
Introduction
It is a great honor for me to receive the

David Turnbull Lectureship, and a special
pleasure that Professor Turnbull himself
was able to be present for this talk. In be-
ginning this presentation, I would like to
emphasize how old problems in materials
science are revisited when new tools be-
come available to address them or when
new applications require a different per-
spective on previous understanding. In
the work I will be discussing here, the old
problem is surface mass transport, the new
tool has been scanned probe microscopy,
and the new application is nanoscale ma-
terials properties.

We can begin by asking what makes
materials science special at the nanoscale?
We do not expect nanoscale materials or
systems to act like small-scale models of
the macroscopic and effectively continuum
world we live in. When we get down to
the nanoscale, very different types of
properties arise. One origin of novel prop-
erties for materials with size scales on the
order of a nanometer is the large surface-
to-volume ratio. When this is large, the
special properties of surfaces such as quan-
tum mechanical states that do not exist in
the bulk (e.g., gap states that can create
Fermi level pinning) can dominate the prop-

erties of the nanostructure. Another source
of special properties at the nanoscale is en-
tropy: when the number of particles in a
structure is small, structural fluctuations
can involve a large fraction of the volume,
with the result that any individual nano-
structure may deviate significantly from
the average properties of a collection of
nominally identical nanostructures.

Because these special nanoscale proper-
ties are directly related to the old problem
of surface mass transport on solid mate-
rials, I will begin by placing the problem
in historical context. Then I will go on to
show some modern observations that
demonstrate how easy it is to rearrange
surface structure on the size scale of nano-
meters to microns. At these scales, we
have the difficult problem that continuum
approaches do not adequately address the
atomistic nature of the structures, while
atomistic approaches are too cumbersome
for the relatively large number of atoms
involved. Alength-scale bridging approach,
the continuum step model, allows us to
address this problem; I will give some ex-
amples of how it is used experimentally to
measure free energies and kinetic para-
meters and how it is applied to predict
evolution of structure. We will end up
looking beyond the classical perspective
of deterministic mass transport and con-
sider the implications of stochastic behav-
ior at the nanoscale by applying new,
non-thermodynamic methods for evaluat-
ing the predictability of measured struc-
tural fluctuations.

History
This problem of surface morphology and

mass transport goes back a long time. It is
humbling to look at some of the classical
papers written in the 1950s; this early work
set the cornerstones for everything we are
able to do today in understanding struc-
ture at the nanoscale.

A key conceptual paper was “Some
Theorems on the Free Energies of Crystal
Surfaces” by Conyers Herring1 on the sta-
bility of surface structures (see Figure 1a).
He broke the conceptual barrier of a flat
surface as a static entity by showing that if
a flat surface does not represent a free en-
ergy surface on the equilibrium crystal
shape, it will spontaneously break up into
a hill-and-valley structure.2–5 The mecha-
nisms for that type of breaking up of the
surface—large-scale diffusion causing the
surface to change its morphology dramati-
cally, as illustrated in Figure 1b—were
then outlined about 10 years later by
William Mullins in “Theory of Linear Facet
Growth during Thermal Etching.”6 The
key concepts presented by Mullins have
been echoed in every subsequent advance
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in understanding morphology evolution.
Finally, the key underlying atomistic proc-
esses governing surface mass transport
were delineated at least as early as 1951 
by Burton, Cabrera, and Frank.7 They
identified the role of steps (shown in 
Figure 1c)—which I will later use as the
ultimate nanoscale substructure—in gov-
erning the underlying mechanisms of sur-
face mass transport in the evolution of
surface structures.

To move from these papers to what we
are able to do today required two impor-

tant scientific breakthroughs. One was a
theoretical understanding of entropy. At
the time Burton, Cabrera, and Frank 
wrote their paper, nobody knew how to
deal appropriately with the role of en-
tropy in fluctuating steps (the analogous
problem also arose in polymer physics).
Mullins actually dealt with this problem
in the mid-1960s,8 but the general signifi-
cance of his solution was not recognized
until the 1980s.9,10

The second breakthrough that had to
occur was in our ability to image the sur-
faces of small structures with atomic reso-
lution. Until the early 1980s, aside from
field ion microscopy,11 we were not able to
look at the distributions of structures in real
space. Our measurements were of average
properties of systems of structures. Infor-
mation about structural distributions and
fluctuations of individual nanostructures
had to be deduced (generally with a high
degree of non-uniqueness) from an inter-
pretation of average measurements.

