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A displacive ferroelectric is represented by a model in which there is only one species of
movable ion. The potential energy is taken to be an arbitrary unstable quadratic form in the
ionic displacements, plus a quartic term y = (fi . 'fi)z, (y>0). The statistical mechanics is
done variationally by means of approximate distribution functions containing parameters which
are chosen so as to minimize the free energy. The mean-field approximation uses a distribu-
tion function of the form I1g(¥; and the self-consistent phonon approximation (SPA) uses a
Gaussian in the quadratic normal coordinates, the coefficients in the Gaussian being identified
with the squares of the temperature-dependent frequencies. In both approximations it is found
that the ferroelectric phase transition can be either first or second order, depending on the
quadratic potential. The SPA shows “softening” of the §=0 mode in the paraelectric phase.
The frequency of this mode vanishes when T'=T,, where T, is the lowest temperature at which
the paraelectric phase exists either stably or metastably. The SPA leads to a Curie-law sus~
ceptibility in the paraelectric phase only when the quadratic forces are of sufficiently long

range.

I. INTRODUCTION

The value of simple models has been well es-
tablished in solid-state physics and statistical
mechanics. Analysis of the Ising and Heisenberg
Hamiltonians has greatly enhanced our under-
standing of ferromagnets. In the same spirit we
have studied the simplest Hamiltonian which ap-
pears to us to embody the essential features of a
displacive ferroelectric. OQur tool for analyzing
the system is a powerful variational principle
discussed in Sec, II.

The Ising and Heisenberg models study the
orientational ordering of a -collection of objects
with permanent magnetic (or electric) moments, of
fixed magnitude, each attached to a definite lattice
site. The essentially new feature of the displacive
ferroelectrics is that the magnitude of the mo-
ments is also variable, and in fact the same inter-
actions which align the moments also create them.

We consider a model crystal in which there is
only one kind of movable ion. Other ions may be
present, but are assumed not to move. Only the
movable ions appear explicitly in the Hamiltonian,
Furthermore, we assume that at sufficiently high
temperature the system has no spontaneous polar-
ization. Let ﬁi be the mean position of the ith ion
at high temperature. We assume that the vectors
R, form some kind of lattice. Let ¥; be the vector
from ﬁ,- to the instantaneous position of the ith ion.
The interactions between the ions are assumed to
be such that a simultaneous displacement of all the
movable ions (by the same small amount) away
from the sites ﬁi will lower the energy. However,
the thermal chaos (entropy) prevails at high tem-
perature, so that there is no spontaneous polar-
ization.
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The instability of the lattice against simultaneous
displacement of all the (movable) ions is put into
the Hamiltonian via a term
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in the potential energy, where the quadratic form
is not positive definite. In particular, in order that
the energy be negative when all the T; are equal,

we require that },V;; be negative. We note that the
configuration defined by making all the ¥; equal
does not correspond to a translation of the entire
crystal (which, of course, could not change the
potential energy), but rather to a translation of the
ions represented in the Hamiltonian velative to the
ions not represented in the Hamiltonian. In this
model the acoustical degrees of freedom have been
“frozen out, ” so that all normal modes should be
thought of as optical. The negativity of } V;; will
be seen to correspond to “soft” behavior of a {=0
optical mode, such as occurs in BaTiO; as the
phase transition at 120 °C is approached from above,
We could have used a more general quadratic form

1x vitrivt, (1.1)

2 ijyan
where X and p take on the values 1, 2, and 3 cor-
responding to the x, ¥, and z components of T; and
Fj . Since T; is proportional to the dipole moment
associated with the ¢th ion, it is easily seen that
the conventional dipole-dipole interaction is of this
form with

A 2 sl
Vi 3R}; R}, - R}; 6™ ) 1.2)

Rj;
However, the important predictions of our model
are unaltered by this extra generality, and we
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7 STATISTICAL MECHANICS OF A SIMPLE MODEL...

therefore use the simpler form involving only

T;. T;, eliminating the need for careful considera-
tion of principal axes and polarizations. If we
stop with the quadratic term in the potential ener-
gy, there is no statistical mechanics, since all
the ions will simultaneously displace to infinity;
i.e., the classical coordinate space partition
function

[ expl- BU - - - Fy)dFy. .. dFy)

will not exist. There must be an anharmonic re-
storing force which ultimately stabilizes the lat-
tice. We take this to be of the simplest possible
form, namely, y37} (with ¥>0), a quartic potential

attracting each ion back to its own site. Our po-
tential energy function is thus
U=%EV¢,?¢E+VZ(?;-FI)Z. (1.3)
i i

Note that the sum includes terms withi=j and
includes both (Zj) and (ji). If there is an external
field, we add - QE - $¥;, where Q is the ionic
charge. The kinetic energy is Yp5/2M, and plays
no role if the temperature is high enough for classi-
cal statistical mechanics to be valid.

Models closely related to the one defined by
(1. 3) have recently been studied by Lines, *
Onodera,  Pytte, ** and Gillis and Koehler.® The
analyses have employed either the mean-field ap-
proximation (MFA) or the self-consistent phonon
approximation (SPA). Gillis and Koehler have
found that the SPA predicts a first-order phase
transition for their model. The question of whether
this prediction is correct, or merely a consequence
of the inaccuracy of the SPA in the critical region,
has been discussed in two Letters, ¥°

The present work was done independently of the
above-mentioned studies, and leads to the con-
clusion that both MFA and SPA can yield either a
first- or second-order transition, depending on
the nature of the quadratic coupling V;;. The con-
dition on V;; which determines the order of the
transition is different in the two approximations.
We make no contribution to the discussion of which
approximation is more credible, but believe that
this discussion should be carried out within the
framework of the simplest possible model. We
shall see that the essential features of Gillis and
Koehler’s analysis emerge when we apply the SPA
to our somewhat simpler Hamiltonian,

The model considered by Gillis and Koehler is
a lattice of positive and negative ions arranged in
a NaCl structure at high temperature and deforming
via a first-order transition, to a rhombohedral
structure. Their potential is translationally in-
variant, consisting of a quadratic form in the ionic
displacements plus an anharmonic part which is
fourth order in the relative displacement of nearest
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neighbors. They have explored the phase dia-
gram of their model in the SPA, by means of ex-
tensive computer studies, in both the paraelectric
and ferroelectric phases. Using the SPA to analyze
our model, we obtain essentially the same phase
diagram as Gillis and Koehler by analytical and
graphical methods, with the exception of the dis-
cussion of the fate of the paraelectric phase as the
temperature is lowered. Gillis and Koehler find
that the phase exists, at least metastably, all the
way down to T=0, with the frequency of the zone-
center optic mode never going strictly to zero.

We find that the frequency of the zone-center optic
mode vanishes at a finite temperature, below which
the paraelectric phase ceases to exist even meta-
stably.

II. VARIATIONAL PRINCIPLE
The basis for our calculation is the inequality

[ eU® aVR > exp[- B [ UR)p(R)d*R

- [ p(R)Inp(R)d"R], (2.1)

where 8= (kT)"‘, d"R is the volume element in N-
dimensional coordinate space, and p(R) is any
probability distribution [p(R)>0 and [ p(R)d*R=1].
This inequality was first stated by Gibbs.” I we
take p to be the correct classical distribution, i.e.,

exp[- BUR)]
[ expl- BUR)]d"R ’

then (2. 1) becomes an equality, but is of course
useless., The idea is to choose a trial p(R) simple
enough so that the right-hand side of (2. 1) is calcu-
lable, but complicated enough to contain some
physics.

The quantum-mechanical generalization of (2. 1)
8

p(R) =

is
Tr(e™#) > exp Tr(- BpH - plnp) , (2. 1a)

where p is any density matrix.
ty can be obtained by the choice

p =e™H/Tr(e)

Recognizing the left-hand side of (2. 1a) as e™7,
where F is the Helmholtz free energy, and calling

the right-hand side e™”, we obtain
F < = Tr(poH)+ (1/8) Tr(p1np) ,

Once again, equali-

(2.2)

which simply states that the free energy arising
from an approximate density matrix is higher than
the true free energy. The two terms on the right-
hand side of (2. 2) are the approximate U (internal
energy) and — T'S (entropy).

