carlo the 
highest-T critical point, which occurs at T= 0.58 (p = 3.8), compared with 
T = 0.40 (II = 3.1) in Nagai et al. [41]. 

6. Conclusion 

Impressive progress has been made in the calculation of electronic indirect 
interactions between chemisorbed atoms. Rather than describing general 
trends, one can now make predictions about some specific systems. Muscat’s 
embedded cluster calculations generally yield estimates of hydrogen-hydrogen 
interactions that have the correct sign, give the correct ordered phases, and 
predict the (maximum) transition temperature to within better than an order 
of magnitude. This advance challenges us to determine lateral interactions 
more precisely from fits to experimental data, especially phase diagrams, and 
conversely to check how well the calculated interactions reproduce such phase 
diagrams. In order to achieve “excellent agreement” with the experiment, the 
interactions should lead to the correct topology of the phase diagram. In this 
paper we have shown that for H/Ni(lll), Muscat’s interaction energies give 
large coexistence regions at high and low coverages which are not seen 
experimentally. The main cause of this discrepancy is the comparatively (and 
surprisingly) large ws attraction. By considering the simpler Ising metamagnet, 
we have shown that these large coexistence regions are characteristic of 
long-range attractions unsupported by shorter-range repulsions. We thus con- 
clude that the strong ws attraction probably does not occur in the real 
H/Ni(lll) system. 

To actually determine with any confidence (say to within a factor of two) 
values of the adatom-adatom interactions from the known H/Ni(lll) phase 
diagram is impossible. There are simply too many interactions that could 
conceivable be important but have similar effects on the phase diagram. (For 
example trio interactions are probably not negligible for H/Ni(lll) but their 
effects on the phase diagram are hard to distinguish from pair interactions 
because they break no lattice gas symmetries.) Nevertheless we have presented 
refined calculations on an interaction set which has a phase diagram more in 
accord with experiment. To be more confident about this type of interaction 
set, more information is needed: principally whether there is a low-tempera- 
ture p(2 x 2) phase. Occurrence of a phase transition between the disordered 
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phase and the (1 x 1) phase at high temperatures near a coverage of 0.83 
would confirm Muscat’s prediction that the binding energy difference between 
the fee and hcp sites is small; observation of it, however, presents a major 
experimental challenge. 
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Appendix A 

In this appendix we collect several remarks pertinent to the Ising meta- 
magnet. While related to the discussion in the text, exposition there would 
have distracted from the thread of our arguments. In the Ising metamagnet the 
special point at E, = 0 (or r = 0) and p = 0 (or 0 = l/2) has received consider- 
able attention. At this point, when (in an extended parameter space) both the 
“magnetic field” (i.e. p) and the staggered field (possible binding energy 
difference between the two c(2 x 2) sublattices) vanish, we find a critical point 
of order four, where two tricritical lines meet [25,44]. In renormalization group 
[27], this point is a (sublattice) ferromagnetic fixed point, called SF. At this 
point, the two sublattices decouple into two simple Ising (lattice gas) models 
with nearest neighbor attraction E,. Thus, as illustrated in fig. 5, kTc/Ez 3 

0.567, a long-known result [23]. 
It is not hard to show that the crossover exponent associated with the field 

E, is 2 - LX = 2: Writing f a t’-“X( E,/t@), we note 

af/ 

36 lE,=” 
a t’m”p+ X’(0). 

But this derivative is just the nearest neighbor correlation function. At E, = 0 
the two sublattices are decoupled, making this correlation function constant. 
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so that 2 - (Y - + = 0. Since this special point is Ising-like, (Y = 0. Thus 

“* T,(E,) - T,(E, = 0) a E, for small E, [45]. Fig. 5 is consistent with this 
result. 

Recall also for the metamagnet that the free energy is symmetric in the sign 
of the nearest neighbor exchange interaction; the change of sign is accom- 
plished by a simple inversion of one of the two sublattices. While in the lattice 
gas one would also have to adjust the chemical potential target to get a 
symmetry, we do learn that if E, becomes attractive, we go over to a (1 x 1) 
Ising situation and T,( E,) - T,(O) is still proportional to ( E, 1 ‘I* [46]. Simi- 
larly, on a triangular lattice with (strong) attractive second neighbor interac- 
tion E,, the full lattice decouples into three sublattices. The transition 
temperature T:(O) is given by [47] kqA/E, = l/in 3 = 0.91.. . . As E” is 1 
raised from zero, T,” again rises by E :‘2, but now the crossover is from Ising 
to 3-state Potts behavior. 

