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Using phenomenological renormalization (transfer-matrix scaling), we have reexamined the phase transi-
tion of a triangular lattice gas with particles having both nearest- and second-nearest-neighbor exclusions.
Widely accepted classical studies indicated that disordering of the ordered [ p(2x2)’] state is first order.
In contradiction, we show that the transition is second order; its exponents are consistent with the four-state
Potts model universality class, in accord with its Landau-Ginzburg-Wilson Hamiltonian classification.

In the study of lattice-gas melting transitions, hard-core
limits have provided useful benchmarks. For a triangular
lattice with just nearest-neighbor exclusions, the hard-
hexagon model, Baxter’s celebrated solution! finds a con-
tinuous transition in the three-state Potts universality class.
This critical behavior is predicted by the Landau-Ginzburg-
Wilson (LGW) Hamiltonian classification scheme.? A nat-
ural extension of this triangular lattice problem is to consid-
er next-nearest-neighbor as well as nearest-neighbor ex-
clusions. LGW arguments indicate that, if second order,
the melting of the ordered phase should lie in the four-state
Potts universality class.? Two much-cited>>* numerical
studies of this model—by Orban and Bellemans® (OB) and
by Runnels, Craig, and Streiffer® (RCS) a decade and a half
ago—concluded that this transition (as well as those of
hard-core particles with larger-range exclusions) is first or-
der. Using the phenomenological renormalization, or
transfer-matrix scaling, method (PR/TMS) developed by
Nightingale,” we demonstrate that the transition of the
hard-hexagon model with second-neighbor exclusions is
indeed second order and in the four-state Potts universality
class. We also discuss how modern ideas of finite-size scal-
ing reconcile the results of OB and RCS with our findings.

Our attention was drawn to this problem by studies of gas
atoms chemisorbed on the close-packed faces of fcc and hep
metallic single crystals.® The top layer of metallic atoms are
a triangular lattice and as temperature is lowered the ad-
sorbed atoms are often found to form a p (2% 2) overlayer,’
i.e., a Bravais net with primitive vectors parallel to and twice
the length of those of the substrate. This overlayer pattern
is a realization of the ordered state of the present problem.!°
To investigate the physical systems, we used a lattice-gas
model with a wide variety of pairwise interactions (including
just nearest- and second-neighbor repulsions) between the
adsorbed atoms; our calculations used PR/TMS,!! Monte
Carlo finite-size scaling,!"!? and explicit Monte Carlo simu-
lation of the structure factor.!> We found second-order
transitions, with critical behavior consistent with the LGW-
predicted four-state Potts model. The Monte Carlo and
renormalization-group study by Glosli and Plischke!* also
suggested the transition is second order. Thus, the results
of OB and RCS seemed curious.

In the present problem of infinite nearest- and second-
nearest-neighbor repulsions, it has been rigorously estab-
lished!’ that a p(2x2) ordered state forms at sufficiently
high activity z=exp(x), where x=u/kT is the reduced
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chemical potential. Using the well-established transfer-
matrix technique,'®!” we have calculated the correlation
length ¢ associated with this order for infinite strips of sites
with even widths n =4, 6, . . ., 16:!8

£~ n,x) = (1/3) m|\/A P, )

where A§® is the largest eigenvalue and A{"” becomes degen-
erate with it when there is long-range p (2x2) order.!” The
unusual prefactor, needed for Eq. (4), arises because the
spacing between rows in the infinite direction is (+/3/2)
times the lattice constant and we considered the transfer
matrix between pairs of rows. The density p(nx)
=n"1d\{"/dx. From the usual finite-size scaling formula,
we obtain the estimate X, (of x.):

tnx)/n=¢6n+2,5)/(n+2) . )

Approximations to v were obtained using

n+2 ”l/"= 9¢(n +2,%.) /Gf(n,fcc)
n : ox ox

3)

The exponent n was obtained from the amplitude of the
correlation length using the conjecture of Derrida and De
Seze;?°

Com=(n/m)E" M n%) . 4)

The results are presented in Table I. (For comparison of p
with OB and RCS, one must multiply by 4, the inverse of
the close-packed density.)

