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Near a second order phase boundary the leading thermal dependence of the integrated 

intensities of “extra” LEED beams is proportional to q JT- T,I’-” for T P T,, where (Y is the 

specific heat critical exponent. This behavior occurs when the correlation length exceeds the 

characteristic length of the instrument but is less than the characteristic size of defect-free regions. 

We illustrate these ideas using the structure factor of a ~(2x2) overlayer on a triangular lattice, 

simulated using Monte Carlo. Similar behavior can appear in other probes of phenomena 

dependent solely on finite-range correlations. 

There have recently been several measurements of the critical exponents of 
phase transitions on surfaces using low energy electron diffraction (LEED) 
[l-4]. The number and success, however, of such studies have been limited by 
the difficulty of the measurement and analysis, by the concern that multiple 
scattering may have a pernicious effect, and by the virtual necessity of using 
high resolution LEED equipment. We point out in this Letter that there is a 
very attractive alternative approach to studying certain critical properties of 
such transitions, one which focuses on short range correlations. The method 
has several advantages including convenience of measurement and analysis, 
insensitivity to multiple scattering, and no particular need for good resolution. 
It is based on a measurement of the integrated intensities of “extra” diffraction 
beams. Finally the critical exponent obtained with this technique, the specific 
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heat exponent, (Y, is attractive since it exhibits the largest variation between 
various types of continuous 2D phase transitions. 

We give a brief explanation of the method and sketch its justification (a 
fuller treatment is deferred to a forthcoming paper [5]), demonstrate its 

application on the structure factor of a p(2 x 2) order-disorder transition on a 
triangular lattice, and discuss the utility of this method in determining critical 
properties via other surface probes including electron energy loss (EELS), 
infrared absorption (IRAQ and core level (XPS) spectroscopies. These oppor- 
tunities seem especially exciting. We hopefully await application of these 
probes to surface phase transitions in various universality classes. 

LEED probes surface atom correlation functions like (n,n,) or (n,n,,n,,); 
n, denotes the occupation number of site r and angular brackets refer to an 
average over the surface. Typically, each of these finite-range correlation 
functions is part of the energy, E, of the surface *. Accordingly, near T, in a 
second order transition, these functions display [5] the same singularity in the 
temperature dependence as does E: 

(nofir> 

: I 

a+b_ltp+cpj+ . ..) T< T,, 
= 

hl%+2) a-b+lt(‘p”-cltl+ .,., T> T,, 
(1) 

where t = (T - T,)/T, and a: is the specific heat exponent [6]; 

C,=dE/dT=K,+K$-“+ . . . . (2) 

The constants a, b + , c and K i depend on r (or Y) and rz) but the ratios 
b&/b+ and K-/K, are universal [7]; b&/b+ is the same for all correlation 
functions [5]. The LEED intensity evaluated at any scattering wavevector q is 
just a weightedfinite sum of correlation functions. (The sum does not extend to 
infinite r or (r, and r2) because of the instrument response function [S].) Thus 

it displays the same (1 - CY) singularity: 

I,(q; T)=A TB,lt(‘-*-Cl+ . . . . (3) 

More generally any measurement of short range order which is insensitive to 
the phase of the order parameter (sign in the Ising model) exhibits this 

energy-like singularity. 
This straightforward observation raises two questions whose answers are 

related: Over what temperature range about T, can the behavior of eq. (3) be 
expected? And how does one reconcile this suggestion with the picture used in 
analyzing X-ray [9] and neutron diffraction data [lo] and in previous LEED 

* The interactions conjugate to these correlation functions are temperature-like; i.e. they do not 

create long range order at all temperatures. For some transitions the anisotropy of the 

interactions is relevant, introducing an additional competing term (rZmam+ with $I > 0) into eq. 

(1). We expect, however, the domain averaging in LEED experiments to remove this term 151. 
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work [l-4], where the T and q dependence of I were exploited to determine the 
critical exponents /3, y, and V? A detailed discussion of the answers must be 
based on the notion of scaling [6]. We sketch the basic ideas below, deferring 
complete arguments to a forthcoming paper [5]. 

