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! We present a Monte Carlo study of the adlayer-induced LEED beams in a representative
| order—disorder transition. Calculations of the widths of fractional order beams indicate that,

4 as seen in recent experimental work on the O/Ni(111) system, these widths rise sharply and
suddenly above T,. Furthermore the slope of this rise provides a sensitive probe of the
adatom-adatom interactions. The increase in the width results from the existence of ordered
domains above T., and has not been previously discussed since prior calculations have
concentrated on beam intensities. We further derive a functional relation between the window
approach used in simulations of order—disorder transitions and the instrument response
function approach of the experimentalist, to detail the effect of the LEED apparatus on the
profile of the extra beams.

PACS numbers: 61.14.Hg, 64.60.Cn, 82.65.My, 02.50.Ng

I. INTRODUCTION

The adsorption of simple gases on single-crystal metal surfaces
frequently takes the form of ordered two-dimensional crystals
in registry! with the substrate net. Until recently, the emphasis
in low-energy electron diffraction (LEED) studies of ad-
sorption has been to deduce the structural details of these static
ordered overlayers. Such structures often exhibit order—dis-
order transitions,2 and there has been increasing interest in
using LEED to follow these phase changes in the adsorbed
layers.

Since the adatoms are confined to an array of identical sites, -

a lattice gas model is commonly adopted. This model gener-
ally requires use of Monte Carlo techniques to make progress.
The most straightforward specific problem is a square lattice
substrate with a ¢(2 X 2) overlayer produced by nearest-
neighbor repulsions. In the solution it is not enough to char-
acterize the nature of the phase transition, say by finding the
temperature dependence of the pair correlation function. One
must also consider the limitations of the LEED instrument
to determine what information is accessible to measure-
ments.

Doyen et al.3 have broached these problems and shown
their importance. Their early treatment, however, obscures
much of the physics of the disordering process and neglects
the shape of the adlayer-induced LEED spots, with unsatis-
factory consequences. In this paper we re-examine their ap-
proach. In Sec. I, we show for the first time how the well-
known instrument response function approach used by ex-
perimentalists relates to the window function or lattice
truncation viewpoint of theorists. This understanding is crucial
to obtaining quantitative information from LEED spots.
Section III recounts the possible mechanisms underpinning
the overlayer disordering process and discusses how the in-
strument response limits one’s ability to distinguish between
them experimentally. Application is made to Kortans new
data for O/Ni(111).4 The chief conclusion is that calculating
the LEED intensity only at the half-order points, i.e., the exact
center of the adlayer-induced spots, misses much of the

478 J. Vac. Sci. Technol., 16(2), Mar./Apr. 1979

0022-5355/79/020478-05$01.00

physics underlying spot broadening and splitting. In the limit
of a “perfect” instrument, such a calcilation at the (¥ V)
point reduces to the famous Onsager curve for the magneti-
zation of the zero-field Ising model; this approach gives no
information about the antiphase ordered islands that exist
above T, and are responsible for the broadening and split-
ting.5 In Sec. IV we report our own Monte Carlo results, em-
phasizing the need to perform calculationis over a substantial
region of the surface Brillouin zone surrounding the LEED
spot. As others recently recognized,® careful analysis of
extra-spot widths provides a practical means to probe inter-
adatom interactions.

Il. RELATIONSHIP BETWEEN THE LEED
INSTRUMENT RESPONSE FUNCTION AND THE
LATTICE WINDOW FUNCTION |

A variety of factors, including finite source and detector
extension, beam nonmonochromaticity and divergence, limit
the range over which a LEED instrument can probe corre-
Jations.” This range is typically 40-150 A.

Quantitatively, one introduces the instrument response

function, T(k), defined by:
Imeas(k) = T(k) * Io(k), (1)

where * denotes the convolution product:

g1(x) * ga(£x) = [dygi(y)gel£(x — y)],

Io(k) is the diffracted intensity at momentum transfer k, and
I meas(k) is the intensity measured by the instrument. T de-
pends on other parameters such as the incidence angle, energy
of electrons, and the indices of the observed beam.

