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11. Critical Phenomena of Chemisorbed Overlayers

T.L.Einstein
With 8 Figures .

11.1 Introduction

Critical phenomena refer to the singular behavior of various thermodynamic
properties, particularly the divergence of the size of: fluctuations near
second-order phase transitions. This behavior has surprisingly little to do
with the microscopic Hamiltonian describing the system or the species under-
going the phase change; instead, it is determined by the dimensionality of
the system and the symmetry of the ordered state. Based on these attributes,
transitions can be classified into a small number of universality classes.
A1l members of such a class have common critical exponents which describe
the singularities near the transition. The dependence on spatial dimension-
ality d is quite strong. For d = 1, fluctuations are so strong that long-
range order is impossible {except when long-range forces are present). In
fact, for a pure 2-d system, long-range order as conventionally defined is,
in principal, also impossible (two recent reviews are [11.11), although in
realistic experimental systems these limitations enter only weakly. On the
other hand, similar considerations lead to predictions of two-stage melt-
ing in 2-d, with a distinctive "hexatic" intermediate phase [11.2].

For a 2-d lattice it is well known that long-range order can exist in a
situation with only short-range interactions: witness the celebrated ONSAGER
solution to the Ising model [11.3]. Other less fami]iar,mdde]s have also
recently been solved in 2-d (e.g., hard hexagon or threérstatg Potts
class [11.4a], triple spin or Baxter-Wu or four-state Pqtt§ {11.4b}, and
eight vertex [11.4c]), while none have been solved exaCtly,in 3-d (save
the spherical model [11.5al; the infinite-d spin “Ising" model has a nearly
identical solution [11.5b,c]). A number of theoretical techniques, described
in Sect.10.2.3'(thisAchapter introduces many of. the ]attice gas concepts re-
lied on here), have been developed to deal generally with the features of a
2-d lattice. A particularly favorable trait of 2-d second-order transitions
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js that the critical region is orders of magnitude larger than in 3-d, mak-
ing experimental observation considerably easier.

To test the theories associated with 2-d critical phenomena, one needs
genuinely 2-d systems, rarities in nature. Atoms adsorbed on essentially
passive surfaces offer the desired 2-d properties. Several recent conferences
have explored this exciting area [11.6,7]. Fortunately, their proceedings,
in most cases, have pgen published [11.6], making this progress available
to a wide audience. Two excellent reviews [11.8,9] will appear soon, too.
The current presentation will only be able to focus on a Timited selection
of topics. The hope is to whet the reader's appetite by presenting some
highlights of special interest to those studying adsorption. We assume some
familiarity with surface science but very little with progress in static
critical phenomena. (An outstanding series of review articles is in [11.101.)

In Sect.11.2, a general introduction to critical properties is given,
The ideas of critical exponents, corrections to scaling, and crossover
phenomena are presented in terms appropriate to surface science. Section
11.3 discusses order parameters and universality classes. “"Universal”
features do not depend on any of the explicit parameters of a system, Jjust
on symmetries and dimensionality. This section presents a general scheme
for determining what sorts of universality classes can be found in commen-
surate adsorption systems. Section 11.4 discusses how LEED measurements can
probe critical phenomena and explores some of the problems that arise in ac-
tual experiments, notably substrate disorder. Section 11.5 describes the
few experiments undertaken to measure critical exponents for adsorbed over-
layers. The only chemisorption case so studied, o/Ni{111}, is examined
carefully. Section 11.6 mentions some implications of this work.

11.2 Important Concepts

11.2.1 Lattice Gas Model

An impoftant feature of all chemisorption and most physisorption systems is
that, at low coverages, the adatoms sit at specific positions relative to
the substrate atoms. Thus, it is appropriate to describe these systems with
lattice gas Hamiltonians [see (10.1)]. For present purposes, all but the
first few pairwise interactions Ei can be neglected. We remind the reader
that these E fall off rapidly in magnitude with increasing separation and,
in the case of chemjsorption on transition metals, are anisotropic and can

be attractive or repulsive. These pairwise interactions, as well as higher
order interactions, were reviewed in ISISS 1977 [11.11]; there has since been
progress in calculating signs and rough magnitudes for H on narrow-band
transition metals [11.12], as well as in general understanding [11.13]. We
emphas%ze the distinction from physisorption, where the Ei's originate es-
sentially from van der Waals forces and so are invariably strongly repul-
sive at smail spacings R , then (decreas1ng1y) attractive for:.larger R

In chemisorption, as opposed to phys1sorpt1on, ‘the binding energy 1s S0
much larger than the E 's that the fractional coverage 8 = /N [N being the
number of lattice s1tes o = ] n; the number of adatoms] is essentially
fixed at temperatures of order to E‘/kB, at which 2-d phase transitions oc-
cur (in contrast to physisorption). The phase transitions that concern us
here are order-disorder processes. These are the only kind that occur in
simple systems with only a few repulsive pair interactions and no attrac-
tions. The intuitive picture is that adatoms try to avoid each other but
are "forced" closer together by increased coverage. For example, in the
case of a square lattice with only nearest neighbor repulsions, the adatoms
occupy sites randomly at low 8, but (at low temperatures) for some e between
1/4 and 1/2 form an ordered checkboard pattern with only one "color" of
site occupied (to avoid the penalty energy El)‘ As temperature increases,
the entropy gained by occupying both sites outweighs the energy consider-
ations in the free energy, and the c(2x 2) pattern disorders (cf. R = o
curve [11.14] in Fig.10.1). The important feature in determining critical
behavior is the number and symmetry of equivalent sites available for dis-
ordering. A second kind of transition occurs at low coverages when attrac-
tive interactions are present. Then, ordered islands form, e.g., in the
square lattice gas case, an attractive E2 leads to ordered checkboard isj
lands at coverages well below 1/4 (in fact down to 0). With increasing
temperature, adatoms "evaporate" into the gas background, with associated
latent heat; the transition is first order. At higher coverages, one again
encounters order-disorder type transition (cf. R = -1, -1/2 plots [11.14]
in Fig.10.1). '

We recall the expression for expectation values of observables given in
{(10.2). At high temperatures, all sites are occupied with equal probabili-
ty, formally <n;> =0 and more importantly <ny “3’ = 82, for all i,j. Below
the transition temperature Tc the lattice s1tes can be imagined as divid=-
ing into a [small] number of sets of equivalent sites having some lower
symmetry than the lattice as a whole. Each set has the same number of sites.




As we shall see more clearly below, the idea is that below Tc'one of these
sets is preferentially occupied.