Beginning in the early 1980s, the devel-
opment of scanning tunneling microscopy
(STM),12 as well as other innovative
microscopies such as low-energy electron
microscopy,13,14 reflection electron micros-
copy,15,16 and great improvements in envi-
ronmental scanning and transmission
electron microscopies (SEM and TEM),
changed the way we could make experi-
mental observations. With these tech-
niques, we can look at systems and measure
not just the average properties, but also
the full distribution of properties about
the average. We now can essentially do ex-
perimental statistical mechanics, where we
map out the distribution of structures.
From those, we can directly calculate par-
tition functions that in turn yield all of the
thermodynamic properties of the system.

Surface Lability
A natural consequence of a structure

being a solid is that its shape is resistant to
change. However, this intuition is mislead-
ing when one considers surface morphol-
ogy. There, micron-scale rearrangements
can occur at moderate temperatures via
the relatively easy diffusion of atoms across
the surface. We begin by considering one
example of surface lability, the rearrange-
ment of small Pb crystallites, a classical
system for studies of equilibrium crystal
shape.17–20 Figure 2a is an STM image of
the top of a �1-�m-diameter crystallite
supported on a ruthenium surface.21 It
was melted at �300�C and slowly cooled,
forming a flat facet on the top of the crys-
tallite. Around the edges of the facet are
concentric circular line boundaries; these
are steps between the interatomic layers
that terminate at the edge of the equilib-

rium crystal shape. As one moves down
the edge of the crystal, the descent is not
smooth. Instead, the descent occurs by a
sequence of discrete steps, and the separa-
tion between adjacent steps (and thus the
area of the flat regions between them) gets
smaller as one moves downward, as
shown in the histogram in Figure 2b. This
illustrates an important concept: the sides
of crystalline nanostructures of arbitrary
shape can be described in terms of a “stair-
case” of steps that can serve as a source (or
sink) of diffusing atoms.22

Surface lability is illustrated in the mass
transport needed to form the flat-topped
structure of Figure 2a from the original
rounded structure at high temperature. The
mechanism by which this change in shape
occurs is illustrated in Figure 2c. This shows
a time-lapse sequence of STM images fol-
lowing rapid cooling of a crystallite from
high temperature. The gray-scale top view
shows the top facet and the second layer.
The top layer is shrinking; on the time
scale of 30 min, it disappears entirely, and
the second layer becomes the top layer.
The process then repeats itself, with the
new layer shrinking and so on for many
tens of layers until the overall structure
reaches a metastable or equilibrium state.

There are several things to note here.
First, given that the top facet is �350 nm
in diameter, a quick calculation shows that
each of these disappearing layers contains
more than 500,000 atoms. So here we have
about 500,000 atoms, picking up and mov-
ing someplace else in an apparently deter-
ministic process, on a time scale of tens of
minutes. Second, we can wonder about the
strength of the driving force that causes
this motion—and we’ll answer that ques-
tion later, after we’ve seen how to quantify
chemical potentials. Third, the physical
process going on here is easy to visualize—
atoms are detaching from the step that
bounds the top layer, then diffusing out-
ward across the terrace, and reattaching at
the edge of the crystallite. The process can
be quantified, as illustrated in Figure 2d,
which shows the diameter of the top two
layers and the step–step separations around
the edge of the crystallite through three
cycles of layer removal. Finally, a small
noise level is visible in the diameter of the
top layers, and a much larger relative noise
level shows up in the step–step separations.
This is not instrumental noise. However, it
is physical noise in the sense that it is a
direct result of the thermal fluctuations of
the nanostructure itself.