The scaling “hypothesis” is based on the expectation that the behavior of a 
system near its critical point is determined by a single length scale, the 
correlation length for fluctuations, which diverges at T, as 

5 a ItI-". (4) 

Wavevector-dependent properties such as the LEED intensity are found to 
depend (near T,) only on the dimensionless variable x = k& where k is the 
magnitude of the displacement from the wavevector of the ordered state qo, 

k=k-qol. 
The LEED instrument, via its instrument response function [8,11] (a limita- 

tion of the length L, over which the instrument resolves correlations), sets the 
minimum value of k which can be resolved. Denote this value by k, = l/L,; 

then xi = k,E. Careful analysis of the structure factor, taking scaling into 
account [5,6], indicates that the behavior of eq. (3) occurs when x, >> 1, i.e. 
E>k;’ - L,, when the LEED instrument is not capable of resolving the 
length scale on which fluctuations are occurring. In the other limit, x, << 1, one 
finds the sort of behavior exploited in earlier LEED experiments [l-4], 

I(q=q,; T>a 
i 

lt12? T< T,, 

lfl-Y, T> T,. 

Since 5 varies rapidly near T,, the crossover from the behavior of eq. (3) to that 
of eq. (5) is quite rapid. (The crossover between the two pictures is contained 
in the scaling relation Z(k,, T)=ltlZPY(k,x,(t)). In analogy with finite size 
scaling, varying k, allows one to obtain y, p and v [5]). We summarize this 
discussion in fig. 1, which shows the variation of 5 near a second-order 
transition and includes L, and another length L,. L, is the characteristic size 
of defect-free regions on the surface. In the temperature region when 5 would 
exceed L,, the sample defects prevent the continued increase of [ and thereby 
round the transition. Thus region (1) gives no information about the transition. 
However, the point of inflection of the intensity curve - which corresponds to the 

maximum of the specific heat - supplies a natural estimate of T,.. This method of 
gauging T, has been used serendipitously [12,13]. For L, < 5 < L, (regions (2) 
and (3)) we expect the (1 - a) behavior, and at T,, and T,, crossover to eq. (5) 
should occur. 

As an example of the application of the use of integrated intensities to study 
second order phase transitions, we consider the disordering of the p(2 X 2) 
overlayer on a triangular lattice. Our motivation for studying this transition is 
its relevance to the disordering of p(2 X 2)O/Ni(lll). This system has been 
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studied in detail with LEED [l]. If continuous, this transition is predicted to 
have the same critical exponents as the 4-state Potts model; in particular, 
(Y = 2/3 [14]. This value is rather large (a < 1 from thermodynamic arguments 
[15]) and should be easily observable. We have performed Monte Carlo 
calculations of the structure factor for the p(2 X 2) structure formed by 
nearest- and next-nearest-neighbor repulsions (with a ratio of energies of 2 : 1). 
The lattice size (3888 sites) was comparable to the expected average plateau 
size on the (111) surface used in the experiment. The structure factor, 

S(q) = C (non,) c’q’r, (6) 

is what an ideal LEED instrument would measure if there were no multiple 
scattering. To mimic poor instrumental resolution we integrated S(q) 12% of 
the way to the nearest integer position. This integrated intensity for tempera- 
tures close to the p(2 x 2) disordering temperature (at a coverage close to l/4) 
is plotted in fig. 2. Fitting these data to the form of eq. (3) yields (Y = 0.62 _t 0.06 
and B+/B_ = 1.0 k 0.1. (A, Bi, and T, were adjusted minimize the x2 of the 
fit. The constant C was set to zero. Only data within 15% of T, were used; data 
within 1% of T, were discarded to allow for finite-size effects.) These values 
conform to the 4-state Potts model universality class [14,16], and demonstrate 
that (Y can be conveniently determined from the integrated LEED intensity. 
The O/Ni(lll) data show a much more rounded transition than in fig. 2, 

T II Tc T Ii! 