11.2.2 Critical Exponents and Scaling Laws

The measurable thermodynamic properties are usually defined in terms of the
analogous magnetic Hamiltonian for spins on a lattice. Thus the independent
variables are magnetig.field h and temperature T [or often more conveniently,
reduced temperature t = (T-T )/T 1. In chemisorption experiments one
measures the divergences of the correlatlon 1ength £{<s] sy~ 1n(R ) x
exp(-R; /5)} in 2-d and the susceptibility x[}-(3 F/ah )IT] with decreas1ng
It]

g 1™ 5 x = 1t (11.1a)
The "magnetization", i.e., the order parameter (to be defined shortly)
vanishes as

me (-t)8 [t<0 onmlyl . (11.1b)

Expressions for these measurables in magnetic language are given in most gen-
eral reviews [11.15,16]1; we shall encounter their adsorption appearance in
Sect.11.4. In addition, we mention the specific heat

¢ = (k12) 1> - <5?) « |t|™ + const. (11.1c)

While this quantity cannot be measured in chemisorption, it can sometimes in
physisorption and is useful in Monte Carlo simulation. Other exponents are
not readily accessible,

This Greek alphabet soup ig dramatically simplified by the scaling hypo—
thesis. This experimentally corroborated idea states that the divergence of
£ (i.e., the long-range correlations of fluctuations near TC) is responsible
for all singular behavior; £ is the only relevant length in determining the
singular behavior at criticality [11.16]. This hypothesis is consistent with
the independence of critical exponents from details of the microscopic Hamil-
tonian and the lattice constant. One consequence of the hypothesis was used
implicitly in writing (11.la,c), namely, that a, v, and v are the same above
and below T (note that the proportionality constants are not identical).
More genera]1y, only two exponents are independent; this statement is ex-
pressed in “[hyper}scaling laws,'

21 - v) = v(d -2) ,
20v - B) + v(dr 2) .

4]

(11.2a)
(11.2b)

Y

|
!
|
|
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The laws are written so as to emphasize their particularly simple form for
d=2.

11.2.3 Corrections to Scaling

When confronting experimental curves, (11.1) indicates that fits of observ-
ables G{T) require the nonlinear form,

G(T) = AIT-T > . (11.3)

Note that in general TC must be determined simultaneously with the exponent
2 and the [nonuniversal] amplitude A. To do the fit, we usually want

G(T ) = 0, not =; for divergent quéntities we need merely fit the inverse.
Further complications do exist, however. The simple form of (11.1,3) is
just the first term of a power series, t*[1 + Dt + ...]. Often there are
other weaker ["confluent"] singularities at Tc leading to corrections of
the form

A
[t e pg et s Dz’tltIAz PR (11.4)

where 8y and A, are not integers [11.17]. Since all the D's are nonuniver-
sal and the A's are model dependent, general statements are difficult, if
not impossible. For the particular case of the 2-d Ising model, for which
a detailed solution is available (but for which corrections of the form

(11.4) do not occur [11.18]1), ROELOFS [11.19] investigated the dependence
of the effective value of v on the range of t analyzed. For tmin = 0,005

and 0.02, he found the deviation (underestimation) to be less than 5% for
thax < 0.09 and 0.06, respectively (cf. Fig.ll.l). There is some evidence

10

Vett Fig.11.1, Variation of the
904 effective value of v vs the-

upper ]1m1t of the fitting
‘range, Tpay, for the Ising

. model - so ut10n.for inverse
correlation length {11,201},

~ The circles are for Tyi,=1.005
80 : and "the snuares for Tm]n-l p2
{11.19]

ﬂnax/rc
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(11.18) that such effective exponents, deduced for some common range, obey
the scaling laws of (11.2), although it is not presently certain how gen-
erally this is true. Under certain circumstances, associated with a para-
meter being "marginal" (not changing under scale jncreases at the "fixed
point" representing the transition), the correction is logarithmic [11.211,
112 (1 - udnltD® - (11.5)
In this case the corredtion term becomes worse [larger] as t““.n decreases.
The size of the correction is partially determined by the nonuniversal
{i.e., dependent on specifics of the system) coefficient u. We shall en-
counter such a case below, the four-state Potts model [11.21]1. Since con-
clusive experimental demonstration of logarithmic corrections requires

decades of t range, it is particularly favorable to investigate lower dimen-
sionalities, where critical regions are relatively large.

11.2.4 Crossover Phenomena [11.22]

Often real systems do not correspond perfectly to simple models but contain
small admixtures of other models having different-symmetry ground states.
Some examples for magnetic systems are weakly anisotropic systems or layered
systems with primarily 2-d coupling and weak 3-d coupling between layers.
We shall encounter, in Sect.11.3.4, 5 the case of {111} fcc [or {0001} hcpl
surfaces, when a honeycomb Jattice of threefold sites is split by a weak
crystal field into two triangular lattices. Such systems have the form

H = Hy + gy (11.6)

where <H1>g=0 =0, »

Far from Tc, the system appears to be in the universality class associated
with Ho, as though g were zero. Very close to Tc, the system senses the sym-
metry of the full H and responds according to its [different] universality
class. Note that this new behavior implies not only a different set of cri-
tical exponents but also a different, g-dependent critical temperature. At

intermediate temperatures the system crosses over from one class to the other.

By the scaling hypothesis, the jntermediate behavior can be written as, €.9.s
for susceptibility, ‘

e ——————————

1 If u vanishes, so does the 1ogarithmic correction. Such may be the case for
the Baxter-Wu model [11.4b], which is in the same universality class as the
four-state Potts model but exhibits pure power law behavior [11.21].

~t

e e e
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0.96!
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0.78
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(to(m)-t)/t (m)

Fig.11.2. ITlustration of effective ex-
ponents in a crossover regime for what

amounts to three different values of g

[11.23]

x(T.9) = tYX(e/t) (11.7)

where t is reduced with respect to Tc(g = 0) and the crossover scaling
function X(z) is normalized by X{(0) = 1. The crossover scaling exponent ¢
has the form ¢ = tv, where ¢ is an exponent associated with scaling the
field of H, and v is familiar by now. The crossover region thus occurs
for t ~ gl/*; jts width is determined by the explicit, system-dependent
form of X(z).

In a graph of In(G) vs 1n|t|. the curve is nearly linear for large and
small |t|, and bends smoothly between these limits. The effective exponent,
defined by 3 1n(G)/31n|t|, has the value associated with Hy for large 1t}
and with H for small [t|. In between, it varies continuously from one to
the other, and cannot be neatly defined as some weighted average. Figure
11.2 illustrates this idea [11.23]. Note that if we knew we were in a well-
defined critical region, a way to fine-tune a fit would be to minimize the
curvature of 1n(G) vs In|t| with respect. to Te.

The crossover also applies near tricritical points, described in Sect.
10.3.3. Tricritical points have their own set of exponents, often with
smaller g than that of the adjoining second-order line [11.24). In this
vicinity one could see {depending on some details) the tricritical exponents
until one gets close to that line, then crossover to those of the line (or
to a weak first-order transition). To illustrate the complexities inherent
to this region, we cite a very recent impressive study of the disordering
of (/3 x /3) Kr physisorbed on (Z¥X exfoliated) graphite [11.,25]. With
X-rays from a synchrotron, resolution (HWHM = 3.5x 107 %‘1) two orders of
magnitude better than LEED studies of Sect.11.5 were obtained. The measured
value of 8, 0.065 + 0.015, was sqmewhat largerﬂtbqn‘the predicted By of the




tricritical point but much less than the predicted second-order line B
[which is (nearly) double BM].

