
On the nanometer scale, a seemingly smooth crystalline
surface is not only bumpy, it’s also in motion. Tiny

mesas and depressions appear and disappear; escarp-
ments range over the surface like waves on a beach. These
thermal fluctuations are visible, thanks to advances in
imaging techniques, which exploit electrons to divine the
nanoscale motions (see figure 1). But although experi-
ments can capture the spatial structure of surface fluctu-
ations with atomic resolution, they lack the temporal res-
olution to follow the hops of individual atoms. Instead,
observations yield a set of parameters that characterize
how the surface changes on longer, millisecond timescales.

Can these parameters be derived from physical argu-
ments to predict the nanoscopic behavior of surfaces? With
so much activity at the atomic level, building a model
based on the behavior of individual atoms is too difficult.
Moreover, we do not know how all the atomic degrees of
freedom couple to the motion of surface features formed by
tens to hundreds of atoms.

Fortunately, it turns out that a thermodynamic
approach—one that treats fluctuations as the larger-scale
manifestations of atoms moving in equilibrium—can suc-
cessfully account for the observed behavior. This
approach, which is the subject of this article, has more
than academic interest. As devices shrink in size to the
nanometer scale, the measurement, characterization, and
understanding of how tiny surface features evolve will be
crucial in determining the reliability and utility of nano-
structures.
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A key building block in the evolution of surface structure
is the step—a line boundary at which the surface changes
height by one or more atomic units. Steps piled on top of
each other form walls, which, in turn, constitute the basic
architectural elements of nanostructures. Because atoms
in steps are bound to fewer atoms than are the atoms that
make up flat surfaces, steps are more susceptible to ther-
mal fluctuations than the surface as a whole. Step motion
is therefore the basis for nanostructure evolution.

A step advances or retreats when atoms move along
its edge or back and forth between the step and adjacent
terraces. But, as suggested in figure 2, we can picture a
step as a one-dimensional interface or as a massless string
that can vibrate with any wavelength greater than the
atomic scale. In this scheme, the restoring force that keeps
step fluctuations from growing indefinitely is the free ener-
gy cost of increasing the step length, which is governed by

the step stiffness, b(T) (see the box on page 27).
We can quantify the tendency of a step’s configuration

x(y) to remain straight by defining a chemical potential:

(1)

where W is the smallest increment in area by which a step
moves, and the amplitude of the fluctuation is assumed to
be small. When the step curves due to thermal fluctua-
tions, the chemical potential changes, triggering atomic
motion that opposes the deviations from a straight config-
uration (when m = 0).

At the atomic level, the physical mechanisms by
which diffusing atoms give rise to step fluctuations can be
put into three general classes:
� Periphery diffusion, in which atoms flow along the step
edge.
� Terrace diffusion, in which an atom moves from the
step to the terrace, diffuses on the terraces, and then re-
attaches to the step at a site some distance away.
� Attachment–detachment, in which atoms move
between the step and terraces with no correlation between
motion at different sites.

Remarkably, a simple, linearized approach based on
the Langevin equation can not only describe the large-
scale behavior and universal properties of fluctuating
steps, but also embody the three atomic diffusion mecha-
nisms.1,2 According to this approach, a given location x on
a step will move according to

(2)

where n depends on the time constant, step stiffness, and
temperature; z is a positive number, and h is a noise term
that may depend on the diffusion mechanism. The value of
z is related to the character of the atomic diffusion mech-
anism: z = 4 for periphery diffusion, z = 3 for terrace diffu-
sion, and z = 2 for attachment–detachment.

Applying this analysis to fluctuations mediated by
each of the three mechanisms yields three different class-
es of behavior, each described by a different power-law
dependence of the fluctuations on time, temperature, and
stiffness. Because we can image steps in real time, we can
test whether this approach accurately describes how steps
fluctuate, and, if it does, measure the key time constants
and step stiffness. In particular, we can measure the tem-
poral correlation function G(t) and compare it with our
model-based prediction, as given by:

(3)

where z takes the limiting value of 4 for periphery diffusion,
3 for terrace diffusion and 2 for attachment–detachment.

The first quantitative measurement of G(t) for fluctu-
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ating steps was made by Jean-Jacques Métois’s group at
CNRS-Marseilles. The researchers used reflection elec-
tron microscopy (REM) to image steps on silicon (111) at
temperatures in the range 900 to 1255 °C and at video
rates of 30 Hz. As figure 1b shows, at these temperatures,
steps shift position dramatically (by tens of nanometers)
on timescales of seconds. At 900 °C, Métois’s group found
that G(t) was clearly proportional to t1/2.