In calculations of the intensity patterns from model systems,
the effect of the instrument is introduced crudely by de-
scribing the measured intensity as arising from a region of the
surface of some characteristic size,389 which is equivalent to
introducing a beam coherence zone. We derive the equation
relating this zone to the instrument response function defined
in Eq. (1).
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The intensity pattern that would be seen by a perfect in-
strument is the Fourier transform of the convolution square
of the surface!® '

Io(k) = F{&(r) * £(=1)}
= 1/Ver f_ " dre~tele(n) « -1 @)

where £(r) denotes the surface scattering function, e.g., a
net of delta functions. We then obtain the measured intensity
using Eq. (1).

Using a finite lattice to model the instrumental limitations
is equivalent to truncating the lattice by multiplying £ (r) by
a window function ¢(r): ‘

£,(r) = c(r)€(r). (3)
The truncated lattice is typically square, i.e. Ma X Ma, where

a is the lattice constant. This window function is, explic-
itly,
1 |re|and|ry| < Ma/2
o= Il <
0 otherwise,
The intensity arising from this truncated lattice alone is

Icalc(k) = ‘7{8:(1’)”2 (5)

There is no functional relationship between T(k) in Eq. (1)
and ¢(r) implicitly in Eq. (5) that will allow Icalc = Imeas Since
no single part of the lattice gives full information on the whole.
However, ¢(r) can be treated as a movable window which can
scan the whole lattice. By averaging over all placements of
the center, ro, of the window, we obtain

Leale = S dro| F€(r)e(r — rol}|>. (6)
The convolution theorem gives
Leale = SdroF{[£(r)e(r = ro)] * [£(=r)e(=r + ro)}}. (7)
After changing the order of integration, we eventually find
Leale = Ffdyl(r + y)e(y)
X fdroc(r + y — ro)e(y = ro)}. (8)

A change of variables and another application of the convo-
Jution theorem finally yield

Icalc(k) = IO(k) * Tcalc(k), (9)

(4)

where
Teate k) = Fle(r) * c(—n)} = | Fle(D)}| 9)

Obviously, the instrument response function is positive defi-
nite, as expected on physical grounds. Comparison of Eq. (9)
and (1) indicates that the instrument function is the Fourier
transform of the convolution square of the window function.
For example the square window of Eq. (4) gives an instrument

response of

sin2(Mak,/2)sin® (Mak,/2)
(kx/ 2)(ky/ 2)? '

Note, however, that our derivation holds for any window

function not just the square box of Eq. (4). We note that this

approach would be inappropriate for simulation studies of
adatom island shape, which is probed by beam shape,18 since

Tcalc(lc_) = (10)
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T'ale is 1Ot circularly symmetric. Furthermore due to the
sharp truncation, T clc has nonphysical oscillations which give
rise to side lobes on sharp beams.

In short, Eq. (9) relates quantitatively and uniquely the
instrument response, which can be measured with consider-
able precision,!! to a window through which the lattice is
viewed. The complete equivalency of these two viewpoints
has the important consequence of giving an explicit solution
to the problem of the (real-space) range over which a LEED
instrument with known response function can probe the ad-
atom pair correlation function. In other words, the many
uncertainties underlying a LEED experiment can be folded
into one k-dependent instrument response function which can
be precisely measured. The Fourier transform of this function,
called the transfer function, has no special physical signifi-
cance, and the transfer [function] width is certainly not the
limit of the range of the LEED measurement, as has some-
times been implied. Rather, one must determine the unique
window function whose convolution square is the transfer
function, the deconvolution being a well-defined mathe-
matical procedure in this case.}2 It is this window function
which multiplies the lattice scattering function to determine
the effective scattering function one actually measures. Thus,
its specific shape (width, tails, azimuthal dependence, etc.)
must be well understood to obtain detailed quantitative in-
formation from LEED spots. We emphasize that the window
function encompasses all the sources of “incoherence” in the
experiment and that it is thus fruitless to speak (separately)
of some huge unmeasurable electron coherence width over
which the lattice is in principle probed, with subsequent
blurring by the specific instrument. As specific examples, if
T (in one direction in k-space) is a Gaussian of width W, the
associated window function (in real space) is indeed also a
Gaussian but of width 1/4/2 W, rather than the usually-
quoted 1/W. If T(k) is a Lorentzian of width W, then ¢(x) is
the modified Bessel function Ko(W |x|), which has width
1/W. These numerical details must be included in quantita-
tive measurements of island size and of substrate perfection.
In the general case the second moment of the convolution
square of an even, normalized function is twice the second
moment of the function itself. On this basis, the width of the
window function will always be 1/4/2 of the width of the
Fourier transform of the instrument response function.

ll. ORDER-DISORDER TRANSITIONS IN
LATTICE GAS MODELS

The extra LEED beams produced by adatom superlattices
display a variety of changes, including broadening, splitting,
and decreasing intensity, as the system is heated through its
adlayer order—disorder transition. These changes constitute
a sensitive probe of the disordering process, since the various
changes may be associated with various disorder types, but
careful treatment of the LEED instrument is required. We
assume a lattice gas model and for specificity consider a c(2
X 2) overlayer on a square net face.