11.2.5 Fisher Renormalization

Another more general caveat concerns Fisher renormalization [11.26]. Although
jdeal exponents are calculated with the external field (i.e., the chemical
potential for a lattice gas) as the independent variable, for chemisorption
it is the conjugate vé}iable, the coverage, that one can control. When a
quantity, in this case 8, that would vary critically at a second-order
transition is constrained, the measured exponents will change. Figure 11.3
j1lustrates schematically the essence of this situation, showing lines of
constant p in a second-order phase'boundary in a o-T plot. The singular vari-
ation of these lines at the critical point has the effect of exponentially
renormalizing the reduced temperature by 1/(1 - a) to lowest order. Accord-
ingly, divergences in |t| are renormalized; A -» A/(1 - o), where X = B, ¥,
and v, but a » -a/(1 - a). Note that the scaling laws (11.2) still hold for
these renormalized exponents. Note also that, since a = 0 for the Ising mo-~
del, fixing e does not renormalize exponents (although there are subtle lo-
garithmic effects). Inspection of Fig.11.3 suggests that one expects to
measure the ideal, unrenormalized exponents until one gets close to the
boundary, where there is crossover to the renormalized values. The cross-
over region happens at smaller and smaller reduced temperatures as one ap-
proaches the symmetry line interacting with the apex of the boundary. To
date, no conclusive experimental observation of Fisher renormalization has
been reported; with their large critical regions and intrinsically con-
strained 8, chemisorption systems present a propitious hunting ground.

Fig.11.3. I1lustration of the source of Fisher
renormalization. The solid line denotes second-
order transitions. The (dashed) lines of con-
stant chemical potential vary singularly at
the transition, except at the maximum, Te(8g)-
% Constraining @ rescales temperature near Te(8)
Coverage over a range which vanishes near T (eg) 111.19]

i
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The implications of Sect.11.2.4,5 for experimentalists are twofold. When
jt is feasible, measure critical exponents away from a crossover regime be-
fore tackling that complicated domain. When near such a regime, plot 1n{G)
vs 1n|t| to see if well-defined critical behavior is monitored.

11.3 Universality Classes for Atoms on a 2-d Lattice

11.3.1 Order Parameters >

The details of phase transitions are best discussed in terms of an order
parameter y which can be a scalar, a vector, or a tensor of higher rank. By
definition it vanishes above Tc’ when there is no long-range order, and it
is usually normalized to unit magnitude for a fully ordered state. In a
second-order transition, |w| moves continuously from 0 as T drops below T,
while in a first-order one, it jumps discontinuously.

Some simple examples are helpful. For the checkerboard c(2 x2) pattern
discussed earlier y = (NA- NB)/(NA + NB) where A and B denote the two
“colors" of sites and NI the total occupation of each (10.7). For the
(/3 x ¥3)R30° pattern on a triangular lattice (commonly observed in physi-

sorption, as alluded to in Sect.11.2.4), in which there are three equivalent
sites, we might write

Ny + “B(l—i_;ﬁ) * NC(M)

v = 2

. (11.8)
NA + NB + NC

This vector is often more conveniently discussed in terms of two orthogonal
components.

11.3.2 Universality Classes

Writing the free energy of the systém as F(T.y), we-note that.the minimum

of F lies at y =0 for T > Tc' In a second-order transition, this minimum
moves infinitesimally away from y = 0 as T drops infinitesimally below T _.

If we expand F(T 5 TC, y) about F(T < Tc, 0), we expect the lowest orderc
term, in ¢, to be negative and the higher order terms positive. The expli-
cit form of the expansion of F in powers of ¢ thus determines the behavior

of the system near Tc' i.e., it determines the critica] properties. Each
distinct expansion corresponds to a different universﬁlity class. The ex-
pansion obtained for a lattice gas system can also be.obtained from some
spin-spin interaction system which often bears no initiaily obvious relation-
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ship to the ordered overlayer pattern; but the analogy does give deeper
understanding of how the overlayer disorders. The name of the magnetic sys-
tem conventionally denotes the universality class.

!
The simplest magnetic interaction is of the form '

n N .
= -3 s.e5, = -9 51 (1) (11.9
<jk> 23k <§k> §=1 3ok )

ot

for n-d spins. For n = 1, 2, and 3, these systems are called Ising, XY (or
planar rotor), and Heisenberg, respectively. From symmetry considerations
alone one can write the expansion as

) n 2 n 2 2 n 2 3
F(T,p) = F(T,0) + ¥ §,=1 ¥ * u2(§=1 wai) + u3(71,=1 wi) AJEED (11.10)

where ¢ is 25 sgi). and r is proportional to T - Tc and so changes sign at
Tc. For spins without full n-d rotational symmetry, there are further terms
in the expansion. The general procedure for constructing these expansions
using group theory is well developed but rather technical (the classic, de-
tailed, semiscrutable exposition js [11.28]1; also [11.29]1). Landau gave three
rules, couched in [groupl] representation 1anguage, for determining whether a
particular expansion in order parameter can produce 3 second-order transition.
Since this approach is in essence mean-field-1ike, one must check whether
fluctuations destroy the claims. Indeed, for d = 2, the second Landau rule

is violated (by the three- and four-state Potts models). We emphasize that
these symmetry-based considerations indicate only whether a particular over-
layer can have 2 continuous transition; whether it actually will depends on
the expansion parameters in the expansion of F, and so, ultimately, on the
lattice gas interactions Ei'

Most of the applications of these ideas to adsorption systems have been
carried out by DOMANY, SCHICK, and co-workers [11.30]. SCHICK's excellent
recent review [11.9] is uniquely readable from a surface science perspective.
Most of the remainder of Sect.11.3 presents highlights and results of that
treatment.

11.3.3 - Landau Theory for Adlayers

11.3.3 - Landau Theory 7OV "2 202>

The ordered state below T can be described by some 2-d wave vector Q. How-
ever, if we jnclude some Q, we must also admit all [say 2} independent mem=
bers of its vetar," i.e., all other wavevectors generated by applying the
point-group operations of the lattice of adsorption sites (hereafter the
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"net"), that are not related by a reciprocal lattice vector g of the net,

L
<ng> = 8 + ;_1 p(gs)exp(igs 'Bi) . (11.11)
If soée g connects Q. and -Q;» then p(Q,) 1s real and
[
<ng> =8 + §—1 p(gs)cos(gS 'Bi) s (11.12)
otherwise p(gs) = C(gs) + 1 S(Qs) with C and S real, and
2/2 1/2
<ng> =8 +2 E ) C(Qs)cos(gs 'Bi) +2} . S(gs)sin(gS 'Bi) . (11.13)
= s=

The first Landau rule states in essence that for a second- order transition
there is just a single [star of] Q needed to describe the ordered state.