III. MEAN-FIELD APPROXIMATION

We shall use classical statistical mechanics to
treat the model defined by (1.1). As our first trial
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distribution function we use
p =H &) .
1

It is easy to find the optimal form of g (Appendix
A), but the actual determination of the parameters
in g requires a full understanding and tabulation of
a transcendental function of two variables, In-
stead, we choose an analytically tractable g which
contains enough physics to lead to an interesting
and readily understandable phase diagram, i.e.,

g(F;) = (A/m)*% exp[-A (F; - )], (3.2)

where A and A are variational parameters which
will be chosen so as to maximize the right-hand
side of (2. 1) (i.e., minimize the approximate free
energy F). The normalization of (3. 2) is appro-
priate to three dimensions.

The use of a distribution of the form (3. 1), which
states that the ions move independently in some
kind of potential which is self-consistently deter-
mined, is usually called the mean-field approxima-
tion (MFA). It should be emphasized that in this
paper we use the terminology MFA to refer to the
distribution given by (3. 1) and (3. 2) rather than by
(3. 1) with the optimal g. Onodera? has studied
some of the consequences of using the optimal g.
The distribution (3. 2) would be exact for a system
of independent ions, each bound harmonically to
its own (possibly displaced) force center, with the
oscillator frequency related to A by the equation
A=1Mw?B. This is essentially the Einstein model
of a solid, and by optimizing with respect to A and
X we shall find the best Einstein model at each
temperature.

Initially, we will calculate in the absence of an
external electric field. At a given temperature,
if the best A turns out to be nonzero, then the sys-
tem is ferroelectric, the polarization per ion being
QZ&. Insertion of (3.1) and (3. 2) into (2. 1) yields,
in a completely straightforward manner,

(3.1)

F 3V AP 15 542 '
N *z?VUJ”LVZZT“A*A

+ 5= InA + const. (3.3)

3

28
The constant is independent of A and &, and will
henceforth be omitted. The first two terms on the
right-hand side are the expectation value of the
harmonic part of the potential energy, the third
term is the anharmonic potential energy, and the
last term in the entropy term — 7'S. The number
of ions is N, and we have made use of translation
invariance to replace V;; by Vo, and 3 ;V;; by
2i Vo;, where O refers to some particular ion, In
2i Vos, the sum includes a term j=0.

The free energy (3. 3) depends only on the magni-

tude of & and not on its direction, as a result of
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the invariance of (1. 3) under simultaneous rotation
of all the ¥;. We shall imagine that the degenera-
cy with respect to the direction of X is broken by a
weak external field in the x direction, which we
therefore choose as the direction of A. The co-
efficient of A*in (3. 3) is positive, and thus the
value of A% which minimizes §/N will be zero un-
less the coefficient of A® is negative. In order that
the distribution function be normalizable, A must
be positive; therefore, a necessary (but not suffi-
cient) condition for the existence of a ferroelectric
phase is ); V; <0. This is identical with the con-
dition which we imposed in Sec. I, and we define

W=-2,Vy>0. (3. 4)
]
Varying §/N with respect to A2, we find
A= W/4y-5/2A (8. 5a)
or
a%=0 (3. 5b)

’

with (3. 5b) holding when the right-hand side of

(3. 5a) is negative. Considered as a function of A,

(8. 3) always has a true minimum for some positive
value of A, Differentiation and solution of a quad-

ratic yields the optimal A as

A=%5p{3 Voo + 5ya2+[ @ Voo+ 5ya?)2+ 45y /]2 .
(3.6)
For a given inverse temperature B, one must
solve (3. 6) simultaneously with (3. 5a) and also
with (3. 5b). The free energies of the two solutions
must then be compared to see which is lower,
This program appears quite tedious, since it must
be carried out at all temperatures, and for all
values of Vo, W, and y. However, a little dimen-
sional analysis indicates that the situation is much
simpler than it would first appear to be. Equation
(8. 3) gives the free energy as a function of the
parameters A and Az, the inverse temperature 8,
and the quantities Vyy, W, and v which are prop-
erties of the Hamiltonian, I the minimization with
respect to A and A? is performed, and the nature
of the solution is studied as 8 varies over its full
range, it will be found that either there is no phase
transition (A2= 0 for all B), or there is a first-order
phase transition (A2= 0 at high temperature and
jumps discontinuously to a finite value at some
lower temperature), or there is a second-order
phase transition (A%=0 at high temperatures and

. moves continuously away from zero as the tempera-

ture is lowered through the transition temperature).
The answer to the question “Which of these three
cases occurs?” can only depend on the dimension-
less numbers which can be formed from Vyy, W,
and v. The only such number is

x=Voo/W, (3.7)
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and therefore the nature of the phase transition,
if any, can depend only on this ratio and not at all
on y (as long as y is not zero).
The above line of reasoning suggests the intro-
duction of dimensionless variables, namely,
8% = yAY/W, a =AW/y, B*= Wy, (3.8)
and the dimensionless free energy

f= 2k
SN wWE o

which leads to the dimensionless forms of (3. 3),
(3.5), and (3.6)

U3 e 15 552

= 4a 2 + 4a2 + a

3
+ 0% —zﬁ;lna+const. (3.9)
a=10/(1- 48%) (3.10a)

or
5= 0, (3. 100)
B [8x g (30 g\, 457

a—3{4+55+[(4+55)+3*] .
(3.11)

The only memory of the Hamiltonian is in x, and
the simple additive form in which x occurs in
(3.11) leads to an easy visualization of the phase
diagram for all values of x. With the introduction
of

z=3x/20+ 6%,
Eq. (3.11) becomes
a=3p*{6z + [(52)% + 45/p8*]'/2} . (3.12)

This family of curves in the z-a plane is shown
graphically in Fig. 1.

For any finite f* the limiting form of (3. 12) for
large positive z is a = 350-[3*2, and for large nega-
tive z is a= - 3/2z, the latter being independent of
B*. A curve corresponding to larger B* isevery-
where above a curve corresponding to smaller *,
The limiting curve, for f*=c, has the form a
=~ 3/2z and exists only for 2 < 0, Minimization
of f with respect to 6% always yields a value 0< 62
<%, the upper limit (which implies a - ©) being as-
sociated with a distribution which sharply localizes
all the ions at the value of A which minimizes the
internal energy. To solve (3.12) and (3. 10a) simul-
taneously, we superimpose the graph of (3. 10a)
(the dashed curve in Figs. 2-4) on Fig. 1, placing
the left end of the dashed curve at the point (z= 3x/
20, a=10). To increase x, we merely slide the
dashed curve to the right., For a given x and ¥,
the dashed curve may have zero, one, or two in-
tersections with the appropriate curve on Fig. 1.
The paraelectric phase (3. 10b) is represented by
the point on the temperature-dependent curve
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(Fig. 1) for which z2=3x/20 (i.e., 6°=0). Thus,
the free energies of as many as three points may
have to be compared in order to find out which is
the thermodynamically stable phase. Fortunately,
this proves to be easy.

When x < — §, there is no intersection of (3. 11)
with (3. 10a), no matter what the temperature.
Therefore the system chooses the paraelectric
state 52=0. When x = —§ (Fig. 2), the dashed curve
has its first intersection with the family of solid
curves [which represent (3.12)], the intersection
occurring with the g*= (T=0) curve at 6= %,
a=», Asx increases beyond —% (Fig. 3)the dashed
curve intersects all solid curves corresponding to
values of B* greater than a certain critical value,
which we call 8¥(x). For g*< pi(x) [i.e., T > W¥/
-yB:(x)], there is no intersection and the system
lives at the left end of the solid curve (paraelectric
state). As B* increases (decreasing T') the first
intersection is a tangency (labeled C in Fig. 3),
with two intersections (A and B) occurring for p*
slightly greater than B§(x). The intersection A may
(depending on the value of x) disappear as f* in-
creases further, but this is unimportant because
the system never elects to live in A, even as a
metastable state. To see this, note that

f8)-fA)= [ vr-di,

where the gradient and dl are in the plane of the
two variables a and 62,

We can take any path of integration, for example, the
dashed curve ACB. Since 8f/8(56%)=0 on this curve,
(3. 13) becomes

(3. 13)

-]
1B)-1(A) I 3L da.
ACB
But as a is varied on a line of constant 52, f goes
through a true minimum on the solid curve AB, and
therefore 9f/da is a negative on the dashed curve
ACB. Since ACB is a rising curve, da is positive
and thus f(B)-f(A)<0, i.e., f(B)<f(A). The ar-
gument is equally simple if the solid curve AB is
taken as the integration path. In fact, the argu-
ments are readily extended (Appendix B) without
any algebra to show that B is a local minimum of
the free energy and A is a saddle point.

