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The principle of superposition is a cornerstone of
quantum mechanics. It says that when two evolving states
solve the Schrödinger equation, any linear combination of the
two is also a solution. For that reason, waves from the two
slits in the double-slit experiment simply add together to 
create the familiar interference pattern. As it happens, the 
superposition principle also prohibits the arbitrary copying
of quantum states.

Linearity, unitarity, and cloning
To see why, imagine a machine that copies the state of a pho-
ton or an electron. When the original enters, two copies come
out, each having the same state as the original. If such a ma-
chine were successful, it would convert the state +♢¬ to +♢♢¬
and +♡¬ to +♡♡¬, where the fanciful symbols +♢¬ and +♡¬ rep-
resent arbitrary states. The problem arises when we send a
linear combination, +s¬ = a+♢¬ + b+♡¬, through the hypothetical
cloner. If +♢¬ and +♡¬ are cloned correctly, then because of the
linearity of quantum mechanics, the output for their super-
position must be the superposition of the outputs, +e¬ = a+♢♢¬
+ b+♡♡¬. But we want +s¬+s¬ = (a+♢¬ + b+♡¬)(a+♢¬ + b+♡¬), the orig-
inal and a copy of +s¬. That is not the state +e¬we get! The figure
illustrates the general argument with a specific example.

The difficulty stems from the inherent nonlinearity of
copying: When one asks for “two of the same,” a square +s¬+s¬
of the original +s¬ is requested. The desire for a squared state
is in conflict with the strict linearity of quantum theory. As a
result, a single cloner cannot make a perfect copy of every
quantum state. So what states can it clone?

Thus far, we have considered the linearity of quantum
mechanics. But quantum evolutions preserve probability.
The norm ∀e+e¬ of the state emerging from the copier must be
the same as ∀s+s¬ of the original. The only difference between
the two norms, expressed in terms of +♢¬ and +♡¬, is in the
cross term. Thus the equation ∀♡+♢¬ = ∀♡+♢¬2 must be satisfied
by any two states that are perfectly copied. That simple equa-
tion has profound consequences: It shows that a quantum
copier can work only when the possibilities for the original
are orthogonal—that is, the scalar product ∀♡+♢¬ vanishes. 

One reaches the same conclusion after recognizing that
quantum evolutions are unitary—they preserve the scalar
product of any two states. So for states that can be copied,
one again gets ∀♡+♢¬ = ∀♡+♢¬2. That is no surprise; unitarity fol-
lows from linearity and preservation of the norm.

Quantum evolutions are reversible, so one can imagine
running the copier in reverse to delete the extra copy in states

such as +♢♢¬ or +♡♡¬. Since uncopying also preserves the
scalar product, it follows that perfect copying or deleting is
possible only for sets of states that are orthogonal.

The optimistic assumption that a copier will work ac-
cording to specs for the arbitrary states +♢¬ and +♡¬was naive.
Perfect copying can be achieved only when the two states are
orthogonal, and even then one can copy those two states (or
perhaps a larger collection of mutually orthogonal states)
only with a copier specifically built for that set of states. Thus,
for example, one can design a copier for any orthogonal pair
of polarization states of a photon, but a copier that works for
{+S¬, +E¬} will fail for {+M¬, +N¬}, and vice versa.

In sum, one cannot make a perfect copy of an unknown
quantum state, since, without prior knowledge, it is impos-
sible to select the right copier for the job. That formulation is
one common way of stating the no-cloning theorem.

Quantum cryptography
The impossibility of cloning may seem at first an annoying
restriction, but it can also be used to one’s advantage—for in-
stance, in a quantum key distribution scheme devised by
Charles Bennett and Gilles Brassard in 1984. The idea is for
the sender, Alice, to transmit many photons to the receiver,
Bob, with the aim of ultimately creating a shared, secret, ran-
dom string of zeros and ones. Such a random string can later
be used as a key for encrypting and decrypting messages. For
example, armed with a coded binary message and the key,
Bob can decode the message by reversing the binary ciphers
in all the positions where the key has a “1.”

In the Bennett–Brassard scheme, each of Alice’s photons
is prepared at random in one of four possible polarization
states: +S¬, +E¬, +M¬, or +N¬. An eavesdropper, Eve, would like
to get a copy of each photon for herself, but she also wants
to pass an accurate copy on to Bob, or else her presence will
be detected later when Alice and Bob check a random sample
to see if Eve has disturbed their signals. Notice, though, that
because of the no-cloning theorem, Eve cannot succeed in her
task. As discussed earlier, if her cloning device can success-
fully copy the vertical and horizontal polarizations, it will fail
to copy faithfully either of the two diagonal polarizations.
Thus the prohibition against cloning helps preserve privacy.

Although Eve cannot perfectly copy the photons Alice
sends to Bob, she can, in fact, do a pretty good job of approx-
imately cloning Alice’s transmission. Indeed, optimal ap-
proximate cloning is, in principle, one of the best methods
Eve can use against quantum cryptography. Fortunately for
Alice and Bob, it is possible to place strict theoretical limits
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on the fidelity of any such copying scheme. The study of ap-
proximate cloning is currently an active area of both theo-
retical and experimental research and is discussed in detail
in the additional resources provided at the end of this Quick
Study.