While the convergence of v and 7 is clearly slow and
makes extrapolation to the infinite » limit problematic, such
behavior is expected for the four-state Potts model. This
model has v=4% and n=. Blote and Nightingale?"?* ob-

TABLE 1. Results using finite-size scaling [Egs. (2)-(4)].

nn+2 X p(n+2,%.) v m
4,6 1.72825 0.18580 0.7007 0.2388
6,8 1.76294 0.18741 0.6985 0.2262
8,10 1.764 98 0.18751 0.7132 0.2251
10,12 1.76252 0.187 32 0.7173 0.2269
12,14 1.760 86 0.18720 0.7164 0.2284
14,16 1.759 89 0.187 14 0.7143 0.2296
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TABLE II. Exponents using three-point fit of reduced compressibility and two-point fit of susceptibility.
X, is evaluated for strips of width » —2 and- n.

n (8/8x)p(nx.) v(nn+2,n+4) x(n,%.) n(nn+2)
6 0.1224 0.74 5.5689 CEEEE
8 0.1540 0.72 10.2114 0.110
10 0.1833 0.72 15.5671 0.203
12 ) 0.2113 0.72 21.6038 0.210
14 0.2382 28.4683
16 0.2643 LA

served similar convergence problems in the four-state Potts
‘model, which they attributed to the known presence of a
marginal eigenvalue. Their ‘‘best estimate’’?! of v was
0.7177, which is comparable to our results. For n their
result?>? s 0.2728; the deviation similar to ours. Our
values are distinctly different from those of a ‘‘discontinuity
fixed point”? (v= 1/d=-;— and n=0), which characterize
the obtainable exponents at first-order transitions.

Exponent estimates can also be obtained by directly scal-
ing 0p/0x (i.e., the specific heat, or equivalently here, the
compressibility?*) and the susceptibility. Finite-size scaling
theory? predicts that the (reduced) compressibility at the
infinite system critical point should increase with increasing
strip size as n®/*. Likewise the critical susceptibility X,
should increase as n?". These numbers, evaluated at the
estimated critical points of Table I, appear in Table II. The
susceptibility here is defined by the structure factor evaluat-
ed at one of the reciprocal lattice vectors of the p(2x2)
structure. It was computed by numerically differentiating
the partition function with respect to an appropriate stag-
gered field A (which favors alternate rows running in the
close-packed finite direction): X (n,x) = n ~1921nA§"/d%A.

By fitting the susceptibilities to the form cn””” using data
from strips of width » and » + 2, and reduced compressibili-
ties to the form co+t cin®” using strips of width n, n +2,
and n +4, we obtain estimates of the exponents v and 7
through the relations dv=2—« and y/v=2—m. These es-
timates appear in Table II. Again, given the poor conver-
gence associated with the four-state Potts model, the results
are consistent with a four-state Potts continuous transition.?
In a first-order transition, the susceptibility and the
compressibility calculated in this way are predicted to
diverge exponentially in n, 2! obviously not the case here.

As more exclusions are added to the model, the Lifshitz
condition is violated, so that LGW symmetry considerations
can no longer be used to make predictions about the nature
of the phase transition.? More complicated sorts of phase
transitions become possible. For example, Ostlund’s model
calculations?’ show melting via an intermediate floating
phase if the number of exclusions exceeds a specified value.
Thus, it is no longer clear that the standard prediction®® of
first-order transitions for multiple exclusions is correct. In
the limit of infinite range exclusions, viz., the hard disk

model, there is no long-range positional order. While the
hard disk transition is accepted as first order, there is con-
troversy when more general interactions exist.2

We must still account for the original classification®® as
first order of the triangular lattice gas with first- and
second-neighbor exclusions. We note that OB and RCS
treated the identical transfer matrices that we use in
PR/TMS, but without finite-size scaling®?*? to analyze
results. Their empirical extrapolation procedure to infinite
strip width was acknowledged®™!® to invite possible error.
Explicitly, they considered the densities p < and p» at the
two points of inflection of 8p/dx. OB then linearly extrapo-
lated p> vs n~! and p< vs n”2 Since the intercepts (at
n— o) clearly do not meet, OB concluded the transition
was first order. According to finite-size scaling,? rounding
of a phase transition occurs when ¢ is of order the size of
the system, i.e., £(p 5 )=n. From the definitions of the
exponents a and v, < ‘

g(xE)OCIZz _ZC,—VG: ,pz _pcl—v/(l—a) . (5)

Hence, p» —p< should decay as n~1=®/*? For the

four-state Potts model (1—a)/v=+. We thus surmise that
OB’s analysis would have identified the four-state Potts
transition as first order. (Our log-log plot of OB’s values of
p>—p< Yyields an exponent of —0.6.) For the hard-
hexagon model, where (1—a)/v=-+, Runnels and
Combs!® extrapolated again with —0.75 and correctly identi-
fied the transition as second order. We finally note that
even OB recognized that Chesnut’s Monte Carlo calcula-
tions,3 cited by OB for corroboration, involved very small
lattices. Moreover, determining with modern Monte Carlo
capabilities the known order of a Potts transition for
q=4,56 (Ref. 31)—and more generally distinguishing
weakly first-order transitions from second order—is a subtle
problem that usually requires computation on several lat-
tices of different size and subsequent finite-size scaling
analysis.*?
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