The free energy of B must be compared with that
of the paraelectric state E, in order to see whether
the ferroelectric state is thermodynamically stable
(i.e., the free energy has its global minimum at
B) or only metastable. When B*= ﬁ;"(x), the free
energy of the paraelectric phase D is strictly less
than that of the incipient ferroelectric phase C.
This follows from the equation

C C
f(C)—f(D)=] Vf-df:j 5%2301(52), (3.14)
D

D
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FIG. 1. Curves on which
8F/8a=0. Theabscissaz isthe
square of the dimensionless polariza-
tion, translated by an amount de-
pending on the form of the quadratic
potential. The ordinate a is pro-
portional to the square of the ef-
fective frequency in the mean-field
approximation.
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z
where the last integral is taken along the solid
curve from D to C, But
9
A 262, 2 _ 1 (3. 15)

5 e T

which is a decreasing function of a for fixed 5%
since DC lies below the dashed curve, on which
af/8(6%)=0, it follows that 9f/8(62) >0 on DC and the
right-hand side of (3. 14) is positive, since d(5%) >0.
By a continuity argument, it follows that E has low-

er free energy than B for some range of 8* greater

than B3 (x).

To find out whether the free energy of the ferro-
electric phase B ever becomes less than that of E
as B* is increased (T is lowered), we first note
that f(B)-f(E) decreases as P* increases. This
follows from

B
F®B)-1(E) - l e () (3.16)
where the path of integration is the solid curve.
If we write the same equation for a larger value of
B*, then the solid curve E’B’ is everywhere above
EB (E’ and B’ represent the nonferroelectric and
ferroelectric phases for the larger *). Equation
(3. 15) implies that 8f/8(52) at a point on E’B’ is
less than 8f/9(6%) at the corresponding point (i.e.,
the point with the same value of 6%) on EB. Points
on E'B’ which are to the right of B do not corre-
spond to any point on EB. However, such points
lie to the left of the dashed curve and thus 8f/8(562)
< 0 at such points. Since d(6%)> 0 in (3. 16), it
follows that f(B) - f(E) decreases with increasing

B*. This simply says that if the ferroelectric
phase is not stable at zero temperature, it will not
be stable at any finite temperature; the basic point
is that the internal energy favors the ferroelectric
phase, while the entropy term - TS favors the
paraelectric phase, but the entropy term becomes
less important as T is decreased. It follows that
for a given value of x, a stable ferroelectric phase
will exist for sufficiently low temperature if and
only if f(B)~f(E)< O when T=0 (B*=x), If x>0,
(3.11) implies that as f*—-, the values of a at
points E and B tend to infinity linearly in B*. Since
62=0 at E and 6%=§ at B in the limit *¥=, (3.9)
yields

fB)-fE)=-% ,

when x > 0 and ¥~ <, Therefore, a stable ferro-
electric phase exists for sufficiently low T when
x>0, Inthe range —4 <x< 0, the value of @ at the
point B still grows linearly with g* for large B*,
but the value of a at point E becomes - 10/x as
p*—~, Thus, as p*— =, f(B)~— 4 and

3 , 342

3 2
fE)~-20% +30* =~ B0

so that
fB)-fE)SO for x 2-V¥

We conclude that for — § < x <— V§ the ferroelec-
tric phase is at best metastable, and the thermo-
dynamically stable pﬂase is paraelectric at all
temperatures, For x >~ V3, the ferroelectric
phase becomes stable for p* > Bf(x) (i.e., suffi-
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FIG. 2. Solution of (3.10a) (dashed curve) and (3.11)

(solid curves) when x = -—3. A metastable ferroelectric
phase first appears at f= (T=0), 6%=%, a=.

ciently low T'), where

Bl (= V3)=w

and the function B¥(x) decreases with increasing
x (i.e., the temperature below which the ferro-
electric phase is stable increases as x increases).

For x slightly greater than — v- % the transition
from the paraelectric to ferroelectric phases is
first order; i.e., as T decreases, the value of 82
jumps discontinuously from O to a finite value. For
x sufficiently large, the picture changes (Fig.
4). For small g* (high T) the system is para-
electric, but as * increases beyond a critical
value B¥(x), the value of 6% (square of the dimen-
sionless polarization) associated with the ferro-
electric phase B moves continuously away from
zero. B is the thermodynamically stable phase,
as one can see by writing

B
FB)-f(E)= f 7 (3.17)
E

%z-)d(ﬁz) )

where the path of integration is the solid curve,
and the integrand is negative because 8f/9(5%) is a
decreasing function of a [see (3. 15)] and the solid
curve EB is above the dashed curve on which
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8f/8(6%)=0. Therefore the system actually follows
the state B for f* > B¥(x), and we have a second-
order phase transition. The critical value of x at
which the transition becomes second order is found
by requiring the slope of the dashed curve at its
left end to be equal to the slope of the solid curve
which meets it there, With a little algebra we find
the critical value of ¥ to be — 3. Furthermore, we
find

Br(x) = 20/(1+%) .

To summarize: If ¥ <— 3, no ferroelectric phase
exists; if — 3 <x <-V%, a metastable ferroelec-
tric phase exists at sufficiently low T but is never
stable; if - V¥ <x <— 3, there is a first-order
transition to the ferroelectric phase; if - 5<x,
there is a second-order transition. The fact that
the MFA can yield either a first- or second~order
transition, depending on the parameters in the
Hamiltonian, has also been noted by Gillis and
Koehler. 8

The most obvious error® in these predictions
occurs when the interactions between distinct ions

=-1.05

a
0O 005 O0.I5 0.25
82
FIG. 3. When x=-1.05, the dashed curve intersects

the solid curve twice, in an appropriate temperature
range. The intersection B, corresponding to larger polar
ization than intersection A, represents a stable ferro-
electric phase at sufficiently low temperature.
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are turned off, i.e., V;;=0for i#j. In this case
the exact solution certainly exhibits no phase transi-
tion, while the present approximation gives a first-
order transition since x=- 1. This defect would

be remedied if the best & were used in (3.1)., The
Gaussian approximation underestimates the en-
tropy of the unpolarized phase; for example, in one
dimension our distribution is peaked at the origin,
while the exact distribution has two peaks, one to
the right of the origin and one to the left. Since we
are most interested in situations in which there is
substantial interaction among distinct ions, the
failure of our scheme in the noninteracting limit
causes us only mild alarm,

An approximate distribution function in the ab-
sence of an electric field does not unambiguously
define a method for calculating the static electric
susceptibility. If the distribution function adopted
in the absence of a field is py(R), and if we adopt
the distribution

p(R) = Cpy(R) e™FL %

to describe the system in an external field in the

(8.18)

B*s 15
B*=,B:(x) =11.8

/ B*g °

0.15 0.25

8 2
FIG. 4. When x=0. 7 the mean-field approximation
predicts a second-order transition from the paraelectric
to ferroelectric phases. The transition is second order

if the slope of the dashed curve at its left end is greater
than that of the solid curve at the same point.

0 005
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x direction (C is a normalization constant), then
the mean polarization is in the x direction, with
magnitude

BQEL;x N

o{Tr)- U o1
which reduces, for small E, to

(pd-sn(()), e
giving an electric susceptibility

(3.21)

x=BQ2<(§xi)2>o,

where ( ), means that the average is taken using
the distribution py(R), and it is assumed that po(R)
refers to an unpolarized phase, so that (J;x;),=0
and the expansion in powers of E is meaningful, It
has also been assumed that off-diagonal terms like
Qi %; 239 9o vanish; we shall also assume cubic
symmetry, so that the diagonal components of the
susceptibility tensor are equal. If py(R) is the
exact distribution in zero field, then (3. 18) and
(3. 21) are also exact. However, if po(R) is only
approximate, we are not necessarily constrained
to use (3. 18) in the presence of a field, and usually
we can find another p(R) which gives a lower free
energy. We are primarily interested in the sus-
ceptibility in the region of second-order phase
transition (x >- %) at temperatures above T,, and
therefore use the pg given by (3. 2), with A=0. At
finite field, we again use a distribution of the form
(3.2), but with & # 0 and presumably proportional
to E’, and with possibly a different value of A. Note
that this distribution includes (3. 18) as a special
case (with A equal to its zero-field value, and A
=BRE/24).