Now in the first case, the o's are the ensemble averages of the 2-compo-
nent order parameter,

_ a1
v = N1 ] ny cos(Qg * Ry)

R s =1,..002
LA

. (11.14)

while in the latter case it is

cos(Qg *Ry) s =1,...5 2/2

el | 11.15
b = N 1M |singg R s (th-5

1,..., 2/2 (Z"d 1/2 components}.

To illustrate the formalism, note that for the checkerboard Bi = (m,n) and
QS = 7(1,1), so we recover the single component ¢ = N"1 ) ni(-l)m+". For th
/3 pattern we have R, = [(1/2)(m + n), (V3/2) (m - n)] and take
Q = (4/3)(1,0). Then N1 I cos{(2n/3)(m + n)] and vl Ii ™ sin{(2n/3)
(m + n)] give the x and y components, respectively, of ¥ as set down in (11

~ The third Landau rule, also called the Lifshitz criterion, requires that
Q be at a high symmetry point of the surface Brillouin zone (SBZ): either t
origin or a symmetry point on the edge. This condition selects which commer
surate overlayers can undergo continuous transitions; they must be relative
dense [11.31]. The actual criterion is somewhat more stringent. Continuous
transitions are still possible to incommensurate states, which are not dis
cussed here [11,28-30].

Landau theory also shows how to generate the free-energy expansion sole

on the basis of symmetry. The mth-order term in the expansion contains pro
ducts,




p(Q,)0(3y) -+ p(Qy) - (11.16)

In order for translation invariance to be satisfied, the sum of these m Q's
must be a g. Furthermore, the free energy (and hence each order in the ex-
pansion) mast be invariant under the point group operations of the net.

Since some of these operations interchange some of the Q's, the products must
be symmetric under this interchange, or there must be other mth-order pro-
ducts. Observe that thid approach gives no information about the coefficients
of the terms in the expansion.

11.3.4 Catalogue of Transitions

Table 11.1 summarizes the assignment of adatom overlayer transitions to uni-
versality classes. It is quite remarkable how few universality classes there
are and also how few of the experimentally observed overlayer patterns {11.32]
are able to undergo second-order transitions.

Table 11.1. Overlayer pattekns, on nets with common symmetries, which can
have continuous order-disorder transitions. Adapted from [11.9]

Universality class Ising x-y with cubic  3-state 4-state

and exponents anisotropy Potts Potts
a 0(log) 1/3 2/3

Substrate 8 1/8 non 1/9 1712
y 7/4 universal 13/9 7/6

symmetry v 1 5/6 2/3

Skew (pl) (2x1)

or . ) (1x2)

rectangular (p2 mm) c(2x2)

Centered (2% 2)

rectangular (c2 mm) c(2x2) (1x2)

or

square (p4 mm) (2x1)

Triangular (p6 mm) (V3 x /3) (2x2)

Honeycomb (p6 mm) (1x1) (2x2)
[p(2x2)}

‘Honeycomb in -a

crystal field (p3 ml) (V3 x ¥3) (2x2)

3yeisenberg with corner cubic anisotropy (K4 < 0)
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The most common class in the table is Ising. This class results whenever
the order parameter has a single component; there is no possibility of extra
terms in (11.10). In the rectangular case {e.g., {110} fccl, the three over-
layer patterns correspond to Q's pointing to the center of either of the
sides of the rectangular SBZ or to a corner. Since g's connect any one to any
other member of its star, each star contains just one independent member.
similar remarks apply to the square lattice [e.g., leO} bee, fecl when Q
points to a corner of the SBZ or to the centered: rectangle [e.g., {110} bccl
when it points to the middle of the short edge. The ¢(2x2) overlayers are
unusual in that the lattice gas Hamiltonians can actually be transformed into
the Ising model by a familiar change of variables [that is, substitute
(s + 1)/2 for n; (see Sect.10.3.1)); thus, the correspondence holds not
just near Tc but for all T. For the honeycomb, the situation is a bit more
complicated since the lattice is not Bravais. The (1 x 1) pattern corres-
ponding to Q = O has one of the two triangular sublattices occupied. SCHICK's
careful treatment [11.9] contains numerous figures to illustrate these com-
ments. Discussion of the p(2x2) overlayer, corresponding to a Heisenberg
model with cubic anisotropy, is deferred to Sect.11.5.

In the square lattice case (that of the centered rectangle is quite simi~-
lar), if points to the middle of an edge, we find

S= 0+ (0)00s(Q) « ;) + p(Qp)cos (B, - By)

n

o + (-1)"(Qy) + (+1)"(Qy) (11.17)

if we write R; = (m,n). This form describes a (2x2). If either °(Q1) or
p(QZ) happens to vanish, we have a (2x1). Since 2 = 2, we start with (11.10)
with n = 2, an XY model. There is an additional fourth-order term of the
form w[¢§ + wg], or equivalently w'w%wg, arising because the point group of
a square is lower than full rotational. In magnetic language, a term Sx + Sy
is added to (11.9), favoring either the two coordinate axes or the diago-
nals depending on the sign of the coefficient. It is somewhat perversely re-
ferred to as "cubic anisotropy" since a square is‘adz-d cube. This model is
highly unusual in that its exponents are nonuniversal [11.33], depending on
the particulars like interaction strengths and coverage. As this situation
has no parallel in 3-d, it offers an unusual opportunity fok,surface science
to advance insight into critical phenomena [11.9].v0n the other hand, it
seems bold if‘not foolhardy to investigate such a system before one has
mastered the study of systems with firmly known exponents.
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Triangular lattices [e.g., atop binding on {111} fcc or {0001} hcp, centered

sites on basal graphite] have as their SBZ a regular hexagon. As alluded to

in Sect.11.3.3, a (3 x /3)R30° is produced by 3 Q pointing to a vertex of

the hexagon. Since its negative is not connected by 2 g, the slightly more
cumbersome form of (11.15) was needed. The order parameter was seen to have
two components. In addition to the terms of (11.10), there is a third-order
term wi - 3¢i¢§ (violating the second Landau ruie). This expansion is the

same as that of the three-state Potts model [11.34]1, where the n-state Potts
model [11.35] is defined by

H=-d7 & (11.18)
<§’j> si .Sj °

with s, having n possible values (or directions or “colors"). Note that the
two-state Potts model is just the Ising model. An jntuitive grasp of the
origin of this correspondence can be gained by examining Fig.11.4. Near Tc

it is not the interaction of individual adatoms but rather those of large
ordered clusters which determine the physics. In the /3 pattern there are
three subsets of sites. There is one kind of domain wall (and resul ting inter-
action energy) between clusters occupying the same subset. The walls between
clusters on differing subsets do not depend on which two subsets are involved,
but do depend on orientation. The figure shows the [two kinds of] antiphase
boundaries that occur for strongly repulsive El’ For weaker El’ the domains

approach each other closer. Computation of an effective cluster-cluster
ot }
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Hamiltonian of the form (11.18) requires averaging over the many possible
porders, often with some ab initio insight; such practice is implicit in
the prefacing transformations [11.6b,8,36] mentioned in Chap.10.