In the example of the Pb crystallite, the
structure is relaxing into a new equilibrium
state after an abrupt change in tempera-
ture has changed the free energy balance.
A driving force for structural rearrange-
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Figure 1. Fundamental concepts in
understanding the mobility of structures
at surfaces were established in several
classical papers written in the 1950s.
(a) Conyers Herring’s illustration that flat
surfaces of arbitrary orientation are only
stable when they correspond to a curved
region of the equilibrium crystal shape.1

(b) W.W. Mullins’ illustration of the proc-
esses involved in evolution of a surface
from flat to faceted.6 (c) Burton, Cabrera,
and Frank’s illustration showing that
surface steps serve as the fundamental
point of action in surface mass transport.7



ment can be imposed in other ways as
well; for instance, the imposition of non-
equilibrium concentration gradients by
growth or sublimation,23 changes in the
free energy balance by chemical reaction,24

or the extremely weak driving force of
electromigration.25–28 In all of these cases,
the continuum step model provides a
powerful tool for quantifying the lability
that characterizes nanoscale structures.

Continuum Step Model
We want to be able to describe the

structural rearrangements that occur at the
nanoscale. This means describing struc-
tures that contain somewhere between
tens of thousands to millions of atoms. We
cannot do this properly using continuum
dynamics because any sharp edges on a
structure create discontinuities, and we

don’t have any way to independently 
determine the parameterization of a con-
tinuum dynamics approach. On the other
hand, if we want to go to the full atomic
scale, we have too many atoms, and po-
tential energy surfaces that are too com-
plex and diverse, to be able to address the
problem. So we have to choose the right
length-scale bridging approach.

As originally described by Burton,
Cabrera, and Frank,7 steps provide the
length-scale bridging link between the
atomistic and microscale properties of sur-
face structure. The advances in statistical
mechanics in understanding step proper-
ties29 make it possible to quantify this link,
which can be done using the continuum
step model.22,30–33 Here, I will show how
we can use direct measurements to under-
stand both the free energies governing step

behavior and the kinetics of mass trans-
port involving surface diffusion. Much
more information can be found in recent
reviews.34,35

The issues in describing steps are illus-
trated in Figure 3. At 0 K, perfectly ordered
crystalline surfaces include perfectly
ordered steps and kinks36 (Figure 3a).Monte
Carlo simulations allow the effects of tem-
perature to be visualized and quantified
(Figure 3b). Excitations of atoms from the
terrace are energetically costly, but excita-
tion at the step edge by kink formation oc-
curs at moderate temperatures. The result
is thermal wandering of the step. As one
follows the path of the step—its perpendi-
cular displacement x as a function of posi-
tion y along the step—the wandering is
similar to a random walk in which the
walker can move zero or one units to the
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Figure 2. Surface mass transport results in the motion of steps (the boundaries of crystalline atomic layers) and large-scale changes in
morphology, as illustrated for a near-equilibrium, micron-scale Pb crystallite measured with scanning tunneling microscopy. (a) Crystal shape
after slow cooling from the melt and extended annealing at 110�C.The top facet shows atomic structure with (111) orientation. (b) Histogram
showing the relative areas of the terraces between steps down the edge of the crystallite.The area of the top facet extends beyond the scale
shown by about 40�. As one moves down the edge of the crystal (from right to left in the histogram), the distance between steps, and thus the
relative area of the flat region between them, decreases. (c) Gray-scale top-view images of the evolution of the crystal through a change in
height by one atomic layer at 80�C. (d) The diameters (Dia1, Dia2) of the top two layers as a function of time (black and red curves) and the
distances between steps (w) along the crystallite edge. Images and analysis by K.Thümer, University of Maryland NSF-MRSEC.



right or left on each step forward in y. The
specific prediction for the mean-square
displacement for the step wandering is:

(1)��x� y� � x�0��2� �
kT
�
� y,

where is a thermodynamic quantity
known as the step stiffness, k is the Boltz-
mann constant, and T is temperature. For
the square lattice model of Figure 3b, the
stiffness is a known function of the kink
energy and temperature,37 and more com-
plex geometries can be solved as well.38