Including the term — QE}x; in the energy, we ob-
tain for the trial free energy

F/N = /N - QEA |

where F,is given by (3. 3). The minimum of Fo/N
occurs when A=A,, A=0, Minimization of (3. 22)
will repect to A yields, in the limit of small E,

(3.22)

QE
A= Aoy /A)—W (3.23)

For T > T, the denominator is positive, being just

28 3:_0
9AZ\ N

JOk

and the replacement of A by A, in (3. 23) is accu-
rate for small E, since A — A, is proportional to
E and the more accurate treatment would change
A by a second-order quantity in E. The suscep-
tibility is given by
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X Q*

F = 10‘)’/A0—W . (3.24)
The denominator vanishes when T'= T, (where 2T,
= Wz/'yB; ) and is proportional to T - T, for T slight-
ly greater than T.. Thus we have a Curie-law
susceptibility, exactly as in the Landau theory, for
temperatures slightly above the second-order
transition temperature. This result is to be con-
trasted with (3. 18); with our choice of p, the latter
gives

X/N= BQ2/2A0,

which exhibits no singular behavior as T approaches
T,.

IV. SELF-CONSISTENT PHONON APPROXIMATION

The obvious improvement over (3. 2) would be
to make a Debye or Born-von Karman model of the
solid, i.e., to use a distribution function appropri-
ate to a system in which all the forces are harmon-
ic but not all the normal frequencies are equal.

The dimensionality of the system should then begin
to enter in a significant way—a feature which is
absent in the previous approximation,

In order to carry out this program, it is con-
venient to specify the configuration of the system
through the values of the normal coordinates a,,
instead of the “actual” coordinates ¥;. The a,, are
the linear combinations of the displacements which
diagonalize the quadratic part of the potential, i.e.,

iRy (4.1)

A 1 -
Oq = €,(q) N ?r, e
The form of the a,, [except for the choice of the
polarization unit vectors é,(d)] follows from the
translational invariance of the lattice. If we had
assumed the most general quadratic form (1.1),
then the polarization vectors é (@) would be the
eigenvectors of the “Fourier matrix”
V@) =2 Vy PLLEREN , (4. 2)
i
where Vi, is the matrix whose elements are V§).
Since we have taken ¥, as a multiple of the unit
matrix, any vector is an eigenvector of V() and
we choose the polarization vectors e, along the x,
¥, and 2 axes, independent of 4. Inthe general
case, V(§) would have three distinct eigenvalues
corresponding to the different polarizations, but
in our case they are all equal, having the value

V(a) = Z} Vojeia’(‘ﬁj-ﬁo) . (4. 3)
i

Let the R, form a cubic lattice, the edge of the

crystal having length na, where a® is the volume

of the unit cell and #®=N, Then the values of § are
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q_(naml’ ;Emz,ﬁma), (4-4)

where m,, my, and my are integers in the range
-3 ~-1)to 3(t — 1). Any n consecutive values of
my, my, and my define all the independent a,,, but
it is convenient to make the range symmetric about
zero (assume 7 odd).

Using the inverse of (4. 1),
iq-Rj ,

- 1 P
ry=IN %;th,,e,‘(q)e (4. 5)

we can rewrite the energy as

1
U= 3 2 V@) @ eqr
a

Y

R A a“ aqllaqny a_(‘“q:wun: .
LT AT b P 1) .

(4.6)

The a,, are complex and satisfy a.,= (¢,,)* be-
cause of the reality of the ¥;. Writing a,,=c,,
+18,, where ¢ and s are the cosine and sine trans-
forms and are real, we have ¢_,,=¢, and S_,,
=—=84, . Thec, and s, with m; >0 (excluding sg,,
which is identically zero) can be used as coordi-
nates for the system.

Since @, 0= c,f,t +s2,, the distribution function
would be a pure Gaussian in the ¢, and s, if the
potential were purely harmonic. We shall use a
trial distribution function which is Gaussian in the
Cc . and S, , but with coefficients which will be
chosen so as to minimize ¥. From (4.1) it is evi-
dent that displacement of all the ¥; by the same
amount A will leave the value of a,, unaltered ex-
cept when §=0. If A is in the x direction (A= 1),
then ag, is shifted by AVN., Thus we incorporate
the possibility of a polarized phase by allowing for
a shift in the center of the distribution of ¢y, Our
trial distribution, then, is

1
p= nexp[ _(EEAO)‘ (Copn— GMA‘/N)Z
Y

+}3’A,,A(c§h+s§h))] , (4.7

where the A, and A are variational parameters
and 2' means a sum over § vectors with »,20,
excluding §=0. The normalization factor 7 is
given by

_ , —44& 1/2 ﬂ_ 1/2

I (T) W) @9
Because of the complete symmetry of the ¢, and
sq for §+0, nothing would be gained by introducing
separate coefficients for ¢, and s, . The A, are
necessarily positive, in order that (4.7) be nor-
malizable, and we can define “quasiharmonic”
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frequencies by

MQ% =An/B . 4.9)

The @, are the frequencies of the normal modes
in a fictional harmonic system, for which (4.7)
would be the exact distribution function. By con-
trast, the normal frequencies of the quadratic
potential

1 - -
3 2 Vit F
7

are given by

Mw?, = V(@) (4.10)
From (4.3) we see that
V()=-W<0, (4.11)

so that w,, is imaginary for small §, indicating the
instability of the lattice. If all the A, in (4.7) are
taken as equal, having the common value 24, then
(4.17) becomes identical with the distribution (3.1),
(3. 2) used in our mean-field approximation. Thus
the present scheme is guaranteed to yield a lower
Helmholtz free energy. We call (4.7) the “self-
consistent phonon approximation” (SPA). This
approximation, as well as possible generalizations,
has been discussed by Werthamer and others. °

In Appendix E we discuss the quantum-mechanical
version of the SPA, which leads to essentially the
same results as the classical treatment.

Equation (4. 86) expresses the Hamiltonian in
terms of the ¢, and s,,. In.evaluating the right-
hand side of (2.1) with p given by (4.7), the c,, and
S, can be used as the basic integration variables
instead of the ;. The transformation is orthogo-
nal, so the Jacobian is unity. The resultant Helm-
holtz free energy is

F 1« V@ W 4y «r 1425,
- = —E —+Az ——+——E —
N N & Aqh 2 NS Aa

E sy 1426, 1425,

4
+yA© +
an AqlA e

P )L InA,, +o(l\17> (4.12)

NB o

In the above, the primed summations are over
half of § space; since terms of order 1/N are
omitted, it does not matter whether d=0 is included
or excluded. We have looked very carefully into
the question of whether, under some circumstances,
one of the A, (most likely A,,) becomes of order
1/N, so that a single term in the sums can be im-
portant. This phenomenon, which occurs in the
theory of Bose~Einstein condensation, does not
occur in the present model.

It is evident that a necessary condition for & to
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1=~3

be minimized by a nonzero value of A is W>0,
i.e., V(0)<0. This verifies the physical idea
which was built into the model. Varying § with re-
spect to A,,, we obtain

Ap/B=V@) +Fy, (4.13)
~where
F, = 4y A% (1+26,,) + 8YK, (4.14)
and
1 < 1+26,,,
K= = R (4.15)
AUN v Agw

Passing to the limit N -, it is useful to define

v

oo (&) oo

where vy is the dimensionality of the system, a is
the lattice constant, and the integral is over the
interior of the cube -7/a<q,, q,, q,< n/a rather
than just a half-cube, as in the summation. We
can express K, in terms of this function; making
use of the complete symmetry between A =2 and

A =3, we obtain

(4.18)

K ﬁ G(Fl) + 55 B G(Fa) (V=1) 2: 3),
(4.17a)
Ky=Kj = -ZLBG(FI) + 1-27;3—1 G(F, (=2, 3).
: (4.1)
Minimization of § with respect to A2 yields
= W/4y - 2K, , (4.18)
or, if the right-hand side of (4. 18) is negative,
A%=0. (4.19)

© V. PARAELECTRIC PHASE IN SELF-CONSISTENT PHONON

APPROXIMATION

Let us first examine the unpolarized solution A2
=0, which is indeed the correct solution at high
temperature. In this case, all polarizations are
equivalent (F;=F,=F), The value of F is deter-
mined by solving the transcendental equation which
results from combining (4. 13), (4.14), and (4. 17a):

GF)_ _B__
F = 4wv+2)y

To understand the properties of this equation, one
must make further assumptions about V(§). We
assume that V(§) attains its minimum value at =0,
Furthermore, we start by assuming that V;; de-
creases fast enough for large IR; - ﬁ,l to permit

a moment expansion of (4. 3), i.e.,

(5.1)

V<a>=12 Vo {l+ig. (R, - Ro)

_i[G & -BoP+---}. (5.2

In (1. 38), V;; is symmetric by definition; therefore
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all odd terms in (4. 21) vanish, and for small ¢q
we have

V@) =-W+ag?+... , (5. 3)
where
a:-%?vwlﬁ,—ﬁol%o. (5. 4)

In three dimensions @ will be finite and (5. 3) valid
if V;, falls off faster than the inverse fifth power

of IR;- ﬁ,l at large separations. If this condition
is satisfied, we say that the quadratic forces are
of “short range.” The case in which the moment
expansion (5. 3) is not valid is also interesting and
will be discussed later. In writing (5. 3) and (5. 4)
we have assumed cubic symmetry; more generally,
aq® would be replaced by @,q% + a,q% + a3q2, with-
out significant changes in the sequel.