A second star contains vectors pointing to the middle of the edges of
the SBZ-and generates (2x2) overlayers. Opposite Q's are related by g's.
one finds that n = 3; the extra terms to be added to (11.10) are wibovq
and v 2?=1 w?, producing the expansion of the four-state Potts model. The
Jogarithmic corrections associated with this model (see footnote 1) relate
to the fact that, as a function of the (not necessarily integral) "number”
of states, 4 is the largest at which a second-order transition occurs [11.37

A honeycomb lattice is provided by the center (three-fold) sites of a
close-packed layer of atoms. In physisorption this can be achieved by pre-
plating based graphite, typically with Kr. The {111} faces of face-
centered cubic crystals and {0001} faces of hcp crystals would also have
this symmetry were it not for the second layer. The crystal field provides
a binding-energy difference between those sites directly over atoms in the
second layer (hcp sites) and the other half of the sites (fcc sites). This
"staggered field" is expected to be small from solid-state experience.2
From Sect.11.2.4 we recall that "well away" from Tc we can neglect this
splitting. ’

while the honeycomb lattice has a triangular Bravais net, the two-site
basis complicates the analysis. It turns out {11.30c] that the two-el ement
star with Q's pointing to opposite vertices no longer satisfies the group
theoretic expression of the Lifshitz condition.

There is, however, a new rich situation having the three-component star.
The free energy has the extra term w X?zl w?. The wi's are not just the
p(Q)'s, but correspond to a 3-d (spin) vector. The extra term provides cu-
bic (truly, this time!) anisotropy. For w positive, the six faces of the
spin cube are favored. The adatoms form a (2x 1) structure, occupying alter
nate rows in one of the three principal directions (for a total of six pos-
sible states). The transition has been recently shown to always be first
order [11.39]. For w negative, eight concerns of the spin cube are favored.
This case is discussed at the end of Sect.11.5.

[

2 We expect Ej to be comparable to the stacking fault energy per atom for
the substrate. This energy is well known to be small, on the order of ter
of meV, and can vary by about an order of magnitude among metals [11.38]
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11.3.5 Percolation

When all the Ei's of an overlayer are repulsive, the onset of long-range order
occurs at roughly the same coverage for a wide range of temperatures (cf.

R = 0 curve [11.14] in Fig.10.1). BINDER and LANDAU [11.14b] noticed that
this coverage can be related to a (site-)percolation threshold: We imagine
small planar objects with size determined by the area excluded on the lat-
tice by repulsive Eilﬁf These objects are placed at random (but without over-
lap) on lattice sites. A cluster is defined as a set of these touching one
another. As more of these objects are deposited, the size of the largest
cluster starts to grow rapidly and suddenly girds the lattice (via periodic
boundary conditions). In an infinite system, we say that the mean size of
finite clusters diverges at a critical coverage 0., the percolation thres-
hold.

Percolation has received much attention over recent years (a comprehensive
review is in [11.401, also [11.41]). In spite of the absence of a Hamil-
tonian or a partition function [11.41c], it has been possible to draw analo-
gies between functions describing the percolation problem and those describ-
ing a ferromagnet. Specifically, the mean size of finite clusters corres-
ponds to the (zero-field) susceptibility, the mean number of clusters to the
free energy, the fraction of sites in an infinitely large cluster ("perco-
lation probability") to the magnetization, and the pair connectedness to the
pair correlation function. The analogue of t is 6. = 0. Following (11.1),
we can define critical exponents. The percolation problem has been shown to
correspond to the one-state Potts model {11.41], which has conjectured ex-
ponents [11.24b] v = 4/3, 8 = 5/36; thus, with the scaling equation (11.2),
a = -2/3, and y = 43/18. It s not yet clear how fruitful such insights will
prove to be for chemisorbed atoms .

11.4 LEED on Single Crystal Faces

11.4.1 Measurement of Exponents

In the remainder of this review, we shall specialize on the investigation of
chemisorbed atoms on faces of metallic single crystals using LEED. Since it
interacts strongly with matter, LEED is a natural probe of surface phenomena.
There is no need for the enormous nsurface" of exfoliated graphite required
for neutron or (to date) X-ray scattering. Its resolution is at present as
good as neutrons [11*42], and some new apparatuses are or will soon be ca-
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pable of about a two-orders-of-magni tude improvement [11.43]. The technique
js convenient. Most surface science laboratories have the needed equipments
there is no need to suffer the travails involved in experiments at a large
multiuser facility. For over a decade, LEED has been used primarily for prob~
ing interatomc distances. This procedure involves an arduous effort due to
the pofent effect of multiple scattering {11.44]1. In studying critical ex-
ponents, we use LEED for what it does best and most naturally: moni toring
order on the surface. Many of the distinctions between chemisorption and
physisorption were discussed in Sect.11.2.1. Because of the far greater
binding energies, it is much easier to do LEED, making the delicate proce-
dures developed by FAIN (Chap.9) unneccessary. Moreover, the greater strength
of interactions leads to Tc's higher by half an order of magnitude; the size
of the critical region, which is linked to reduced temperature, is scaled up
accordingly in absolute température. ;

In LEED, in the kinematic 1imit, the intensity measured is the Fourier
transform of the two-site correlation function,

I(k) = 3{<nipj>}

=g{<[ni - <"i>]["j - <nj>]> + <ni><"j>) (11.19)

where the second term in braces is the product of the mean occupation of
two sites and the first is the correlation of fluctuations (about these
means) for the sites. Recalling (11.11), we note that for ordered overlayers
we are interested in n. exp(iQ*R.) rather than just nye Second, we must ac-
count for the fact that adatoms bind only to a particular Jattice of sites
with an associated reciprocal lattice. Third, the Fourier transform of the
2-d correlation function is Lorentzian. Thus, the intensity due to the over-
layer is [11.20,45] ‘
x(Qg + 3 T)

I(k) = — + A8
Bs’g (@ +g-k+e 27 kgt

1t]%Pa(-t) (11.20)

Thus, the LEED beams of interest are those at Q and its star, and all others
related to them by reciprocal lattice vectors;-ln non- Bravais cases, the
situation may be more complicated, e.g., glide planes can eliminate beams
(Chap.9). We reemphasize that the q's are those due to the adsorption sites,
not the atoms of the top layer of the substrate..For bridge sites on a square
1atticg, the lattices differ by Y2 in lattice constant and 45° in orientation
For bridge sites on a triangular lattice or centered sites on a honeycomb

net, even the symmetries are different (Kagomé and triangular, respectively).