Such step wandering is immediately
observable in the atomic-resolution image
of real surfaces, as in the STM image shown
in Figure 3c. This is an Al/Si(111) struc-
ture.39 It is a well-ordered structure with
some defects due to Al/Si exchange on the
terraces. The step wandering takes place
in units of the overlayer unit cell. This
wandering can be compared directly to
the Monte Carlo simulation of Figure 3b,
keeping in mind that there is substantial
atomic complexity (6 Si atoms and 1 Al
atom) in each physical unit cell. However,
in analyzing the step wandering using
Equation 1, we do not have to worry
about the underlying atomic structure, we
just have to keep track of the shape of the
step edge, x(y). In fact, for this system, de-
spite the atomic complexity, we find that
Equation 1 is obeyed well over a broad
temperature range (770–1020 K). This is
not surprising—the random walk behav-
ior is quite general. It is surprising, how-
ever, that the temperature dependence of
the measured stiffness follows the predic-
tions of the simple near-neighbor lattice
model, yielding an effective kink energy of
0.2 eV.39 Being able to predict the relation-
ship between the thermodynamic behavior
of the thermal step wandering and the
underlying atomic interactions is a funda-
mental challenge that has only been ad-
dressed for simple systems.40,41

The step wandering also couples into
another thermodynamic term—the step
interaction free energy. The presence of
neighboring steps constrains step wander-
ing. This limits the step entropy, and 
so the free energy of confined steps is
higher than that of free steps. Thus, there
is an effective repulsion between steps
that is strengthened by stress-mediated 
interactions.42,43 Both the entropic and
stress-mediated interactions fall off as the
inverse square of the step separation. Mea-
surement of the distribution of spacings
between steps yields the strength of the
step–step repulsion.44,45 Given both the
step stiffness and the step–step inter-
actions, one can evaluate the chemical 
potential associated with any given step
configuration. This concept is illustrated
in Figure 4. An unconstrained step, which
exists in equilibrium with a concentration
c0 of freely diffusing atoms, is defined as
the zero of chemical potential. As a forced
curvature is added to the step, or as 
steps are brought into proximity with

�
�

neighboring steps, the chemical potential
increases:

(2)

where is the step stiffness, as in Equa-
tion 1; g is a coefficient determined by the
strength of step–step repulsions;44,45 � is
the atomic area; R is the radius of curva-
ture of the step; li and li+1 are the distances
to the steps on either side of the step of in-
terest; and h is the step height.46–48 The first
term in Equation 2 is the traditional
Gibbs–Thompson chemical potential for a
curved interface, and the second48 and third
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Figure 3.Three views of a step.
(a) Perfectly ordered ( T � 0 K) crystal
structure with regular steps and regular
kink density at the edge of the step.36

(b) Monte Carlo simulation37 of a
stepped surface with average step–step
spacing l in a square lattice model with
only near-neighbor interactions.The
energy scale is set by the kink formation
energy . (c) Room-temperature scanning
tunneling microscopy image of

R30� ordered Al overlayer
on Si(111). Image size, 30 nm � 30 nm;
step height, 0.31 nm.39

�
3 � 
3 �

�

Figure 4. Nanoscale structures can be
described as stacks of atomic layers
bounded by edges of specific shape
and slope.The local chemical potential
at any point on the edge of a
nanostructure is then defined by the
geometry of the steps on the edge—
most specifically, the radius of curvature
and the distance to neighboring steps.
The chemical potential of a step is
related to an equilibrium concentration
of freely diffusing atoms on the terraces
above and below the step, with which
there is balanced mass exchange at the
step edge. For an isolated straight step
(top illustration), the local concentration
cloc is identical to the equilibrium
concentration c0 of the flat surface. For
a structure bounded by a curved step
(center), the local concentration cisl is
larger than c0, and the addition of a
neighboring stack of steps (bottom)
causes the local concentration cstack to
be larger yet.



terms are due to step–step interactions.
The first and second terms disappear for an
array of straight steps (e.g., R is infinite),
leaving only step interactions to govern
mass transport.

Overall, we can describe any given
nanoscale geometry in terms of bound-
aries formed by steps and predict the
chemical potential locally, as illustrated in
Figure 4. Arbitrarily shaped structures
will have different chemical potentials at
different points on the structure, yielding
the chemical potential gradients that will
drive mass transport.