From (4. 13) it follows that F must be greater
than W in order that all the A, be positive and the
distribution function normalizable. For F > W the
function G(F) is a decreasing function of F, tending
to F~!for large F. G(F)/F is also a decreasing
function. Equation (5. 1) will be soluble for ar-
bitrarily large B (i.e., arbitrarily low temperature)
if and only if G(W)=», For short-range quadratic
forces, the denominator of (4. 16), with F=W, is
ag® for small g. Thus G(W) behaves like

d%q

_qr ’

which diverges in one and two dimensions as

dq qdq
—z and |—%
J’ q f q ’

respectively, but converges in three dimensions as

qudq
q

The left~hand side of (5. 1) is shown in Fig. 5. In
one and two dimensions (upper curve) a solution of
(5.1) exists for all 8. In three dimensions a solu-
tion fails to exist for 8> B,, where

&W) _ Be

W 207 (5.5)

If we had not cavalierly replaced sums by integrals
and had treated the =0 term more carefully, we
would find that in three dimensions a solution for

F exists even for B> B,, with F differing from W
by an amount proportional to N7}, all in close analo-
gy with the situation in the condensed ideal Bose
gas. We presently believe that the paraelectric
solution which Gillis and Koehler have found by
numerical methods even at arbitrarily low tempera-
tures is the one which we lose by taking the infinite-
volume limit (i.e., replacing a sum by an integral).
Since the effective frequency of the =0 “soft
mode” is [see (4.9)]
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FIG. 5. Graphical solution of Eq. (5.1), which deter-
mines the parameter F and thus the self-consistent pho-
non dispersion relation in the paraelectric phase. In one
and two dimensions (upper curve) a solution exists for all
B. In three dimensions a solution exists only when 8< B,

. the paraelectric phase ceases to exist even metastably

when 8> 8.
sumed.

Short-range quadratic forces have been as-

Q= 1/M)F-W), (5. 52)

we believe that their soft-mode frequency would
become strictly zero below a certain temperature
if the mesh used in their § sums were made in-
finitely fine (which is equivalent to going to an in-
finitely large system). Addition of acoustic phonons
(translational invariance) does not alter the pre-
dictions of our model in an essential way. At any
rate, there is no need to study the paraelectric
solution for B>B,, because, as will shortly be seen,
the system makes a transition to the polarized
phase at some value of 8 less than 3., i.e., at
some temperature higher than T,.

It is gratifying to see that the SPA, in contrast

‘with the MFA, discriminates between a three-

dimensional system and one- and two-dimensional
systems. However, although the solution of (5. 1)
representing an unpolarized phase exists all the
way down to T=0 in one and two dimensions, it will
be seen (Appendix D) that even in these cases our
analysis predicts that the system will eventually
jump to another (polarized) solution. Our predic-
tions for the three-dimensional case bear some
resemblance to what is seen in BaTiO;, though our
model is obviously much too simple. I £, is iden-
tified with the frequency of the soft transverse-
optical mode as measured in neutron scattering
from the paraelectric phase, the data of Harada,
Axe, and Shirane!! indicate that Q4 is very small
at 150 °C. Very heavy damping of the mode, and
interactions with acoustical modes, makes it diffi-
cult to extract a value for €, from the data. Bark-
er'® uses the infrared reflectivity data of Ballan-
tyne!® to infer Q3< T - T,, where T.=105°C. The
system makes a first-order transition to a ferro-
electric phase at T=120 °C, before the TO mode
becomes completely soft. Similarly, the static
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electric susceptibility in the paraelectric phase
shows a Curie-law behavior!* y« (T = T,)™, but
does not become truly infinite, owing to the inter-
vention of the first-order transition. With appro-
priate assumptions about the character of the
quadratic forces, our model can explain both the
first-order transition and the temperature depen-
dence of 2, and X. We shall see that it is neces-
sary to abandon the assumption that the quadratic
forces are of short range.

To calculate the susceptibility, we add the term
— QEY,; x; tothe Hamiltonian and still use a distribu-
tion of the form (4.7). Note that 3;x;=N"%,, so
that it is reasonable to expect the field only to shift
the center of the distribution of ¢y;. If we took

BQEL x;
p = poe i,

where p, is the zero-field unpolarized (A= 0) dis-
tribution given by (4. 7), this would correspond to
choosing

A= QER/2Aq, .

However, just as in the molecular-field case, we
can do better by optimizing with respect to A, The
free energy is

F/N = §,/N - QEA |

where F,/N is the zero-field energy (4.12). We
are studying the solution which has A=0 in the ab-
sence of a field. It is clear that A will be propor=-
tional to E for small E, and thus the A,, will differ
from their zero-field values by terms proportional
to E2, Minimization of &/N with respect to A gives

B QE _ _QE
T W+ [4y(v+2)/B]G(F) T F-W’

where (5. 1) has been used to simplify the denomi-
nator. If (5.3) holds for small ¢ (short-range
forces), then it is easily shown that in three dimen-
sions G(F) has a square-root singularity at F=W,
i.e.,

(5.6)

A

c@) - cw)- L E=WPE

ypn p (5.7)

It follows from (5. 1) and (5. 5) that F — W is pro-
portional to (T — T,)?, so that the susceptibility
QA/E is proportional to (T — T,)2. From (5. 5a) we
find Q& e (T - T,.)?. The relation between the static
susceptibility and the frequency of the soft mode
is a special case of the Sachs—Lyddane-Teller
theorem, *°

In order to obtain a Curie-law susceptibility, we
must modify the assumption (5. 3). I, for small
4, (5.3) is replaced by

V@)=-W+e|q|+--- , (5.8)

then from (4. 16) we see that in three dimensions
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<3

2
is finite. Then (5.7) is replaced by
GF)=GCW)- |G'W)|[(F=W)+... .

From (5. 1) and (5. 5) we now find that F - W is
proportional to T'- T, so that (4. 25) leads to a
Curie-law susceptibility, and the frequency £, of
the ¢ =0 “soft mode” is proportional to (T — Tc)”z.
The assumption (5. 8) also leads [via (4. 9) and

(4. 13)] to the dispersion relation for small ¢

(5.9)

Q2= Q%+ const. x |§] . (5.10)

In neutron scattering studies of the soft transverse-
optical branch!! the data are generally fitted with a
curve of the form

Q2% = Q& 1 const. xg2 (5.11)
¢ 0 q

However, linewidths become very large as the
mode softens, and it is not clear what experimental
quantity should be identified with £, in this case.
For small d and T near T, the widths become large
compared with Qg and it is not really possible to
distinguish between (5. 10) and (5. 11).

More generally, if

V@) =- W+ elg|"

then G’ (W) will be finite and the susceptibility will
follow the Curie law. For example, if V;;
« |R; - R;| ™ at large distances, we will have
m=1. The dipole-dipole interaction (1.2) is not
spherically symmetric, but falls off like |R; - R, ™%,
We have studied the eigenvalues of the matrix
V(q) for this interaction and find that the lowest
eigenvalue (corresponding to a doubly degenerate
TO mode) has a g% dependence despite the break-
down of the moment expansion, The situation is
further complicated by the fact that when || be-
comes very small (such as the reciprocal of the sam-
ple size), the matrix becomes shape dependent,
An adequate treatment of this interaction would re-
quire taking account of domain formation, which
can be described by a modification of the distribu-
tion function but seems hardly worthwhile in the
context of our highly idealized model.

At any rate, to bring our model into reasonable
agreement with the real world we must assume
that (5.12) is true.

VI. FERROELECTRIC PHASE IN SELF-CONSISTENT
PHONON APPROXIMATION

(m<3), (5.12)

In the ferroelectric phase (A%# 0) the spectrum
of quasiharmonic frequencies will have two branches.
one representing displacements parallel to the
polarization (A=1) and one representing displace-
ments perpendicular to the polarization (A= 2, 3).
We concern ourselves now with the three-dimen-
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sional case (v=3) and shall discuss lower dimen-
sionalities later (see Appendix D).