268

mze
~
TeeTe

!5 TsTe
Z S * ﬁ “
INSTRUMENT RESPONSE _y
FUNCTION t T2t

'V

Fig.11.5. Schematic of adlayer-
. T>»Te Tnduced LEED spots vs k at various

temperatures

The astute LEED practitioner may recognize that these beams of interest are
just those that PARK long ago noted would be broadened by interference between
antiphase domains [11.46]). The vectors connecting sites across the antiphase
boundary are seen to be primitive vectors of the lattice of adsorption sites.
Thus, in many cases, observation merely of which beams are broadened by cri-
tical scattering can identify the binding site and hence, in conjunction with
the adlayer-induced spot pattern, predict the universality class of the tran-
sition.

Recalling (11.1) we see that the amplitude of the critical scattering
goes as t ¥ while its width goes as t¥, as illustrated in Fig.11.5. As also
shown, analysis of this behavior is confounded by the LEED instrument re-
sponse function, which is convoluted with the jdeal scattering of (11.20) in
any measured profile. This function can be obtained from a 1ow-temperature
beam profile, where critical scattering is jnsignificant. Our procedure for
removing the instrumental effects will be discussed in the next section, in
conjunction with our case study [11.19,47]1. (A preliminary account with some
jnaccuracies in the exponent analysis is in [11.6b].)

Heretofore many researchers, particularly those using weakly interacting
probes (X-rays or neutrons), suspected that the strong interactions of elec-
trons would preclude their use in studying critical eiponents. The fear was
that in addition to <n;n,> one would unavoidably collect multisite corre-
lations like ‘"i"j"k" Fortunately, the atomic scattering factor for light
atoms. below 50 eV is peaked in the backward and (more strongly) in the for-
ward directions; with 'very little probability for right-angle scattering

“e s
b
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{11.481. If the incident beam is oriented normal to the surface, an electron
is likely after (or before) scattering off an adatom to strike substrate atoms
below the adatom. This sort of process leads to the multiple scattering that
makes LEED I-V analysis so complicated. A process involving scattering off one
adatom, then a second with subsequent escape requires a right-angle scatter-
ing followed by (for low-order spots) another nearly right-angle scattering.
Such processes, which introduce the feared multiadatom correlations, are
highly improbable and hence of very small ambfituééQﬂThe effects of the pre-
ceding sort of process do not vary significantly near'Tc since the substrate
does not participate in the transition; accordingly, any modulation of the
beam profile can be removed more or less in the pursuit of the known general
form of the critical behavior.

11.4.2 Surface Defects

Finally, we discuss the nonideal nature of metallic crystal surfaces used in
chemisorption. This problem involves not just the finite size of plateaus
but also defects thereon. This sort of difficulty may well be intrinsically
more stubborn here than in physisorption because the same chemical aspects
of a surface promoting strong adsorption bonds renders it vulnerable to de-
fects or distortions; the strong interplane bonding of planar materials 1ike
graphite make them poor chemisorbers [11.49].

The effect of the finite extent of perfectly flat areas on the surface is
to raise Tc and to round (blur) the transition. Both effects are proportional
to L'l/“, where L is the linear dimension of a flat region; this dependence
is useful for Monte Carlo but not of much use to the experimentalist unless
the surface can be systematically damaged. The typical size of L is
100-200 R in good samples; once § approaches this size, the effects become
jmportant. Note that probing of £ is also limited by the instrument response
function, which can be expressed in terms of a real-space window function
through which the lattice is scanned [11.50). With current instruments, the
size of this window is roughly of the same size as L. Hence, recent improve-
ments by orders of magnitude in the window width [11.43] may not be too help-
ful until better surfaces are available.

Local defects can be discussed in terms of their effect on the lattice
gas Hamiltonian. If they create variations in the pair interactions, they
couple to the energy density |tl. If o is nonnegative, they will beome impor
tant, with effects noticeable for |t| less than of order xI/“, where x is
the impurity concentration {11.511. The transition may then be either
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smeared or sharp but with crossover to a new set of exponents associated
with the impure system. The crossover exponent is a. The unusually large
values of « for the three- and four-state Potts models will produce un-
usually large t ranges in which the effects of defects should be observable.
If defects modify the single-site energies, the effect is more severe. By
causing a particular site to be occupied or vacant, they can produce shifts
and rounding comparable to finite size effects. Moreoever, they can, by lo-
cally changing the stability of one sublattice versus the others, change the
nature of the transition [11.52]. In fact, in a recent study of a random-
field Ising model, they were found to destroy order [11.53]. Further discus-
sion of defects and finite size appeared in a recent review [11.8]; an
earlier review presented renormalization group results [11.54].

Very recent work combining finite size scaling and Monte Carlo has illu-
strated how a small impurity concentration can dramatically change critical
exponents. In studying the Baxter-Wu model (three-spin interaction on a tri-
angular lattice [11.4b]. NOVOTNY and LANDAU [11.55] found that a small con-
centration of quenched impurities (viz., randomly omitted spins) changed the
exponents v, v, and a from four-state Potts values to 1.00 + 0.07, 1.95 ¢ 0.08,
and g 0, respectively, while producing no detectable change in 8. The effect
of defects on lattice systems js under active theoretical investigation. There
is naturally the difficulty of drawing correspondences between the sorts of
defects a theoretician can readily handle to the kinds encountered in real
systems, but many of the effects are expected to be independent of details
[11.53). In some cases, the defects may even change the effective dimension-
ality, leading to apparent violations of the [hyperlscaling laws of (11.2)
{11.53].

11.5 Case Study: O/Ni{111}

Considering the vast number of ordered chemisorbed patterns [11.32], one
would expect to have little difficulty obtaining realizations of nearly
all the entries in Table 11.1. Life is not so simple. In many cases, the
substrates are {100} bcc faces, which have been found to undergo spontan-
eous reconstructions and thus do not provide a passive net of sites (for
recent reviews and references see [11.56]). In other cases, the transitions
turned out to be first order.

For the system c(2x2) Na on Ni{100}, the adlayer-induced spot intensity
{vs T) was fit to the_pNSAGER solution [11.3), although no attempt was made

2n

to investigate exponents explicitly ([11.57]), where a note added in proof
raised the possibility that contaminants caused. the order-disorder behavior).
while such behavior is encouraging, a similar fit had been obtained earlier
for c(2x2)H or D on W{100}(11.58], a complicated substrate as just noted.
Better evidence is needed to confirm “"simple" 2-d Ising‘behavior. Recently,
the system c(2x2) O on Ni{100} was investigated [11.59]. Unfortunately,

at the temperature at which the 0 disordered, it was‘founq to dissolve into
the bulk. For the system (/3 x /3)R30° CO on Ru{0001}, a comparable problem
arises: the CO desorbs as it disorders {11.60]. In either case these behaviors
preclude the observation of critical scattering. above Tc' It is not clear

how these complications affect critical scattering below TC, which in any
case is very difficult to isolate. Perhaps eventually it will give some in-
sight into the fluctuations which lead to disordering; but it is not a priori
clear whether equilibrium is achievable or what is being held constant (not
g, maybe u); these problems should not be tackled until more nearly ideal
systems are well understood.