In the wake of this first measurement, many further
studies of step systems have revealed fluctuations that
seem to be characterized either by periphery diffusion or
by attachment–detachment. Although it is pleasing to
have experiments agree well with theory, these results are
actually quite puzzling. In real systems, without informa-
tion to the contrary, we would probably expect several
competing diffusion mechanisms to operate at the same
time and to possibly contribute more or less equally to G(t)
under the same conditions. That, in any given system, we
see just one of three theoretical limiting-case behaviors,
rather than a mixture, greatly simplifies the problem of
predicting fluctuations.

But why is nature so amenable? A more detailed
analysis of step fluctuations that includes the possibility
of competing mechanisms has answered the question. It
turns out that only a small physical change in the relative
importance of one mechanism is required to tip the observ-
able fluctuation behavior into one of the three limiting-
case regimes. For instance, when the time constant for
attachment–detachment ta is large compared with the
rate for periphery diffusion tp or terrace diffusion tt,
attachment–detachment events limit the overall rate. In
this case, z takes the limiting value of 2, which is formal-
ly expected when the rates of periphery diffusion and ter-

race diffusion are infinitely fast. Decreasing the ratio of ta
to either of the other two time constants yields crossovers
in observable behavior to the other two regimes, as shown
in figure 3.

For example, a crossover from z = 2 to z = 3 behavior
occurs with an approximately two-orders-of-magnitude
change in the ratio of the time constants for diffusion and
attachment–detachment. Such changes in relative rates
are easily accomplished due to the tendency of rates to
change exponentially with temperature. For instance, if
the two processes differ in activation energy by 0.5 eV,
then a change of 50 in the ratio of the rates would require
about a 100 K change in temperature at 300 K.

Atomic clusters—surface islands—can be thought of
as closed-loop steps, which, like open steps, can diffuse
over surfaces. To address this phenomenon, experimental
and theoretical studies have sought to determine the vari-
ance of the displacement of the clusters’ center of mass as
the clusters move about in a random-walk fashion. These
random walks are expected to fall within three classes
governed by the same three diffusion mechanisms intro-
duced above.

As in the case of open steps, we can derive a measur-
able quantity and compare it directly to its measured
value—in this case, the dependence of the diffusion coeffi-
cient D on the linear cluster size R. The experiments have
shown that, usually, D � R–a. Furthermore, when diffusion
along the periphery of the island predominates, a � 3. For
the terrace diffusion mechanism, a � 2; for attach-
ment–detachment diffusion, a � 1.

This approach to edge fluctuations has been extended
by Norman Bartelt and Robert Hwang of Sandia National
Laboratories to address the effects of dislocations and
strain on island diffusion. Doubtless other exciting possi-
bilities exist, too.
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Edge fluctuations allow nonequilibrium structures to
decay back toward their equilibrium state. If our interpre-
tation of edge fluctuations is correct, then we should be able
to quantitatively predict how nonequilibrium structures
evolve. And if the structure is not too severely perturbed
from its equilibrium configuration, then we can use the
simple approach of linear kinetics, in which the velocity of a
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step is assumed to be proportional to the
change in the free energy produced by
the step’s motion. Here, the proportion-
ality constant is directly related to the
time constant for thermal fluctuations.

The simplest case of structural
decay that can be described in terms of
steps is the decay of a single perturbed
step, as illustrated by the surface
shown in figure 4 in which the decay of
the step bump after it has formed
could be tracked quantitatively. Ana-
lyzing the decay’s Fourier components
yielded time constants that depend on
wavelength in the same way as for
step edge diffusion. Further vindica-
tion of the thermodynamic approach:
The predicted value of the terrace diffu-
sion time constant, 10 ms, agreed with
the value determined from previous
direct observations of equilibrium step
fluctuations.

Such consistency checks give sur-
face scientists the confidence to apply this approach to the
evolution of more complex structures. So far, it has been
applied to—and tested against—structures having inter-
acting steps, three-dimensional forms, and variable chem-
ical composition, as well as to structures in the presence of
applied fields, such as strain or electric potential.

As an example of a complex structure, consider the
stability of the pyramidal structure shown in figure 5.
Whether fluctuation-driven kinetics drives the evolution
of such structures can be evaluated by observing the decay
of a single-layer island: If the decay rate is independent of
island size (as, in fact, is the case), then detachment kinet-
ics governs the decay.

From the measured island decay rate at any temper-
ature (for example, 6 per second at 465 °C), the value of
b/ta can be determined explicitly. This number in turn can
be used to evaluate the decay of the pyramid, which can be
thought of as being made up of sequential layers of
islands, each decaying as a result of the emission of atoms
from its edges. But to understand how such structures
change in time, we have to model not just how steps
behave by themselves, but also how they interact.

The basic physical issues are easy to understand.
First, when steps are close together, step interactions
(which arise from the configurational entropy of the steps
and from the strain at the surface) will favor motion that
maximizes the distance between steps. This tendency pro-

vides a driving force for smoothing steep-walled structures.
Including step–step interactions in the description of step
motion is accomplished by adding the potential energy
change due to moving a step between two neighboring
steps. For a steep-walled structure, the step–step repulsive
interaction is strong and tends to prevent fluctuations away
from the uniform slope. This process is clearly observed in
the evolution of the structure in figure 5, where side walls
maintain on average a constant slope as the top layers
sequentially disappear.