In the paraelectric phase the parameter F, and
thus the quasiharmonic spectrum, was determined
self-consistently by the transcendental equation
(5.1). Now we must deal with a pair of coupled
transcendental equations, whose solutions can be
easily understood graphically. From (4. 14) and
(4. 17) we find

F,=12yA% + 89K, , (6. 1a)
Fy=F,=4yA%+ 89K, (6. 1b)
and
K = = GF)+ < G(Fy) (6. 2a)
1 23 1 B 2/ .
Ky=K,= - GF)+2 G(F,) (6. 2b)
3~ 2~ 23 1) + B 2/ .
Equations (4. 18) and (6. 1a) yield
A= (F-W)/8y, (6.3)

which can be substituted into (6. 1a) and (6. 1b).
Then (6. 1a)~-(6. 2b) are four equations in the four
unknowuns F,, F,, K,, and K,. Eliminating K, and
K,, we have

F 3w 3 1
_F 3w 3 1
16y + 167 28 G(F,)+ 8 G(F,) ,
F, F, W _ 1 2
8y ~ 8y "T16v ~ 2B CEY)+ 5 CF) .

To expedite graphical solution, we replace this pair
of equations by the equivalent pair

F,= 3F,- —4—%1 GF,), (6. 4a)
1 5 20
Fz=-§F1+-z'W——ﬁ—G(F1). (6. 4b)

Figure 6 shows the graphical solution of these
equations, In each case the curve labeled A repre-
sents (6.4a), and B represents (6. 4b). The curves
are drawn under the assumption of short-range
quadratic forces [i.e., Eq. (5.3)], which implies
G'(W)= -, Then we shall discuss the changes
produced by assuming long-range quadratic forces
[Eq. (5.8)].

Both F, and F, must be greater than W, in order
that the A, be positive [see (4. 13)] and the distri-
bution function normalizable. In Fig. 6(a), which
is drawn at the inverse temperature S, defined by
(5.5), curve A starts horizontally and B vertically
because G'(W)= -, Since G(F)~1/F for large F,
it is clear that curve A ultimately has a slope of
+%, and curve B ultimately has a slope of — 3, so
that there must be an intersection in addition to the
one at (W, W). For B>B, (T < T,) the intersection
near (W, W) disappears [Fig. 6(b)]. For B a little
less than B, (T a little greater than T',) there are
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8- (a)
Fp-W e
A
B
F,-W
‘ (b)
B>B
Fo-W
A
B
Fi-W
(c)
B<B¢
FoW
| A
2 B
Fi-W
(d)
ﬁ’<<[~3c
- /A
/\B
F‘-W

FIG. 6. Graphical determination of the parameters
Fy and Fy, which determine the self-consistent phonon
dispersion relation in the ferroelectric phase. Curves
A and Brepresent (6.4a) and (6.4b), respectively. At
high temperature there are no intersections [(d)] and
the system is paraelectric. At somewhat lower tem-
peratures [(c)] there are two intersections, the state of
larger polarization (labeled 1) having the lower free
energy. For T<T, [(b)] the intersection 2 disappears.
The system makes a first-order transition from the para-
electric state to the ferroelectric state 1. The graphs
are drawn for the three-dimensional case, under the as-
sumption of short~range quadratic forces.

two intersections, one [labeled 2 in Fig. 6(c)] near
(W, W). For B<pB, (T>T,)there are no inter-
sections and the ferroelectric phase does not exist.

At sufficiently high temperature the system must
live in the paraelectric phase, represented by a
point on the 45° line (F,=F,) in the F, - F, plane.
A second-order transition would be one in which
the system follows the 45° line down to (W, W) at
T, and then moves continuously away from (W, W)
as T is lowered below T.. But from Fig. 6(b) we
see that this is not possible, since there is no
intersection near (W, W) as T is lowered below T,.
The two ferroelectric states labeled 1 and 2 in
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Fig. 6(c) come into existence at some temperature
T, which is greater than T,. T, is the temperature
at which curves A and B are tangent at one point.
In Appendix C we show that the state 1 (which has
the larger polarization) has lower free energy than
2. Since 2 coincides with the paraelectric state
when T=T,, it is clear that the system must have
made a fivst-ovder transition from the paraelectric
state to state 1 at some temperature T, which is
in the range T ,<T,<T,.
If the assumption of short-range quadratic forces
- is abandoned in favor of (5.8), then G'(W) will be
finite and the topology of the curves may change,
permitting in some cases a second-order transition.
We define

=~ G'(W) (6.5)
and

- dFZ/dFl.[Fthﬂ:ﬂc on B
dF,/dF \Ip <w,p5, 00 A

(-1, 20vp 40yp

_( 5 * 2. )(3+ B, )
If a>1, the curves still look like those in Fig. 6,
except that A now has a positive slope at the origin
and B has a finite slope. As in Fig. 6(b), no inter-
section near (W, W) exists for 8>, and the transi-
tion is first order, but “almost” second order in
the sense that the susceptibility in the paraelectric
phase obeys a Curie law x « (T - T,)™, where T,
is below the temperature T, at which the transition
occurs. If a<1, curves A and B do not intersect
for T >T, [Fig. '7(c)], and the system therefore is
in the paraelectric phase for all T>T,. For
T <T, there is an intersection which moves contin-
uously away from (W, W) as T is lowered [Fig.
7(b)]. If we define 6=1-7/T, and y = 20yp/8,,
then for small 6 the intersection of the two curves
in Fig. 7(b) occurs at

2Wsy

l-a °’

Fi-W= 2W6(1+M)
1-a

The critical value of y for which a=1is

Yerit = %(‘/-6_— 1)%0- 72.
We have a first-order transition for y >0, 72 and
second-order transition for y <0.72, Finally,
(5. 5) allows y to be expressed purely in terms of
the frequency distribution of the harmonic part of
the potential:

y - ZVOI[V@)- vO)I* d

Iv@-v)]'d%

_ @i/ [w*@) - wi]?d%
o Te@ - Wil

(6.6)

Fp- W=

6.7)

I3

For short-range quadratic forces we have y
=, For a first-order transition, with a Curie-
law susceptibility in the paraelectric phase, we
require 0, 72<y <o,
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APPENDIX A: BEST MEAN-FIELD APPROXIMATION

If we use a distribution of the form (3. 1) with
arbitrary f, the approximate free energy is

F 1
NT E(ﬂ ®.#EO Vo + 2 Voo (7% + y(7*)

. % f g)lng(r)d® , (A1)

where
(a)
A
Fa-W B - Bc
B
Fy-W
(b)
A
F-W
B>B,
B
Fi-W
(c)
A
Fz‘w
B< B¢
F,-W

FIG. 7. Graphical determination of F; and F; when the
quadratic forces are of long range and o<1 [see Eq. (6.6)].
In this case a unique solution, representing a ferroelectric
phase, exists for T'<T, [(b)]. The solution joins the
paraelectric phase continuously when T'=T,, so the
transition is second order. The F,-W scale has been ex~-
panded for clarity.
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@) = [Te@)dr, @)= [r’gE)d*

= [ rig@a*r
Dimensional analysis tells us, as before, that the
character of the transition can depend only on the
dimensionless number ¥ [see (3.7)]. Minimization

of & subject to the normalization condition
[g(¥)d% =1 yields

g=Cexp[- Blyr*+ 5Voor*+ K- )], (A2)
where C and A& are determined by the conditions
fg(?)d”r: 1and K= @2 vy . (A3)
#0

In the paraelectric phase A=0. Complete explora-
tion of the phase diagram would clearly require

an understanding of a transcendental function of
two variables. We are not convinced that the effort
involved is worthwhile.

APPENDIX B: CHARACTER OF STATIONARY POINTS OF

FREE ENERGY IN MEAN-FIELD APPROXIMATION

The points A and B in Fig. 3 aretheintersections
of the solid curve 9f/3a =0 and the dashed curve
3f/8(6%)=0. From (3.9) the following statements
are evident: (i) 9f/da is positive above the solid
curve and negative below the solid curve; (ii)
3f/da is negative to the right of the solid curve and
positive to the left of the solid curve; (iii) 8f/8(6%)
is negative above the dashed curve and positive
below the dashed curve; and (iv) Bf/a(bz) is positive
to the right of the dashed curve and negative to the
left of the dashed curve.