We next comment on the claim of tricritical points in fig. 5. We see no 
evidence that the second-order line intersects either first-order line away from 
the latter’s end, i.e. at a critical end point [48]. Moreover, real-space renormal- 
ization group studies [49] show a tricritical point at T 2 2 E2, nearly indepen- 
dent of E,, as in these figures. Mean field calculations [26,48b] suggested that 
for r > 5/3 a critical end point should exist, but such calculations are 
unreliable for 20 phase boundaries; Huse’s [50] interpretation of Baxter’s 
exact solution indicates the existence of a tricritical point for r = 00. 

Finally we note that a square lattice analogue even more germane to 
H/Ni(lll) is an extension of eq. (2) to include a third neighbor interaction, 
with E3 being strongly attractive, E2 attractive but weak, and E, weakly 
repulsive. For E, = 0 = E2 the lattice again decouples into four square p(2 X 2) 
Ising sublattices. As E2 becomes negative, the p(2 X 2) coexisting phases 
collapse into two Ising c(2 X 2) sublattices and T, rises by ) E, ( lj2. When E, 

becomes positive, the c(2 x 2) character persists and c rises further by E,“‘. 

Appendix B 

To estimate the critical point of the honeycomb lattice gas with only nearest 
neighbor exclusions we used the standard technique of applying finite size 
scaling theory to the properties of lattice gases on the surfaces of infinitely 
long cylinders. We used transfer matrix techniques to compute the correlation 
length .$ and coverage B of these systems, and then the critical activity z, 
correlation length exponent v, and anomalous dimension exponent n. While 
this problem has been studied before by similar techniques [51], our estimates 
of z, and 0, are three orders of magnitude more accurate because we could 
attain larger strip widths via sparse matrix decomposition [28b,52] of the 
transfer matrix. (Our first entry in table 2 is the final entry of ref. [51].) 
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Table 2 

List of estimates of critical activity, correlation length exponent, anomalous dimension, and 

critical coverage based on eqs. (B.3), (B.4). (B.5) and (B.2). respectively 

L Z,(L) i(L) iI(L) ecz:. L) 

8 
9 

10 

11 

12 

13 

14 

15 

EX 

7.828031282 0.9982027 0.2539521 

7.835503782 0.9988421 0.2530325 

7.840112737 0.9992201 0.2524038 

7.843117968 0.9994564 0.2519538 

7.845165936 0.9996121 0.2516197 

7.846611718 0.9997188 0.2513644 

7.841662234 0.9997948 0.2511648 

7.85177(3) 1.00006 0.25003 0.829318(3) 

0.82933162 

0.83932721 

0.82932461 

0.82932298 

0.82932190 

0.82932116 

0.82932064 

0.82932027 

Extrapolated values are listed at the bottom. The critical coverage is evaluated at the extrapolated 

critical activity rather than i,(L). 

The transfer matrices were constructed so that the axis of a cylinder (i.e. the 
“infinite” direction) was parallel to a line drawn between two nearest neighbor 

sites (i.e. an w, direction). The transfer matrix between rows of one triangular 
sublattice can be written as the product of two 2’- X 2’- matrices, where L is 

the number of sites in one row of a sublattice in the finite direction; the first 
matrix transfers to the alternative sublattice, the second transfers back. The 
two largest eigenvalues of the transfer matrix were found by decomposing 
each of these matrices as a product of L sparse matrices and then applying a 
power method. The coverage was found by differentiating the largest eigen- 
value, A,,, with respect to activity, z (z = exp(p/kT): 

O(Z,L) = (Z/L) a[ln h,(z,L)]/a~. (B.1) 

The correlation length in terms of a, the nearest neighbor spacing on a 
triangular sublattice, is defined by 

C’(z,L) = (2/6a) ln(X,/X,), (f3.2) 

where the second largest eigenvalue, A,, is positive (and real) near the phase 
transition. Finite size scaling theory estimates the critical activity, z,, by the 
hypothesis that the critical correlation length is proportional to L, or 

5(Z,(L),L)/L=5(I,(L),L+ 1)/U-+ 1). (B.3) 

Table 2 lists the critical point estimates 2,(L) for 8 < L < 14. The exponent v 
can be estimated by 

L+l ‘+‘/t 

i 1 as(z,(L),L+ ~)/a~ 
L ~~(~,(L),L)/az . 