The remainder of this section will be devoted to work at Maryland, in-
vestigating the order-disorder transition of p(2x2) 0 on Ni{111} [11.19,
47,61,62]. This study is the first to extract critical exponents, 1) with
LEED and also 2) for a chemisorption.system. The phase diagram and adsorption
sites were described in Chap.lO.Abnce again, the subtle vertical displace-
ments [11.63) of the three Ni nearest neighbors of each 0 do not remove the
2-d nature of the transition but merely rather passively alters the lateral
interactions.

The experiments were carried out in a UHV bell jar at total base pres-
sures below 10=10 torr. A quadrupole mass analyzer.was used to monitor the
composition of gases in the chamber. A standard. four-grid LEED optics
system was used for all other measurements. Thus the equipment is available
in any modern surface physics laboratory. The Ni samples were 99.995% pure.
They were zone refined to eliminate mosaic spread and oriented to the <111>
direction to better than 20 min. Measurements could -be made down to 100 K.
With a thermocouple-driven feedback circuit controlling -the sample heater,
temperature stability of #0.01 K was achieved. For further details of the
apparatus and of sample preparation, see KORTAN.and PARK [11.621.

A number of checks were performed to ascertain that the system was in-
deed on closed 2-d lattice gas. Monitoring the Auger -peak height versus
T showed that the oxygen did stay on the surface until 500 K [Ref.11.62,
Fig.1]. At higher T it started to leave the Surface;igince no desorption
was found, it must have dissolved into the bulk.lTofsdpport the idea that
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the oxygen adsorbed in the same kind of bonding state regardless of whether
the overlayer was ordered, the adsorption-induced work function change A¢
(along with Auger intensity) were monitored versus exposure [Ref.11.62, Fig.
2]. Translated into A¢ versus coverage, one finds that A¢ increases linearly
up to 1/4 monolayer, not being affected by the onset of order near 1/4
(Ref.11.62, Fig.3].

The hallmark of a §Fcond—order transition as observed in LEED was described
in Sect.10.3.3 (also [Ref.11.62,Fig.4]1). The intensity of the adlayer-induced
spot drops off smoothly from a plateau as T increases. The width of the spot
seems constant out to about the temperature at which the intensity reaches
half its lowest value or has its point of inflection; then it increases ra-
pidly with increasing temperatures. This broadening, due to critical scatter-
ing [cf. (11.20) and Fig.11.5], also occurs below T, but is overshadowed in
a casual observation by the Laue scattering (broadened by the instrument).
The first-order transition of the (/3 x /§)R30° overlayer is strikingly dif-
ferent: the beam essentially disappears above the transition and the inten-
sity plummets [Ref.11.62,Fig.5]. Moreover, an intensity -versus- T plot shows
strong hysteresis {Ref.11.62,Fig.6]. Operationally, life is not so clear-cut,
While some of the intensity above Tc in [Ref.11.62,Fig.4] is due to critical
scattering, much or most comes from finite s*ze effects of the substrate and
the LEED instrument response. Apparent hysteresis can be produced at a se-
cond-order transition by cycling T so fast that equilibrium is not achieved;
at first-order transitions the hysteresis can in principal be eliminated by
extremely slow cycling. Finally, for low-coverage first-order transitions due
to island dissolution, there is also apparent beam broadening with increasing
T as the island size shrinks -[11.64]. (Here, however, the drop in intensity T
is greatly stretched out and different in shape [11.65]). These practical
problems are reminiscent of similar difficulties in Monte Carlo described in
Chap.10.

In this experiment, the beam intensity was monitored versus k along a cut
through an adlayer-induced spot. This novel measurement was achieved by pro-
jecting a real image of the diffraction beam, via an optical system outside
the vacuum chamber, onto the aperture (1°) of a photon counter. The sweep
was achieved by varying the incident electron energy rather than the position
of the detector. To minimize extraneous I-V variations, the incident energy
at the spot center was picked to give’a maximum in the I-V plot. A check
[11.47b] indicated that these effects were well within our level of uncer-
tainty. Sixty profiles were recorded between 323 and 450 K. Figure 11.6 il-
Justrates early samﬁ?es of such profiles, far noisier than used in the
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Fig.11.6. Angular profiles of an adlayer-induced LEED beam at several tem-

peratures near T.. Smoother versions of such profiles are the raw data for
critical exponen% analysis [11.61la)

analyses for exponents. Obviously the raw data are not very dramatic. In par-
ticular, it is hard to those locate Tc during the experiment. Preliminary pro
cessing included subtracting the uniform background due to thermal diffuse
scattering and dividing out the effect of the Debye-Waller factor, as deter-
mined from the low-T dependence of the beam center.

The lowest T profile, more than 100 K below Tc’ was used as the instrument
response function. Two schemes were used to account for it. In the first, it
was deconvoluted from the higher T profiles by dividing their 2-d Fourier
transforms by its transform. From (11.20), we see that after this division
the transtormed profiles consist of a flat background proportional to A|t|ZB
and a peak at the origin (and at an array of real space points) with width
proportional to 5'2 and area proportional to x. Operationally, there is much
noise in the flat region due to uncertainty in the response function. The
second approach, a fit scheme [11.66], takes advantage of (11.20) from the
outset. That equation defines three tempefature-dependent parameters which
are determined (for each T) by convoluting with the instrument response func-
tion and optimizing the fit to the profile (at that T). Then each of these
parameters are fit, again using a nonlinear least-squares routine, to the
form of (11.3) where G(T) is the height of the delta-function contribution,
the inverse amplitude of the Lorentzian (xil), or the width of the Lorentziar
the resulting exponents A are 28, y, and v, respectively. While (11.3) in-
volves a three-parameter fit, it is sometimes desirable to set Tc and fit




Fig.11.7. Analysis of the long-

range-order intensity (at the

center of the adlayer-induced

beam) to determine the exponent

g. The fitting range [120°C,

pir % o 6o 147°C] contains 7 data points
Temperature (°C) f11.19]

just A and A. The fitting scheme is the more expensive (time-consuming)
method, but it is superior above Tc in that it avoids the persistent trun-
cation oscillations of the first. Below TC, the two methods give consistent
results for g, while neither does well for the other two exponents because
of noise after subtracting the long-range-order part. The choice of tem-
perature range is important and nontrivial. The range should be as large
as possible to enhance fitting statistics. It is limited at large {t] by
corrections to scaling and at small |t] by finite size effects and incom-
plete deconvolution. In the present study, 0.015 < |t} < 0.06 was used.

Plots of x'l {11.47a] and of width [11.47b) versus T for T > T have
already appeared in the literature. Both give Tc's slightly below 154°C.
Due to overestimating Tc during the experiment (Fig.11.6), there were fewer
data points below Tc. The analysis for 8 gave a Tc around 156°C. After re-
analysis with T, set at 154°Cy g changed from 016 to 0.14, which seemed
more trustworthy. Figure 11.7 illustrates this final analysis. We emphasize
the sensitivity of the exponents to the value of TC and hence the care that
is required in the analysis (in an early crude analysis [11.47cl, a Tc of
1567°C was estimated and a 8 of 0.2 resulted ).