Any point P in the neighborhood of B can be
reached from B by traveling along the dashed curve
and then horizontally, We write

£(P)—-f(B)= f vf.dl J’ f —Td(ﬁz),

(B1)
where the first integral is evaluated along the
dashed curve and the second integral is evaluated
along the horizontal line. If a(P)>a(B), then the
relevant position of the dashed curve is above the
solid curve, and both da and 3f/da are positive,
and thus (9f/8a)da is positive. I a(P)<a(B), then
the relevant position of the dashed curve is below
the solid curve, and both 8f/3a and da are negative
so (9f/%a)da is again positive. Similarly, on the
horizontal part of the path both 8f/8(5%) and d(5%)
have the same sign. Thus f(P)-f(B) is positive,
so B is a minimum,

The situation is different near A because the
dashed curve has a smaller slope than the solid
curve at A, In particular, if P is on the dashed
curve or solid curve, we have f(P)-f(A)<0. On
the other hand, if P is on the same horizontal or
vertical line as A, we have f(P)-f(A)>0. Thus
A is a saddle point,
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APPENDIX C: CHARACTER OF STATIONARY POINTS OF
FREE ENERGY IN SELF-CONSISTENT PHONON
APPROXIMATION

The curves A and B [representing (6. 4a) and
(6. 4b) of Fig. 6(c)] intersect twice if the tempera-
ture is in the range T,.<T <T,, where T is the
temperature at which tangency occurs. We shall
show that the intersection 1, corresponding to
larger polarization than the intersection 2 [see
(6. 3)], has the lower free energy, and that 2 is
only a saddle point and therefore not even meta-
stable. Since 2 coincides with the paraelectric
phase when T'=T,, it follows that the system must
make a first-order transition from the paraelectric
phase to 1 at some temperature T, in the range
T.<T,<T,. Gillis and Koehler® have reached iden-
tical conclusions in analyzing their model.

In Appendix B we have proved the same proposi-
tion in the MFA. As in the MFA, direct compari-
son of the free energies of 1 and 2 is inelegant, and
instead we look for a path from 2 to 1 such that
the free energy is obviously monotonically de-
creasing along the path. First it is necessary to
define the free energy at an arbitrary point in the
F,-F, plane (where F,>W, F,>W). This can be
done in many different ways, all of which agree
at the point 1, and all of which agree at the point 2,
but which may not agree at other points. The most
convenient definition proves to be the following:
evaluate (4. 12) with A ;= B[V(§)+F,] and A,,=A
=B[V(d)+ F,] and then formally minimize the re-
sulting function with respect to Az, taking no note
of the restriction A®> 0, The resulting free ener-
gy 1s

FFy, Fy) _

LD [F.GF )+ 2P G ()]

_.1_.<__.“L
T4y 2

+ 7;’7 [8G(F ) + 8G(F,)? + 4G(F)G(F,)]

S26ry. 2 G(Fz))

¥ 213 [H(F,)+2H(F,)] + const. , (Cl1)

where the additive constant does not depend on F,
and F, and H(F)= [G(F)dF. [An inconvenient defi-
nition, which did not lead us to a proof of the
desired result, isto evaluate (4.12) with the above
choice of A,,, using (6. 3) to eliminate A% ]

The partial derivatives of F are



1946

105 __ G'(Fy
N oF, B

b2

) (C2b)

x(—sl G(F,)- —BEZ G(Fy)~ Fye W) :
The pair of equations ¢, =0 and ¢,=0 are equiva-
lent to the system (6. 4a) and (6. 4b). Graphs of
¢,=0 and ¢,=0 are shown in Fig. 8. Since
(8y/B)G(F,) - F, is a decreasing function of F, and
(8 y/B)G(F,) is a decreasing function of F,, the
curve ¢,=0 is monotone increasing and always
passes through (W, W). The curve ¢,=0 has a
negative slope when F;=W and becomes asymptot-
ically vertical when (12y/B)G(F,)+3F,=3W. The
curves ¢,=0 and ¢,=0 intersect twice if T, <T <T,
[Figs. 8(b) and 8(c)]. If we choose the curve ¢,
=0 as our path of integration from 2 to 1, we can
write

1
/N[5 - 5@)]= [ ¢, aF;. (C3)
(a)
$,=0
Fa-W
$2=0
Fy =W
(b)
Fp-W
$41=0
1
2 $2:0
Fi-W
(c)
FZ-W ¢1 =o
i
$2=0
2
Fi-W
FIG. 8. Curves in the Fy-F, plane on which ¢;

=3(3/N)/8F;=0 and ¢,=8(F/N)/8F,=0. By going from 2
to 1 alongthe curve ¢,=0 we prove that F (1)<F (2).

(a) T>T,, (b) T slightly less than T\, (c) T slightly greater
than T,.
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From the above expression for ¢, it is evident that
¢, is negative at all points in the F,- F, plane
which are above the curve ¢,=0 [since - G'(F,) is
positive and G(F,) decreases with increasing F,].
Since the curve ¢,=0 lies above ¢,=0 between 1
and 2, it follows that ¢,< 0 on this path and thus
F(1) < F(2). More generally, since F decreases as
we move away from 2 along the curve ¢,=0 but in-
creases as we move away from 2 on a vertical line
(consider the sign of ¢, as F, is varied), we can
see that 2 is a saddle point., Similarly, since any
point near 1 can be reached by traveling along the
curve ¢,=0 and then vertically, we can see that
1is a true minimum.

APPENDIX D: FERROELECTRIC PHASE IN ONE AND TWO

DIMENSIONS, IN SELF-CONSISTENT PHONON
APPROXIMATION

In one and two dimensions we confine ourselves
to discussion of quadratic forces for which G (W)
=, We call such forces “short range.” This
definition includes the case V;;x 3;;, for which
G(F)=(F-W)™, We shall see that the SPA pre-
dicts a first-order transition to a ferroelectric
phase in one and two dimensions with short-range
quadratic forces. ™he prediction is evidently
wrong, at least in the limiting case V;;x §;;.

In one dimension (4. 13)-(4. 18) yield

(12y/B)G(F)=3W~3F (D1)

and
A% (F,-W)/8y, (D2)

the latter being true independently of dimensionality.
Graphical solution of (D1) is shown in Fig. 9, the
right-hand side being represented by the straight
line and the left-hand side by the two curves labeled
“high T” and “low T.” The high-T curve does not
intersect the straight line, so the system must use
the paraelectric solution. The low-T curve in-
tersects the straight line twice. The intersection
labeled 1 corresponds to greater polarization and
can be shown, by a proof similar to that in Appen-
dix C, to represent a state of lower free energy
than intersection 2. As T -0, the value of F at
intersection 2 approaches W, so 2 becomes identi-
cal with the paraelectric state. Thus, according
to the SPA, the system must make a first-order
transition from the paraelectric state to 1 at some
finite temperature.

Analysis of the two-dimensional case is identical
with the three-dimensional case, taking note of
‘changes in the coefficients in (4. 17)., The param-
eters F; and F, are found by solving the system

Fy= 3Fz"(32'}’/3)G(F2) , (D3a)
Fy= 4W - F,~ (32v/B)G(Fy), (D3b)

which replaces (6. 4a) and (6. 4b). Graphical solu-
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FIG. 9. Graphical determination of F in the ferroelec~
tric phase in one dimension, with short-range quadratic
forces. The straight line represents the right-hand side
of Eq. (D1), and the curves represent the left-hand side
of (D1) at high T and low T, respectively. At high T there
are no intersections, and the system is paraelectric. At
low T there are two intersections, the state of greater
polarization (labeled 1) having lower free energy. The
SPA predicts a first-order transition from the paraelec-
tric phase to 1.

tion is shown at high T [Fig. 10(a)] and low T [Fig.
10(b)], with (D3a) and (D3b) labeled by A and B
respectively., Athigh T there is no intersection,
and the system must be paraelectric. Atlow T
there are two intersections. Intersection 1 can
again be shown to represent a state of lower free
energy than 2, As T- 0, the point 2 approaches
(W, W), the low-temperature limit of the para-
electric solution. Therefore the SPA predicts a
first-order transition from the paraelectric state
to 1 at a finite temperature,

APPENDIX E: QUANTUM-MECHANICAL SELF-CONSISTENT
PHONON APPROXIMATION

A quantum-mechanical analysis of our model in
the SPA does not alter the predictions of the classi-
cal investigation, but merely revises the critical
numbers. In this Appendix we will exhibit the
straightforward generalization to quantum mechan-
ics and verify that the key classical quantities
have close quantum analogs. In particular, we
shall see that the basic equations (4. 12)- (4. 18) re-
main essentially unchanged.