(B.4) 
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An estimate of 17 is afforded by the predictions of conformal invariance [53]: 

ij(Q = aVrS(I,(Q,Q. (B-5) 

These estimates also appear in table 2. The transition is to high precision 
Ising-like (Y = 1, n = l/4). The extrapolated values of n and v were obtained 

by fitting the final three entries to the form a + bL_“. The critical activity 
extrapolation was obtained by applying this power law fitting procedure twice: 
first the L - 1, L, and L + 1 values of Z,(L) were fit to i:(L) + bL_” for 

L = 10, 11, 12, and 13. In turn the critical activity estimates Z,(L) for L = 11, 
12, and 13 were fit to the same form to give the extrapolation appearing in 
table 2. The indicated uncertainty is the difference between the results of the 
final fit of j,(L) using L = 11, 12, and 13 and the result for 10, 11, and 12. An 
estimate of z, made on the basis of eq. (B.5) with n fixed at l/4, rather than 
with eq. (B.3) gave essentially the same results, confirming our number of 
significant digits. Finally the critical coverage was estimated by computing the 
coverage at the best estimate of the critical activity; the uncertainty in the 
extrapolated result comes mostly from the uncertainty in the critical activity. 

Appendix C 

To try to find the critical behavior of a second order h(2 X 2)-disorder 
transition we studied a lattice gas model with the minimal number of interac- 
tions needed to form the h(2 x 2) ordered state: an w*(E,) repulsion and an 
w,(F,) attraction. Notice that an wz(E,) repulsion alone is not sufficient to 
form the h(2 X 2) phase, contrary to previous claims [41b,54], because rows of 
h(2 x 2) could then slide with respect to each other with no cost in energy. 

We estimated the exponent v for the case F, = - lOE, (B, = 0.499) p = 
- 3.55 using the transfer matrix scaling approach reviewed in appendix B. We 
chose this rather unnatural interaction set to avoid the appearance of the 
sliding phase described in the previous paragraph. By studying all the relevant 
subdominant eigenvalues we find only one phase transition: all the correlation 
lengths which scale linearly with system size do so at approximately the same 
temperature. This is not so obvious at much smaller values of 1 w3 1, where 
there is evidently, a sliding phase between the h(2 x 2) and disordered phases. 
The transfer matrix propagated the lattice in the same direction as the one 
used in appendix B. It cannot, however, be decomposed in the same way 
because of the longer-range interactions. Instead of transferring between rows 
of the same sublattice, it transferred between pairs of rows in both sublattices. 
We found it most convenient to find the largest eigenvalues of this matrix by 

reducing its size by using cyclic permutation symmetry [55] rather than by 
using the sparse matrix decomposition. The (2, 4) (4, 6) and (6, 8) estimates of 
v are 0.732, 0.701, and 0.705, respectively. The correlation length used in these 
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estimates came from the largest eigenvalue whose eigenvector changed sign 
under cyclic permutation of the rows of the lattice; other eigenvectors gave 

similar results. The value of v for the 4-state Potts model is 2/3. The observed 
estimates of v, and the poor convergence, are typical of the 4-state Potts model 
[56]. (The poor convergence is taken as a sign of a marginal operator.) 

It is also possible to investigate the critical properties of the melting of this 
phase using Monte Carlo finite-size scaling [57]. If a measurable G(t). t = 1 T 

- T, j/T,, behaves like th near T,, then plots of log( Lx/” G) versus log(tL’,‘“) 
for various T and L should lie on one universal curve for T above Tc and on a 
second for T below T,. Then Tc and the exponents can be estimated by 
adjustment to “sharpen to focus” of the curves. Our results from a short study 
using this procedure are consistent with the transfer matrix results but not 
nearly so convincing. 
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