A sunmary of the deduced exponents is presented in Table 11.2, along
with the numbers for the Ising and the four-state Potts models. As noted
in Chap.10, the expectation had been that the transition would fall into
the four-state Potts universality class. This belief was based on the idea
that the (2x2) pattern disordered into a triangular array of sites rather
than a honeycomb array, i.e., into only one of the two kinds of three-fold
sites. Monte Carlo results [11.19,47b] and fragmentary results on Heisenberg
models with cubic anisotropy [11.67] suggested that the honeycomb cases ex-
hibited only first-order transitions. The variety of complications discussed
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Table 11.2. Exponent results, with model values for comparison (n.m.: not
measured)

Exponent Magnetic measurable Ising 4-state potts 0(21(1;§}

p b
a specific heat 0 . 2/3 n.m.
8 Magnetization 1/8 1/12 0.14 + 0.02
Y Susceptibility 7/4 /6 1.9 £ 0.2
v Correlation length 1 2/3 0.94 £ 0.1

in Sect.11.2 were considered to try to understand the Ising-1ike exponents.
The possibility of Fisher renormalization which would raise B, v» V by
1- u)'l, j.e., by a factor of 3 for four-stateiPotts was dismissed because
the coverage was 1/4, a symmetry value for which'the line of constant chemi-
cal potential. would have no kink at T, in a T -versus- 8 plot (cf. Fig.11.3
with Fig.10.12). The effect of logarithmic corrections Lcf. (11.5)] were
evaluated in the asymptotic Timit (Jt] = 0), in which the constant term is
neglected. This assumption was required since the data did not warrant a four-
parameter nonlinear least-squares fit. Explicitly, effective exponents were
predicted by optimizing fits of |t|"eff over the experimental thermal range
to the form |t|k(—1n|t|)1, where T = -1/3, 1/2, and 3/4 [11.21,68] for
x = 1/12, -2/3, and -7/6; the resulting xeff's were 0.122, -0.80, and -1.37,
respectively, All were thus substantially closer to the experimental numbers,
but not by enough, particulér]y for y. The effect of random surface defects
or steps [11.69] might reduce the degrees of freedom for adatom fluctuations
and thereby generate Ising~1ike behavior [11.701. The work {11.55] on the im-
pure Baxter-Wu model, cited at the end of Sect.11.4.2, found shifts of v and
y to values consistent with the experimental results in Table 11.2. No corres-
ponding shift of g could be detected. It is a]sb not clear how such impurities
would translate into the (2x2) lattice gas picture.

Another plausible explanation was suggested by SCHICK [11.71]. If EO is
small [11.381, so that both kinds of three-fold sites are occupied, the
(2x 2) overlayer can be mapped into a Heisenberg model with cubic anisotropy,
corners preferred. Each singly occupied cei] of 8 sites in the overlayer
goes into one site having a 3-d spin that can point.to the 8 corners of a
cube (Sa = *} for a = X,Y¥,z). The four fcc.or hcp sites go to the four corners
having the same value of SxSySz (i.e.,%1); opposing vertices on the honey-
comb go to (body-diagonally) opposing corners (Fig.11.8). This anisotropic
Heisenberg system is a special case of the generaljzeﬁ.Ashkin-Teller'model
studied very recently by GREST and WIDOM [11.721; it contains a quadratic




Fiq.11.8. Correspondence between sites on a honeycomb 1attice'(with possible
weak-energy differences between fcc and hcp sites) and the Heisenberg model
with cubic anisotropy, corners preferred

term K2 §i '§j plus a quartic term with coefficient K4, both terms coupling
nearest neighbors. For K4 = 0, the three spin directions decouple, each
having Ising character. This behavior persists for small negative K4. For
K4 > 0, the model predicts fi rst-order transitions. With a prefacing trans-
formation ([11.36,73], in the latter identical results were obtained by
matching the low-energy excitations of the two models), the lattice gas
interactions can be related to K2 and Ka. This model predicts that, if the
experiment could go to smaller |t], one would observe crossover behavior to
the four-state Potts model with g proportional to EO and ¢ being 13/8
[11.71]. Very preliminary results do not support this viewpoint as the ex-
planation [11.74].

11.6 Conclusions and Exhortations

While there has been dramatic progress during the last decade in both the
theory of 2-d phase transitions and in surface physics, close interaction
between theé two has been a relatively recent occurrence, particularly in the
case of chemisorbed atoms. In physisorption the lateral interactions are
far better characterized, and graphitic surfaces enabled study by tradi-
tional diffraction probes. Recent work on a complicated puzzle provided by
the chemisorbed overlayer 0 on Ni{lll} suggests that complete characteriz-
ation of such systems will require a large arsenal of techniques. It is par-
ticularly remarkable that a result from theoretical study of an abstract
model was needed to provide the clue to obtaining a set of lateral interac-
tions that adequateiy‘bxplain alf qualitative features. In short, chemisorption

specialists cannot afford to be ignorant of new results in the theory of
2-d critical phenomena; correspondingly abstract: theorists may find it
gratifying to find that some models have realizations in the world, with
complications that provide intriguing challenges.

For the 2-d statistical mechanic, many goals suggest themselves. Calcu~
lation of nonuniversal properties in terms of lattice gas parameters is cru-
cial for a complete understanding of chemisorption systems. Detailed pic-
tures of the correlation function, the size of critical region and the
limiting corrections, and crossover behavior come readily to mind. The role
of defects and finite plateaus also needs further attention; particularly
jmportant is some attempt to treat the actual defects, not just those that
arise naturally in models. .

Chemisorption experimentalists must identify more closed (no bulk ab-
sorption) systems and thoroughly characterize them. Critical exponents
should be obtained at high- and low-symmetry regimes. Adlayer-induced spots
should be examined above as well as below T_. Efforts to probe smalier 1t}
require both better LEED instruments (now becoming available) and better
surfaces (a more difficult prospect). Close-packed surfaces should provide
realizations of the three- and four-state Potts models [for {111} fcc or
{0001} hcp faces] or the anisotropic XY model [for {110} bcc]. 1t would seem
experience should be acquired on the former before tackling the less easily
predictable latter. Also, a good c(2x2) layer on a square lattice would
permit comparisons with the most tractable theoretical model.

An important role of the surface theorist is-to promote meaningful com-
munication between the two preceding groups. Another is to advance our
understanding of the interactions between adatoms, and between defects and
adatdms, from a solid-state or chemical vantage. Such knowledge is vital to
simplify the parameter set with which one approaches 2-d simulation and to
gauge whether the output is physically sensible.

It is "a magnificant thing to make clearer and clearer to oneself some-
thing that seemed at first to be ... totally confused [11.75].
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