The second point to consider—and this
will give us the information we need to
predict the kinetics of mass transport—is
that equilibrium is dynamic. In the image
in Figure 3c, taken at room temperature,
everything is frozen for this system: the
temperature is too low to overcome diffu-
sion barriers. The picture represents a
snapshot of some configuration of thermal
equilibrium formed at a higher tempera-
ture. When a system is actually in thermal
equilibrium, there is always an exchange
of atoms. So, if we heat a stepped surface to
a temperature at which the atoms have
enough mobility to achieve dynamic equi-
librium, we start to see something new
happen. That is, as we take images of the
steps, the picture looks different every
time. The reason for this is that the steps
are moving (by atomic exchange). We see
this experimentally in STM in the form of
discontinuous displacements of the step
edge as the image scan passes near the
same point.49,50 This is illustrated in Figure 5
for the same Al/Si(111) surface shown in
Figure 3c, measured now with the sample
held at 700°C.39 Because we want to measure
the position of the steps as a function of time,
we measure repeatedly across one line per-
pendicular to the steps, rather than taking
a full two-dimensional image. This is a
real-time trace from which we can extract
the position of the steps versus time x(t).

The underlying physical basis for all
this step motion is that atoms are moving
around the step edge. They can move by
hopping on and off the step edge, or they
can move by atomic hopping parallel to
the step edge. The motion of atoms causes
the displacements of the edge of the step,
as shown in Figure 5. As the steps fluctu-
ate, the step stiffness exerts a restoring
force to bring the step position back to the
average. So, the overall rate of motion that
we observe depends on both the time scale
for atomic motion and the stiffness of the
step. We can extract this information from
the time correlation function G(t) of the step
fluctuations, which has a simple form, in
simple cases (which are what have almost
always been observed experimentally):39

, (3)

where x is the displacement of the step
perpendicular to the average step edge
orientation; t is time; a is the lattice con-
stant; 	 is the gamma function; is the
step stiffness; n � 2 or 4, depending on
whether atoms attaching at the step edge
or atoms diffusing parallel to the step
edge dominate the motion; and 
n is the
time constant governing the relevant
atomic motion. (For the complexities that
can arise in a full treatment with compet-
ing mechanisms of atomic motion, see
References 31 and 32.) 

The analysis of step wandering data for
Al/Si(111) using the time correlation func-
tion is shown in Figure 6. The shapes of
the measured curves show that n � 2 (e.g.,
atomic attachment dominates mass trans-
fer). The prefactors of fits of each of the in-
dividual data sets to Equation 3 yields the
time constants, which vary with tempera-

�
�

1
n�an�1 t


n
�

n � 1
n� �2	�1 � 1�n�

� ��kT
�
� �

G�t� � ��x�t� � x�0��2�

ture from about 260 ms at 770 K down to
0.3 ms at 1020 K.51 This means that at the
lowest temperature, there are about four
atomic exchanges per step edge site per
second, while at the highest temperature,
there are over 3000 exchange events per
second. The temperature dependence is
(as also was the case for the step stiffness)
surprisingly simple—it follows an Arrhe-
nius form with an apparent activation en-
ergy of 1.9 eV. Understanding what such
an apparent activation energy means in
terms of the underlying physical mecha-
nism—in this case, for a unit cell of seven
atoms—is a fundamental challenge. How-
ever, from the point of application, we can
use the time constants measured in this
way to predict nanoscale mass transport,
even though we do not fully understand
their physical meaning.

Nanoscale Mass Transport
Now we would like to take these ideas—

the free energies that we obtain by meas-
uring the spatial distribution functions
and the time constants that we can get by
measuring the temporal fluctuations of
the steps—and use them to predict mass
transport. I will take two examples: some
Si nanostructures fabricated by the group
of Professor Ichimiya of Nagoya University,
and the Pb crystallite discussed earlier. For
each initial structure, we will define the
structure in terms of the position of the
steps and assign a chemical potential (see
Figure 4) using measured values for step
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Figure 5. Repeated scanning tunneling
microscopy scans across a 75 nm line
perpendicular to two steps on Al/Si(111)
at 700�C.The horizontal direction
represents the position along the
surface x, the vertical distance
represents time t as defined by the time
interval between scans, which in this
case is 41 ms. Extracting the step
position from the scan yields x(t), as
shown in the lower part of the figure.5

