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The indirect interaction energy per adatom is evaluated for a c¢(2 X 2) overlayer in a model system, and is
found to be very well approximated by (twice) the next-nearest-neighbor pair interaction energy, verifying
the validity of earlier work. Three adatom (nonpairwise) interaction energies are also considered; while
insignificant for total interaction energies, they are comparable to more-distant (viz., third-) neighbor pair

interactions.

An explanation of ordered overlayers of adatoms
on transition metals was given by Einstein and
Schrieffer' (ES) in terms of an indirect interaction
between individual pairs of adatoms. In this picture
all adatoms bind in one particular coordination
site (atop, centered, or bridge) for any coverage
less than saturation (since the difference in energy
between these sites will be greater than inter-
adatom energies). The pair interaction energy
(that is, the energy difference between two adatoms
at (nearby) sites and twice the energy of a single
adatom on the surface)® is anisotropic, oscillatory,
and very rapidly decaying with separation; thus,
the adlayer superlattice structure is determined
by the nearest attractive pair interaction. Multi-
adatom interactions were seemingly a smaller-
order effect. In marked contrast, subsequent stud-
ies®* (within the same model) of changes of density
of states for a complete ordered overlayer showed
that even qualitative features could arise which
could not be decomposed into pair effects. The
pair effects were often comparable to one-adatom
effects rather than smaller by over an order of
magnitude (as is the case for energies). Moreover,
trio (three-adatom nonpairwise) effects could be
comparable in magnitude to pair effects. In short,
the situation for changes in density of states is
poorly convergent. Hence we undertook calcula-
tions of trio and ordered overlayer energetics to
verify that the previously reported viewpoint was
justified in describing adlayer patterns.

In the sample model of ES the substrate is de-
scribed by a single-band tight-binding model, with
the diagonal site energy giving the energy zero and
the nearest-neighbor hopping —3 establishing the
enrgy unit as one-sixth the bandwidth (and so 1 or
2 eV for transition metals). For simplicity and
specificity we here consider the adatom in the atop
position; the generalization to bridge or centered
binding is available in ES and elsewhere. The ad-
atom couples to the orbital on its nearest sub-
strate neighbor with hopping matrix element - V.

The present model characterizes the adatom by
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a single nondegenerate energy level E ; Coulomb
effects might be included in the restricted Har-
tree-Fock sense, namely, E,=E%+U(n,,), where
E° is the energy of the vacaiit orbital, U is the
Anderson® intra-adatomic Coulomb repulsion, and
(n,y is the average occupancy of the adatom for
one spin direction. ES estimated E, as roughly

the average of the ionization and the affinity levels
(i.e., {n, =%, neutral adsorption), as in many
chemical molecular-orbital calculations.® Pandey’
has used a more elaborate “chemical-transfer- .
ability” scheme: he adjusts the adatom and adatom-
substrate parameters so that cluster computations -
of small molecules involving the relevant elemernts
fit levels found in photoemission experiments;
presumably similar parameters hold in chemisorp-
tion systems. If one views all self-consistency
problems as focused on the adatom, one can stay
with the Anderson model® and solve self-consistent-
ly for (n,). Typically this has been pursued in
Hartree-Fock, either in the restricted form®

((n,y) =(n,) as an ansatz) suggested above or in an
unrestricted version.””'° However, when the latter
suggests a local moment on the adatom, Hartree-
Fock is known to fail.!* More recently, Brenig and
Schénhammer!? and other researchers®® have given
more detailed treatments of the Anderson model

as applied to single-atom chemisorption.

The other approach to self-consistency is less
satisfactory. Since the linear-combination-of-
atomic-orbitals (LCAO) ansatz fixes electron or-
bitals, self-consistency is phrased in terms of
Friedel’s sum rule!*—which here requires total
charge neutrality with some finite range of the
adatom—rather than Poisson’s equation.!®* Some
diagonal (in occupation-number space) perturbation
is added typically to the adatom energy E, (Refs.
16-18) (which means essentially that E, becomes
a derived rather than free parameter) and often to
its nearest neighbor(s) on the surface.'®!” Some-
times off-diagonal Coulomb terms are also included
in various ways.!”*!® Generally,'® neutrality is
required either at each site'®’!? (essentially the old
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“minimum-polarity” principle of ferromagnetic
theory'®) or just in the surface cluster consisting
of the adatom and its nearest neighbor(s).!® 2
These approaches exclude the possibility of any
longer-range oscillations, and thus tend to over-
correct. The substrate perturbations can also pro-
duce new surface states.?® The quantitative results
are rarely compelling, and the qualitative ones
could usually be written without the numerics.?

Fortunately Schénhammer, Hartung, and Brenig®
have shown that in calculations of pair-interaction
energies (in stark contrast to single-adatom bind-
ing energies), a very careful treatment of Coulomb
effects leads to curves that are almost the same
as the Hartree-Fock ones. This similarity is
really not that unexpected; Grimley and Walker?*
pointed out that while considerable charge transfer
might take place during chemisorption, little more’
should happen as a function of the relative orienta-
tion of chemisorbed atoms.