J
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Our quantum-mechanical analysis proceeds simi-
larly to that of Pytte and Feder.!® Boson creation
and annihilation operators are defined in terms of
C . and the conjugate momentum p,, by

Cor= H(AMEL)™2(al, +a,) ,
Pa=1 (Me,,)/? (@h - aqn) ,

where X can assume six values (three when §=0)
corresponding to the three polarizations and the
sine or cosine normal coordinate, As a trial den-
sity matrix we choose

p=7 I}' exp(~ B‘axa;xaqx)l;l exp(- e adraq) ,
. q

(E1)

. (E2)
where the normalization factor 7 is
N =1 (1-e ] (1-e®n), (E3)
ar by

The prime in a product or sum indicates that the
range is half of § space, excluding §=0. The €,
are variational parameters. If the parameters in
(E1) are not initially taken to be identical with those
in (E2), minimization of the free energy leads to
the conclusion that they are identical. The A de-
pendence has been excluded from (E3), since it is
easily put into the free energy by hand. The alter-
native is to define a}, and a,, based on ¢y — AVN and
to add a compensating term to the effective Hamil-
tonian in the density matrix., We can remove the
constants 7 and M from the calculation with the
following definitions:

D= (M/1*)?8, T=yit/M? v,= BV@)/M .
(E4)
As in the classical equations, the mass need not
appear in quantum mechanics; it merely serves to
scale spring constants. For small g, v,, which
corresponds to the square of the unrenormalized
vibration frequency, is negative.
Introducing the kinetic-energy term into the

Hamiltonian

af 1 ’
Hyg = (ZM)I(E 2 pfﬁngh) ,
ar 2

we find the quantum-mechanical free energy to be

F 4 2f 1 4I' <~ Ny + 3 1 ’ v 1
= - TD = —_ T2 — —e B
N ro*+o ( Vot QEX (1+26,;) P )+N %) (En+ PN (g + 2)

2
4T 0 Ny + 3 "'w+% 2 ’ 1
26,,,) —aT2 9 = 2 —
* N %} Q'E” (14 26,y) = o N ? [BEpmon + 1)+1nn“]+0< ) . (E5)

As in (4. 12), the neglect of terms of order 1/N
eliminates the need for careful consideration of the
d=0mode. In (E5), x=1, 2, 3 and account has
been taken of the complete symmetry between the
sine and cosine normal coordinates, and

l
N = (e%ar — 1)1,
As in (4. 15), we define

X, = %}’ (1+26,00) (2gons + 2)/€qone . (E6)
q ’
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Variation of the free energy with respect to €, and
some manipulation yields, as in (4. 13) and (4. 14),

efhzvq +fl’ (E7)
where now
fr= 8T%, + 4T'D? (14 25,,) . (E8)

Variation with respect to D? gives
Do w/4T - 2%, . (E9)
If the right-hand side of (E9) is negative,

D¢=0. (E10)
In (E9), w=-~ FPv,/M=1*W/M is positive., We have
thus produced the quantum generalizations of the
key variational equations (4. 13), (4.14), (4.18),
and (4. 19).

In order for the subsequent classical analysis of
Secs. IV-VIto apply in quantum mechanics, we
must verify that the quantum analog of (1/8) G(F) of
(4. 16) has the same essential properties. With the
aid of (E6) and (E7) we can see that the quantum
function corresponding to (1/8)G (F) is

S(f; B) =< za ) Jd"q o+ 1)V ({exp[Bw,+)* /3] - 1}14 3) = (;T) Id”q @ +f) 2 coth 3 B +f)2 .

The following are the properties of (1/8)G(F)
which were invoked in our analysis.

(i) (1/B)G(F) is a monotonically decreasing func-
tion of F which approaches zero asymptotically
for large F.

(ii) (1/B)G(F) is monotonically decreasing as 8
increases.

(iii) As F=W,
(1/B) G(F)ocfd [V@)+FI?~ [ &% [F - W)+ aq"]™.

Quick mspectmn indicates that the first two prop-~

v,+f is correspondingly small.

7
(a)
_ high T A
F2 w
/N
Fi-W
(b)
Fa-W low T
A
1
2 B
Fi-W

FIG. 10. Determination of Fy and Fy for the ferroelec~
tric phase in two dimensions, with short-range quadratic
forces. Curves A and B represent (D3a) and (D3b), re-
spectively. At high 7 [(a)] no intersection exists, and
the system is paraelectric. At low T [(b)] there are two
intersections, the state of larger polarization (labeled 1)
having lower free energy. The SPA predicts a first-
order transition from the paraelectric phase to 1.

(E11)

r

erties hold for G (f; B). The third property is
necessary to determine the order of the transition,
and the dependence on dimensionality. It concerns
the domain of FZW and lg|20. In this region
Hence the hyper-
bolic cotangent can be replaced by the inverse of
its argument. In this critical range, then, G(f; 8)
is identical in form with (1/8)G(F), and hence
it and its derivatives at f=w have the same con-
vergence properties as the classical function at
F=W,
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The two-time spin-pair autocorrelation function 0(6, t) and the Fourier-space transform

-

I( l*{', t) of the two-time spin-pair correlation function O'(Rif, t), are expressed in terms of the
“friction function” occurring in the generalized Langevin equation for the spin operator s; and
its Fourier-spacetransform Si, respectively. The friction function is determined in the form
of a product of a Gaussian distribution function and a power series as a function of time ¢ for
the isotropic Heisenberg magnet and the XY magnet of spin % at infinite temperature. By trun-
cating the power series to the exactly known term, satisfactory results are obtained for I(k, ¢)
of the isotropic Heisenberg magnet of the linear chain and sc lattice. Satisfactory results for
G(Bif, t) are achieved by taking an inverse Fourier-space transform of the thus determined

Ik,t).

I. INTRODUCTION

In a recent paper, ! the short-time-expansion co-
efficients have been provided for the spin-pair cor-
relation function o(ﬁ,,, t) of the Heisenberg magnet
of spin % at infinite temperature~up to terms of
O(t1°) for the linear chain and up to O(t®) for the
square and sc lattices. In another paper, 2 the
short-time expansion of 0(R;, ¢) and its Fourier-
space transform I (E,t) are expressed as a product
of the Gaussian distribution function and a power
series in time f. The expressions obtained by
truncating the power series to the exactly known
coefficients are found to give very good values at
short times 0=7<2,0, where 7= (22)'/4J¢, z is the
coordination number of the lattice, and J is the ex~
change integral. But at larger times, they decay
to zero too fast. The Fourier-time transform of
the truncated expression for I(k, ) gives the Gram-
Charlier expansion of the scattering function S(E, w),
which Collins and Marshall® suggested for the an-
alysis of S(E, w); S(K, w) being the Fourier-time
transform of I (E, t). The above conclusion about
the truncated expression for I (E, t) indicates the
limitation of that expansion. The expressions are
valid for large k or not very small w, Inadequacy
of the Gram-Charlier expansion for small k is
stated also by Tahir-Kheli and McFadden. *

When investigating the two-time correlation func-
tion, the equation of motion is often set up, The
memory function or friction function occurring in
the equation is considered to decay faster than the
correlation function itself. The friction function is
sometimes approximated by the Gaussian distribu-

tion function, ® In the present paper, we take ad-
vantage of knowledge of the higher terms and ex-
press the friction function as a product of the Gauss-
ian distribution function and a power series. The
power series are truncated to the exactly known
terms. Basic formulas for that calculation starting
from the short-time expansion of the two-time cor-
relation function are provided in Sec. II. We apply
them to the two-time spin-pair autocorrelation
function (0, ¢) for the XY magnet and the isotropic
Heisenberg magnet in Sec. III. Corresponding cal-
culations for the Fourier-space transform I(k, ) of
O(ﬁ,,, t) are given in Sec. IV. The results are
compared with the exact expression for the one-
dimensfonal XY magnet (referred to as the XY
model),® the results of the computer simulation cal-
culation of Windsor, 7 an exact solution for the lin-
ear Heisenberg magnet of finite length, ® Blume and
Hubbard’s solution® of an integro-differential equa-
tion, and the results obtained with the aid of the
Gram-Charlier expansion.

II. TWO-TIME CORRELATION FUNCTION AND THE
FRICTION FUNCTION

In this section, we consider a two-time correla-
tion function (A(¢), AY(0)) of an arbitrary operator
A and its Hermitian conjugate A" for example,

A), AT0)=(A[)ANO)) , (2.1

where the bracket ¢ **) denotes the canonical av-
erage and

A(t)zethAe-th .

Here H is the Hamiltonian of the system. The