Figure 6.The time correlation function
for Al/Si(111) determined from repeated
scanning tunneling microscopy scan
measurements, such as the one in
Figure 5.The data are fitted to a 
power law in time with an exponent of
0.47 � 0.04, indicating that the
rate-limiting process for step motion is
the exchange of atoms between the
step and the terrace.The prefactor of
the fit yields the time constant of the
atomic exchange, which decreases
from 260 ms at 770 K to 0.3 ms at
1020 K.Typically, 5–20 x(t) (position–
time) data sets are needed to have
sufficiently good statistics to evaluate
the correlation function.



stiffness and step interactions. Then, we will
calculate how fast each step moves, based
on its chemical potential compared with
those of its neighbors. We are going to get
these rates right—without arbitrary fit-
ting parameters—because the rate will be
directly related to the time constant that
we determined from our equilibrium fluc-
tuation measurements. For any arbitrary
structure that we start with, we can solve
the equations of motions (numerically, if
need be) for the whole array of steps, and
we can predict the mass transport over
large-scale distances.27,46

The case of the Si nanostructure is illus-
trated in Figure 7. The nanostructures are
fabricated using the STM tip and are
metastable; as soon as the temperature is
high enough to enable atomic diffusion,
the structures decay.52 The rate of the
decay has been measured by time-lapse
STM images of the entire structure, which
show that the structure evolves in a layer-
by-layer process: the top layer breaks loose
from the edges of the structure, shrinks,
and disappears, followed by the second
layer, until the entire structure disappears.
Careful data analysis also yields detailed
geometrical information on the height of
the structure and the area of each layer as

a function of time. The use of the contin-
uum step model to describe this process,
taking the very simplest model of a stack
of circular layers, is illustrated in Fig-
ure 7b. For attachment-limited kinetics,
each step in the cone will move with a ra-
dial velocity:

(4)

where the step chemical potentials are de-
fined as per Equation 2. 

By making the assumption that the slope
of the cone remains constant, the coupled
equations of motion of Equation 4 yield a
simple analytical solution:47,53

(5)

where z is the height of the cone; h and a
are the step height and lattice constant, re-
spectively; and m is the slope of the cone.
Because the radius of curvature is small,
the step repulsion term is insignificant in
comparison with the effect of the stiffness.
The predicted 1/4 power-law time de-
pendence of the decay is confirmed by the
experimental measurements of height ver-
sus time.54 Somewhat surprisingly, given
the simple model (the model of circular
layers neglects the clear evidence of edge
facets on the cone in Figure 7a), the pref-
actor of the fit to Equation 5 yields a value
within a factor of two of the value predicted
using an independent measurement of the
ratio of .53 The evidence, therefore, is
that the continuum step model works well
down to length scales of nanometers, where
one would have expected that the discrete
nature of kinks and facets on the step edge
would become important. Another inter-
esting result is the magnitude of the driv-
ing force for the decay. Using Equation 2 for
the step chemical potential, we find that the
driving force is only about 0.4 kT. Using
the perspective of atoms fluctuating on and
off the step edge, this is equivalent to only
1 in 15 fluctuation events resulting in an
atom permanently leaving the step edge.
So, although the overall decay of the struc-
ture appears quite deterministic, there is a
significant underlying stochasticity to the
process. 

A second example, the relaxation of the
Pb crystallite (illustrated in Figure 2), is
similarly amenable to quantitative analysis
using the continuum step model. In this
case, the starting configuration for the decay
is a high-temperature structure that has
been quenched to a lower temperature at
which the thermodynamic parameters are
different. This upsets the chemical potential
balance and mass transfer results, yielding

�
2�
�

z0 � z�t� � 	4h2a3�
�

t
m2kT
2

�,

drn

dt
�

a
2
2kT

�2�n � �n�1 � �n�1�,

layer-by-layer peeling, which is easily visu-
alized in terms of the radii of the top two
layers as a function of time (Figure 8a).
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Figure 7. Nanostructure evolution can
occur if the fabrication process creates
a metastable structure subject to decay
at temperatures at which diffusion is
activated. (a) Crystalline Si nanostructure
imaged at room temperature after STM
fabrication (image courtesy of A. Ichimiya,
Nagoya University). (b) Simplest
continuum step model of the structure,
neglecting the side facets47 (image
courtesy of D. Kandel, Weizmann
Institute of Science).