TEMPERATURE 
t 

Fig. 1. Variation of the correlation length for fluctuations near a second-order transition. The 
significance of the various temperature regions is given in the text. 

Fig. 2. Integrated kinematic intensity of half-order LEED spot from simulated p(2 x 2) order-dis- 
order transition (circles). The solid line is the best fit as described in the text, giving a to within 

error of the expected 4-state Potts value of 2/3. The dashed line is the best fit with a fixed at l/3, 
the 3-state Potts value. This gives an indication of the ease of discriminating universality classes by 

looking at a. 
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intimating a small positive or negative exponent (Y. This result is consistent 
with the nearly Ising (a = 0) exponents p, y and v found previously [l]. 

There are, of course, many other probes of short-range order in surface 
science. If the range of detected order is large enough to observe the structural 
changes associated with a phase transition, then these probes too will show the 
energy-like singularity at the critical point. (The range of order probed need 
not be large. Fisher and Langer [17] long ago pointed out the presence of such 
energy-like singularities to explain an electrical resistance measurement in the 
vicinity of a magnetic phase transition.) To make some concrete suggestions we 
note for example that in EELS, the vibrational frequencies of surface atoms 
might be expected to depend sensitively on surface reconstructions. Indeed 
Willis [18] has studied the W(100) surface reconstruction induced by H 
adsorption near room temperature and has found easily resolved shifts in 
vibration frequencies correlated with the phase transitions seen using LEED 
[3,19]. Infrared absorption can be similarly applied. Bradshaw and Hoffmann 

[20] and Crossley and King [21] have found that the C-O stretch frequency 
depends sensitively on coverage via admolecule interactions on Pd(lOO) and 
Pt(ll1). Thus IRAS would seem to have sufficient sensitivity to detect over- 
layer order-disorder transitions and possibly to reveal the energy-like singular- 
ity. Core level spectroscopies have also been found to be sensitive to adatom 

interactions (see for example the XPS studies of I/Ag(lll) and I/Cu(lll) by 
DiCenzo et al. 1221) and thus can also be used to study critical behavior 
through the exponent (Y. 

Our point, which has been made before in other contexts [16,23,24], is: 
although phase transitions are defined by changes in long-range order, their 
critical properties, through the specific heat amplitude ratio and exponent, can 
be studied by any probe of short-range order. This statement applies also in 
three-dimensional systems. Nonetheless, the idea underlying eq. (3) has not, to 
our knowledge, been used in studies of 3D critical behavior systems, perhaps 
because of the availability of adequate probes of long-range order such as 
X-ray scattering. 

We close with three comments. First, although the proposed method allows 
the use of low-resolution LEED equipment or even very local probes, one must 
nevertheless be concerned about sample quality. Finite size effects caused by 
impurities or steps, etc., limit the attainment of the long correlation lengths 
needed to produce the singularity. Secondly, in the Ising model, where (Y = 0, 
there is a logarithmic singularity of the form B]t](ln]t]) instead of the ItI’-” 
term of eqs. (1) and (3). Finally, in most surface experiments [1,2,4] the 
coverage 8 of an adsorbed species is held constant while T is varied, or vice 
versa. The coverage is, in general, a singular function of T if the chemical 
potential p (or equilibrium vapor pressure) is fixed or of p if T is fixed. Hence 
“Fisher renormalized” [25] exponents occur if B (or T with fixed 6) is 
substituted for T (with p implicitly fixed) in eqs. (l), (3), and (5). Fisher 
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renormalization replaces cx by - cy/(l - CX). If (Y is positive then aZ(q; T)/aT, 
for example, will have a cusp singularity at T, rather than a divergence, 
increasing the difficulty of analysis. Fisher renormalization can be avoided by 
studying the transition at a phase-boundary extremum, i.e. dT,/de = 0, as was 
done in the study of O/Ni(lll) [l]. 
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