Causality, copying, and collapse
If cloning were possible, one could communicate instanta-
neously over a distance. Suppose Alice and Bob share two
photons in the entangled polarization state, +ς¬ = (+ES¬ −
+SE¬)/√2. The state +ς¬ can be expressed in any orthogonal
basis with the paired polarization states always oriented
along perpendicular axes; for example, +ς¬ = (+MN¬ − +NM¬)/√2.
So to send information to Bob, Alice might measure her pho-
ton in one of two bases, {+S¬, +E¬} or {+M¬, +N¬}, her choice of
basis encoding “0” or “1.” Alice’s measurement collapses +ς¬
into an eigenstate of the polarization she measures. If she
chooses “0,” Bob’s photon will end up either +E¬ or +S¬,
whereas “1” prepares it in one of the diagonal states.

In view of the collapse induced by Alice’s measurement,
Bob’s photon, in a sense, gets the message. But Bob doesn’t.
He cannot simply ask his photon, “What’s your state?” 
A quantum measurement is a multiple-choice test. It 
poses questions such as, “Are you +S¬ or +E¬?” Eigenstates 
of the measured observable are the only legal answers. If 
he wrongly measures in the basis complementary to that 
selected by Alice, Bob will randomize the state of his 
photon and, in effect, erase Alice’s message. And to choose
correctly, he needs to know the message. That’s the prover-
bial Catch-22.

Direct measurement fails, but what if Bob were able to
clone his photon first? Copying +S¬ or +M¬ into +SSS. . .¬ or
+MMM. . .¬ would introduce valuable redundancy. Even a
“wrong measurement” on some of the copies would not erase
Alice’s message, as other copies would remain for Bob to
query with complementary questions. And the right question
would lead to a consensus; all copies would give the same
answer in the multiple-choice test. Many copies of his photon
would thus allow Bob to find out the state and thereby read
Alice’s message. But as noted earlier, amplification requires
a copier tailored to the right basis. So the superluminal com-
munication-via-cloning scheme is foiled by the no-cloning
theorem.

What if Bob uses a copier for, say, just the basis 

{+S¬, +E¬}? If Alice sends “0,” the copier works. But for 
the diagonal input states (+S¬ ± +E¬)/√2, it produces
(+SSS. . .¬ ± +EEE. . .¬)/√2. The two multiphoton states are
equally probable and determined by the measurement at
Alice’s end. That state of affairs is indistinguishable from
what happens when Alice sends “0” and Bob’s properly
working copier is equally likely to generate +SSS. . .¬ or
+EEE. . .¬. The bottom line is that Bob’s basis-specific copier
is of no use for communication.

Nevertheless, the redundancy in states like
(+SSS. . .¬ ± +EEE. . .¬)/√2 is of interest, as it sheds light 
on the origin of the “collapse” in quantum measurements.
Each such state looks, to the casual observer, like many cop-
ies of just one preferred polarization. For example,
(+SSS. . .¬ + +EEE. . .¬)/√2 is a superposition of many copies
of two polarizations. Yet if Bob detects any one of the photons
in, say, the state +E¬, all the other photons will agree, just as
when Alice sends a “0.” The branch +SSS. . .¬ then becomes in-
accessible, and all further data will point to the single remain-
ing possibility. This consistency—this agreement among the
photons—looks like a collapse. Such considerations suggest
a strong affinity between a copier and a measuring appara-
tus. Both impose their choice of preferred states. Only states
that respect the “symmetry breaking” can be found out or
copied. Other states are converted into superpositions of re-
dundant branches that collapse into a single option when
probed by an initially ignorant observer.

Phrases like “Bob’s photon gets the message” or “Bob
erases the message’’ suggest that a definite underlying pure
state of Bob’s unobserved photon exists as soon as Alice
makes her measurement. Such language is natural in that it
provides a convenient picture that agrees with experimental
results. However, the fact that an unknown quantum state
cannot be discovered by a measurement or revealed by
cloning suggests that not only is it unknown, but it does not
even exist in the usual sense. Indeed, the nature of a quantum
state is still the subject of lively debate, and the restriction on
copying expressed by the no-cloning theorem is an important
part of the discussion. 
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There is no perfect quantum copier. Imagine a device that could
clone an arbitrary quantum state. (a) A vertically polarized photon
would yield two vertically polarized photons, both of which make
the “vertical” choice at a polarizing beamsplitter. (b) A horizontally
polarized photon would yield two horizontally polarized photons,
both of which make the “horizontal” choice. (c) Because quantum
mechanics is linear, a diagonal polarization—a superposition of ver-
tical and horizontal—can produce only the measurement outcomes
represented in panels a and b; it could not produce the outcome
shown. But such an outcome would be possible if the diagonal
polarization were cloned correctly. The linearity of quantum
mechanics thus prohibits the cloning of arbitrary states. 