Figure 8. During the relaxation of a Pb
crystallite following a rapid temperature
decrease (see Figure 2), the circularly
symmetric crystallite evolves via the
sequential shrinking and disappearance
of the top layers of atoms. (a) The
experimentally measured radii of the
shrinking layer and the second layer; a
vertical line drawn through any two curves
intersects the growing layer (upper curve
of the pair) and the shrinking layer
(bottom curve of the pair). The flux of
atoms J between any two steps is
governed by their difference in step
chemical potential (see Figure 4) as
well as the rates of atomic detachment
from the step edge and diffusion across
the terraces.Then, the rate of motion of
each step is governed by the sum of the
fluxes from its two neighboring steps, as
shown in the coupled equations of motion
in (b). (c) Numerical solution of the
equations in (b) reproduces the
experimental observations qualitatively
well, with quantitative agreement hinging
on careful attention to boundary
conditions. (Numerical simulation by 
M. Degawa, University of Maryland.)



The mass transport can be modeled using
the coupled equations of motion shown in
Figure 8b, as well as reasonable estimates of
the energetic parameters needed to evalu-
ate the step chemical potentials.21 The result
of the simulation captures all of the quali-
tative features, and the time scale can be
reproduced with reasonable choices for
the kinetic parameters. The details of the
evolution, particularly the slow-down in
the rate of peeling as the final state is
reached, depend on volume and the
choice of the boundary conditions.48

As with the silicon pyramids, we can
evaluate the strength of the driving force
that causes the more than 500,000 atoms in
each layer to pick up and move to the edges
of the crystallite. In this case, the chemical
potential gradients are even smaller than
for the Si pyramids. Here, the ratio of the
chemical potential to the thermal energy,
�/kT, is less than �1%. However, even
though the chemical potential gradients
are tiny, compared with the thermal energy,
there appears to be deterministic motion
in the evolution of the structure. So, what
does this mean in terms of the underlying
fluctuations? Using our knowledge of the
time constants with which atoms are mov-
ing on and off the step edge, we can find
out that in fact there is a lot more uncer-
tainty in this process than meets the eye.
We find that each atom at the edge of the
top shrinking layer is moving on and off
the step edge an average of 1300 times be-
fore it decides to actually make the leap
and diffuse across the terrace permanently
to the edge of the crystallite. This impact
of this stochastic behavior is most evident
at the edges of the crystallite (see Figure 2c),
where the step–step spacings are small.

First Passage and Persistence 
for Nanostructures

We would like to move forward from
our classical, quasi-equilibrium picture of
steps and the related thermodynamics de-
scribing nanostructures, and take the next
step in understanding the potential impact
of the stochastic nature of nanostructures.
We can ask different types of questions to
characterize this stochastic behavior. In-
stead of asking what the mean-squared
displacement after a period of time t is, we
can ask questions that might get at the sto-
chastic nature of nanostructures by look-
ing again at the fluctuations of individual
steps. One relevant type of analysis is called
the first-passage probability.55 The generic
first-passage question is, if a random
walker starts out at position x at time zero,
what is the first time that it might reach a
position x � x? This question cannot be
answered by taking correlation functions;
it requires direct information on the posi-

tion versus time itself. Of course, this is ex-
actly what we can measure courtesy of a
direct imaging technique like STM.

Experimentally, the first-passage proba-
bility is difficult to measure because it re-
quires a lot of statistics. A related quantity
is the persistence probability. This is es-
sentially the integral of the first-passage
probability, and we can get statistically
significant tests of the persistence of step
wandering with about the same measure-
ment investment used for evaluating the
correlation function.56,57 The analysis is
illustrated in Figure 9, which shows a
schematic plot of the step position versus
time. To do the analysis, we divide the total
time of the measurement into equal bins (or
intervals) of width t. Then, we define two
classes of bins. Apersistent bin is one where
the path never gets back to the position 
at the beginning of the interval. In the fig-
ure, the path is persistent in the left-hand
interval. In the right-hand interval, the
path starts near the origin, and within the
time interval t it crosses the original po-
sition again two times. So, the path is not
persistent over this interval. By assessing
the persistence over a large number of in-
tervals, the persistence probability p(t)
for that time interval can be assessed.
Then, the analysis is repeated for all other
accessible values of t, giving the func-
tional form of p(t), the persistence probabil-
ity as a function of time.