In Bragg-Williams disorder, or disorder of the first kind,
the disorder takes the form of point imperfections. The surface
may be thought of as a checkerboard with say the “black
squares” being preferred at T = 0. At finite temperature,
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however, a few of the “red squares” are occupied due to
random thermal motion. Estrup'3 showed that as the order
parameter, &, decreases, the width of the half-order peak is
unchanged while its intensity decreases as the square of a and
a uniform background increases as (1 — o2). Unless a = 0,
long-range order is preserved.

In disorder of the second kind, long-range order is lost, but
considerable short-range order persists in the form of ordered
domains. With increasing disorder, the average size of the
domains decreases, and the extra beams broaden.

In a subclassification of disorder of the second kind, the
domains have a narrow distribution of sizes. In treating this
situation Pendry!4 stated incorrectly that the extra LEED
beams are extinguished due to phase cancellation when the
size of the domains is such that many fit into the coherence
sone. Houston and Park? have shown (in one dimension) that
in fact the extra beams are split by 27/Noa 15 where Noa is the
average domain size: the width of the split beams is inversely
proportional to the width of the domain size distribution.
(More arcane types of adatom disorder involve multiple ad-
layers!® or substrate reconstruction'”.)

The LEED instrument confuses these classifications in two_
ways. If the instrument response function dominates the width
of the extra beams, the beam broadening will be difficult to
detect; the experimenter then cannot distinguish between
disorders of the first and second kind. If the splitting in the
subclass of disorder of the second kind is small, it will be
smeared out by convolution with the instrument response.
Both effects are due to the limited range over which corre-
lations are probed.

Moreover, these types of disorder are ideal in that a given
transition may show successively, and perhaps even simul-
taneously if the surface is very nonuniform, evidence for
different sorts of disorder. For example Kortan et al. have
obtained new data for O/Ni(111), which exhibits a reversible
order—disorder transition, with T ~ 400 K.4 The break in the
width plot indicates, since up to that point no increase in beam
width above the minimum width determined by the instru-
ment has occurred, that the transition begins with Bragg-
Williams disorder, and near T (the inflection point of the
intensity plot) changes to disorder of the second type with
concomitant beam broadening. We expect this rather sharp
change in the type of disordering to be an important probe
of the interadatom interactions, since the formation of small
ordered domains must depend strongly on the sign and
magnitude of the next nearest neighbor and possibly on
three-adatom interactions.!8

IV. MONTE CARLO RESULTS

We have begun a series of Monte Carlo calculations to
study, via simulated LEED patterns, the participation of
different types of disorder in a given transition. Thus we can
probe the underlying role of the interadatom interactions. Our
routine is in many respects similar to that of others.® However
to compare to experimental measurements of half-order beam
widths it is not sufficient to calculate the intensity just at the
half-order point as previously done.389 Rather we calculate
the intensity pattern in the surface Brillouin zone, along the
(11) and sometimes the (10) directions passing through the
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half-order point (the center of the first quadrant for our ¢(2
X 2) structures), thereby also obtaining information on the
beam profiles. For equilibration diagnostic parameters we use
the hopping rate, the ‘nearest-neighbor and next-nearest-
neighbor correlation functions, the calculated intensity at the
half-order point, and the total number of adatom hops.