For three adatoms bound to sites 1, 2, and 3, the
formula for their interaction (the difference be-
tween the energy of three adatoms in these relative
positions and thrice the energy of one adatom) can

j
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where the summation goes over the surface Bril-
louin zone (SBZ), G(k,,E) is the two-dimensional
inverse Fourier transform of the G, and N, is the
number of adatoms. In this case, the neglect of

the direct interaction is particulary questionable.
We therefore focus attention onthe ¢(2 x 2) over-
layer. In this case, since the real space unit cell
area is doubled, the summation over &, extends
over only a reduced SBZ with half the size; for a
square-surface (reciprocal) lattice, the natural
choice is an inscribed “diamond” (square rotated
by 45°, with sides 1/V2 times the original side).
Clearly, this leads to a folding of the parts of the
highly blurred [E,,(¢,) covers a wide range] band
structure outside the diamond back into the diamond
(in analogy to the formation of optical phonon modes
in a Bravais lattice by changing the mass on alter-
nate ions), producing a structure of two fuzzy bands
which overlap for some values of k,. For the
change in density of states due to ¢(2 x 2) chemi-
sorption, one finds considerable complications (in-
cluding localized states between as well as outside
the bands),*?* which we will explore carefully
elsewhere.?® For present purposes, we note that
for a c¢(2 X 2) rather than (1 x 1) adlayer the only

_ V*G(k,, E) - G, (E))
E-E,- VoG, (E)

be derived from the matrix expressions of ES or
otherwise,? and is

V*G% +G%:+Gis)
&= F,- VG,

E
AW=—%[ F dEtan"(l -

_2_"_“94:9::&:__) T

“(E-E,-VG,)

Here G, is the advanced Green’s function between
sites i and j on the surface of the semi-infinite
substrate. The 1-2 pair interaction between ad-
atoms on sites 1 and 2, may be obtained from this
expression by setting G,; and G, to zero. In this
framework, the trio interaction is defined as Eq.
(1) minus the 1-2, 1-3, and 2-3 pair interactions.
This approach can obviously be continued, but it
produces increasingly large noise from the computa-
tion of the individual G’s. As observedby Grimley
and Walker?* there is no simple way to write down
trio (or further multiple) adatom interactions.

From another vantage, we can easily write the
interadatom interaction energy per adatom for a
complete (1 X 1) ordered overlayer:

)dE, (2)

—

modification of Eq. (2) besides changing the limits
of the 2, sum is to replace G(l?,,,E) by the average
of it and its complementary point outside the
diamond, namely (taking advantage of the symmet-
ries of the problem), by

Hd\k,,E)+G((1,1) -k, E)}.

So far all we have required of the substrate
lattice is that it have a two-dimensionally infinite
square-lattice face: it could be a semi-infinite
crystal or a slab; its bulk point-group symmetry
could be simple cubic, fec, or bee (or for that
matter primitive or body-centered tetragonal). To
make contact with previous work we take the (100)
face of a simple cubic crystal. Obviously this
choice will not allow quantitive statements about
the fivefold degenerate d band of bcc or fcc transi-
tion metals, but this choice is no'worse and in
some ways better than single-band bcc or fce crys-
tals, since these contain sharp idiosyncratic struc-
ture in their densities of states (sometimes leading
to spurious peaks in their chemisorption-induced
changes in densities of states®?) while the (100)
simple cubic crystal has the simple broad struc-
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FIG. 1. Interaction energy vs Fermi energy for inter-
mediate (V =2) adatom-substrate hopping and adatom
energy near the center of the band (E, =—0.3). The
solid line gives the energy per adatom for a-.complete
c(2x 2) overlayer. The dashed line is the sum (per
adatom) of all pair contributions; it is dominated by the
next-nearest-neighbor pair. The dash-dot curve is the
weighted sum of the trio interaction (three-adatoms
minus constituent pairs) for the two configurations con-
taining two next-nearest-neighbor pair components (see
text).

ture one would like the substrate to present in a
model calculation.

Figure 1 displays the essence of the present
computations. We plot interaction energy versus
substrate band filling (Fermi energy). The curve
labeled “pairs” is an explicit pair-by-pair sum of
the closest pairs that arise in the ¢(2 x 2) struc-
ture, since no analytic summation is possible.
(That is, we could pick one adatom, find and sum
the pairs, containitand all other adatoms in a large
domain, and then divide by two; obviously, this
task can be eased by taking advantage of the four-
fold symmetry of the pattern.) A closer examina-
tion?%:28 shows that this pair curve is dominated by
the closest diagonal (next-nearest-neighbor) pair
interaction, as indicated in ES. The next smaller
pair interaction in the c¢(2 % 2) adlayer [third-near-

est neighbor of the square (100) face] is generally
less than a quarter the magnitude of the dominant
pair. The “pairs” curve closely parallels the
corresponding curve for the complete c(2 X 2) pat-
tern, and would give a good quantitative represen-
tation of it except near the center of the band. Thus
the nearest attractive pair explanation promul-
gated by ES is confirmed.

In the ¢(2 X 2) pattern, there are two types of
three-adatom arrangements involving two next-
nearest-neighbor ((11)) pairs: collinear (so that
the third pair is (22)) and right isosceles triangle
(so that the third pair is (20)). Computations show
that the two trio interactions from these arrange-
ments have comparable magnitude which in turn is
nearly an order of magnitude greater than trios
containing one or no nearest diagonal neighbors.

In Fig. 1, the trio curve gives the trio interaction
per adatom for these two dominant arrangements,
with appropriate weightings for the number of ways
in which they arise in the ¢(2 X 2) pattern. The
curve is usually in the correct direction to correct
discrepancies between the pair and ¢(2 X 2) curves,
but it is often too large in magnitude. This over-
correction might be expected from considerations
similar to those leading to Friedel-like oscilla-
tions. For many values of E, then, one actually
does worse in reproducing the ¢(2 X 2) curve by
adding three-adatom effects above to the pair curve.

The magnitude of dominant trio interactions is
often comparable to the magnitude of the third-
nearest pair interaction energy. For most phen-
omena (e.g., the order-disorder transition of the
overlayer) and at room temperatures, these in-
teractions are inconsequential, but at low temper-
atures these energies will be important in deter-
mining the shape of islands at presaturated cov-
erages.?®?® It would therefore be of considerable
interest to obtain values for the energies of these
trio and weaker pair interactions in more realistic
representations of substrates.
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