Theory predicts that the persistence
probability will be a power law in time.
For the case of wandering steps, the expo-
nents have been predicted.58 When step
fluctuations are limited by attachment of
atoms at the edges, as for the Al/Si system
(Figure 6), the exponent is predicted to be
3/4. The persistence probability extracted
from the Al/Si fluctuation data is shown
in Figure 10. The power-law time scaling
is clearly observed, with an exponent of
0.77 � 0.03.56 Interestingly, the magnitude
of the persistence does not in fact depend
on the temperature, even though the time

constant governing the fluctuations ranges
from 0.26 s at the lowest temperature to
1.2 ms at 970 K. Instead, the persistence
curves depend only on the sampling time
interval (the difference in time between re-
peated images of the same position on the
step edge), as shown in Figure 10b.

The independence of the persistence
magnitude is quite surprising, and it turns
out to be a result of defining persistence in
terms of the displacement relative to the
start of each time interval.59 There is an-
other question we could ask:56 at time in-
terval t, what is the probability that the
wandering step has reached a certain arbi-
trary position, perhaps one of physical sig-
nificance such as the step average position,
a defect, or an anti-step? This may represent
a more interesting physical question than
the relative displacement. In this case, the
defined probability is called the survival
probability, and it roughly decays expo-
nentially with time, with a time constant
related to the thermodynamic correlation
time,60 which is in turn related to the sys-
tem size. 

This example illustrates the beginning
of the learning curve for relating physical
step properties directly to their underly-
ing stochastic behavior. Fifteen years ago,
we were at this stage when we started
looking at the equilibrium properties of
steps. We wrestled with the ideas of how
to get those equilibrium properties corre-
lated with theory and how to turn the re-
sults into something useful in terms of
predicting structural behavior. Here, we
are hoping that addressing the stochastic
aspects of the fluctuations of steps will
allow us to make the same kind of progress,
so that we can ultimately predict the sto-
chastic properties of fluctuating nanoscale
structures. 

Conclusion
The evolution of solid structures via

surface mass transport at the nano- to
microscales occurs much more readily than
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Figure 9. Given a path (e.g., the position of a single point on a step as a function of time),
the persistence probability for a time t is measured by evaluating the path throughout each
time interval to see if the step returns to the starting point at the beginning of the interval. In
the illustration shown, the path is persistent (i.e., does not return) in the left-hand interval
and is not persistent (does return) in the right-hand interval.



our intuition about solids might lead us to
believe. We naturally think of solids as 
being resistant to shape change, but what
we see experimentally is that it is rela-
tively easy for large numbers of atoms—
the kinds of numbers that are present in
nanoscale structures—to pick up and
move about on the surface cooperatively
with substantial impact on nano- to micro-
scale structures. We can predict quantita-
tively what goes on in such nanoscale mass
transport by a simple and fundamental for-
malism. This formalism is based on defining
local thermodynamic properties of the basic
nanoscale building block, which is a step.

Among other things, the results show
that extremely small driving forces (e.g.,

potential energy differences much less than
kT) can cause large-scale and apparently
deterministic structure changes. We can
make these analyses and predictions be-
cause we can now do direct imaging with
scanning tunneling microscopy (and other
techniques) and map out the spatial and
temporal distribution functions directly.
Combined advances in experimental tools
and theoretical understanding have brought
us a long way toward quantifying the con-
ceptual understanding of nanoscale mass
transport that was established in the 1950s.
As a result, we are now poised to explore
one of the novel aspects of nanoscale sci-
ence, which is life in a world where fluc-
tuations represent a significant contribution
to the overall properties of the structure.
There are fascinating fundamental chal-
lenges in quantifying such stochastic be-
havior, with potential applications to
issues such as switching between states,
nucleation events, characterization of noise,
and how our nanostructures might switch
or change their properties abruptly in re-
sponse to external fields. 
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