We use relation Eq. (9) to determine an appropriate lattice
size. The common choice of a 30 X 30 site array corresponds
to a lattice with the dimensions of the window width, ~ 100
A. This choice is not adequate. A realistic instrument response
does not correspond to a window which cuts off precipitously
at 100 A; rather there are tails which allow information to be
obtained over somewhat longer range, albeit with decreasing
signal-to-noise. We thus chose a 50 X 50 site array and
broadened with a Gaussian to obtain a window width of 100
A. This treatment results in a realistic instrument response
function (of controllable width) which also avoids nonphysical
truncation-induced oscillations. There are also statistical finite-
size and boundary-condition effects; these are substantially
reduced in our larger lattice.20

Doyen et al. claimed that random lattices equilibrate in the
time required for each adatom to make five hops.3 We find
that longer times, typically 15 hops/adatom, are necessary
near T, (see Fig. 1). Our various diagnostic parameters
showed fluctuations on a time scale that was the time required
for each adatom to make roughly five hops (Fig. 1). This ob-
servation establishes the time scale over which averaging of
the LEED pattern must be performed. We typically allowed
approximately one hop /adatom between calculations of the
diffraction pattern and averaged over five or six such pat-
terns.

Our data was obtained from an initial array that was either
perfectly ordered (annealed) or that had equilibrated at a
lower temperature. This procedure was necessary, since the
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FIG. 1. Example of the equilibration of a half monolayer of adatoms on a
square lattice in the Monte Carlo calculation. The solid line displays the in-
tensity at the half-order point (normalized by the integer-order beam in-
tensity) while the broken line gives the mean number of nearest neighbors
per adatom, which for this coverage and symmetry is eight times the nearest
neighbor pair correlation function. Both are plotted versus two abscissae, the
number of hop attempts per adatom and the actual number of hops made
per adatom. The ratio of actual hops to attempted hops decreases as equi-
librium is approached. The lattice was 50 X 50 sites, at temperature T =
1.08Tc, With Eg/El =—0.3.
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FIG. 2. Intensity of the extra beams in simulated LEED patterns versus
temperature obtained by Monte Carlo calculations. Solid circles: Eo/E1 =
—0.3; open circles: Eg/E1 = 0. These plots give one relation among Te, Ej,
and E,.

width calculations are very sensitive to ‘frozen in” domain
boundaries that frequently occur when a random lattice is
allowed to relax at low temperature, and seems to correspond
to the experimental conditions more closely than the use of
an initially random lattice. Metastable domain walls were also
noted by Williams et al.® They unaccountably chose to omit
such cases from their averages, thus missing the interesting
domain fluctuations near T; their calculated curves conse-
- quently lack the tails of the experimental data above T.
Figure 2 shows the variation of the intensity at the half-
order point as a function of temperature for two different
values of the ratio Eo/E1, where E; and E are the nearest-
and next-nearest-neighbor interactions, respectively. The
coverage is 1/2 and E | is repulsive to give the ¢(2 X 2) struc-
tures. The transition temperature is not well defined for a
finite lattice. Previous workers have used the inflection point
of the half-order intensity curve.2! A more meaningful de-
termination is based on the maximum in the specific heat,
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Fic. 8. Width (FWHM of Gaussian fitted to beam) of the extra beam in
simulated LEED patterns as a function of temperature obtained by Monte
Carlo calculations. Solid circles: Eo/E; = —0.3; open circles: Eo/E; = 0. Note
that temperature is normalized by Te; plots such as these may be used to
determine the ratio Eg/Ej in ‘comparisons with experimental data.
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which corresponds to the inflection point of the internal en-
ergy curve.20 There is, however, a more physical and more
precise method for determining T based on the width of the
LEED beams.

Figure 3 shows the width calculations for the overlayer peak
as a function of T/ T, for the two values of the ratio Ey/E;.
These results show a remarkably sharp break in the beam
width, which is similar to the experimental results (Fig. 4 of
Ref. 4) for O/Ni(111). The break constitutes the more precise
measure of T, since the temperature at which the beam be-
gins to broaden, i.e. the point of the initial deviation of the
width curve from the instrumental widths, coincides with the
vanishing of long-range order (which marks the true transition
point). The transition temperatures obtained in this fashion
are in excellent agreement with those found from statistical
mechanics calculations.??

Since the slope of the width curve above T, is rather sens-
itively dependent on the ratio E o/E1, this measurement to-
gether with a transition temperature measurement (as in Fig.
2) determines Eg as well as E;. Eg can in principle also be
determined from the coverage dependence of T, but since
absolute coverage measurements are tricky, an independent
measurement of E is very useful. To better characterize in-
teradatom interactions, the next step will be to add short-range
three-adatom forces. These interactions lead to asymmetries
in the phase diagram about half-monolayer coverage,?*
renormalize E; and E,25 and usually outweigh more distant
pair interactions.?>
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