For the simple case of such a shape-preserving decay,
the coupled equations of motion of the structure’s sequen-
tial layers imply that the height of the pyramid will decay
as t1/4 with an absolute rate being completely determined
by the same factors that determine the decay of a single-
layer island.

Analysis of many decay cycles yields extremely good
agreement with these predictions. For instance, at 465 °C
the measured time-exponent is 0.25 � 0.01, and the meas-
ured absolute rate (6.1 � 0.4 Å/s1/4) is within a factor of
two of the predicted value (3.1 � 0.3 Å/s1/4). This success
provides further encouraging evidence that the use of
measured thermodynamic parameters is a powerful tool
for predicting even complex decay behavior.
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Using measured fluctuations as the basis for modeling dif-
fusion and decay rates is a natural extension of the
methodology of traditional materials physics. However, as
interest in nanostructures grows, so too does the possibil-
ity that the fluctuations themselves could be of practical
interest. Two scenarios (among many) for this possibility
come to mind. In both, nanoscale structures that can fluc-
tuate between two configurations having different proper-
ties could be used to perform a crucial function, such as
electronic switching.

In the first scenario, fluctuations are undesirable
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because only one of the system’s fluctuation configurations
gives the performance required. In this case, predicting
the time it takes a single structure to change shape is cru-
cial because it determines the redundancy needed to real-
ize the desired reliability. Known as the persistence prob-
lem, this question is an active area of research.

In the second scenario, the inevitability of structural
fluctuations provides the basis for the device’s function.
Here, a key quantity is the cumulative time that the struc-
ture spends in one of its fluctuation configurations. Pre-
dicting this fractional on-time or cumulative-state time is
known as the sign-time or residence-time problem, and is
closely related to the persistence problem.

To illustrate the richness of the physics of persistence,
a simple numerical experiment can be performed on a
model that incorporates the simplest and most common-
place process that can take place on a surface—atomic
diffusion. At first, to make things even simpler, only the
relaxational dynamics of diffusion contributes to the evo-
lution of the initially rough surface. On a two-dimension-
al substrate, a rough surface is initially prepared by
choosing h randomly from a Gaussian distribution with
zero mean. Then the surface is allowed to evolve deter-
ministically through the diffusion equation. As the sur-
face fluctuates, the persistent sites are kept track of—
that is, sites at which the deviation of the height from its
mean of zero did not change sign up to a given time t. If a
fluctuation changes the sign of the height (measured as
the deviation from its mean) at a site before or at time t,
that site is simply discarded from that moment on.

Figure 6 displays in the unit square the distribution
of persistent sites at various times for which h � 0.
Despite the simplicity of the dynamics, the generated sets
have complex structures that appear—unexpectedly—to
be fractal. (The Haussdorff dimension of the persistent set

is 1.55, in contrast to the initial
configuration, which, being area
filling, has a geometrical dimen-
sion of 2.)

As the system evolves in
time, fewer and fewer sites
remain persistent, and the total
number of persistent sites decays
according to a power law N(t) �
t–q, where q is the so-called per-
sistence exponent. For the simple
dynamics model described above
the value of q has been deter-
mined numerically with great
precision3 to be q = 0.1875(10).

The apparent simplicity of
the dynamics has spurred an

extensive search to find a rigorous derivation of the expo-
nent—but so far without success. Recently, however, a
fruitful approach to the persistence problem has emerged
in the form of the so-called distribution of sign times
(DST),4,5,6 which is also known as the residence time dis-
tribution.7 Less restrictive in its definition than persist-
ence time, the DST concept incorporates persistence as a
particular case. With DST, when site i changes sign in h,
we do not discard the site (as we did when constructing
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the persistence probabilities). Rather, we keep the site,
but record the time ti at the site only when its value of h
is positive. It’s as if each site has its own clock that ticks
only when h (or, generally speaking, the fluctuation) at the
site has a positive sign. Thus, at time t, each site has a
clock value ti associated with it, and, since the interface
fluctuates in a stochastic fashion, ti is a random variable.
The probability S(t, t)dt that one finds a site with a sign-
time clock value between t – dt and t gives the sign-time
density. Clearly, sites for which t = t are those for which h
� 0 up to time t—in other words, the persistent sites.
Based on the sign-times approach, an analytic expression
can be derived for the persistence exponent,
q=(4–p) /(4p–8)=0.1879 . . . , which agrees remarkably
with the experimentally derived value quoted above.

Although more general than the persistence probabil-
ity, the DST is easier to measure because more sites
remain in play for longer as the measurement proceeds.
Moreover, it can be measured with the same experimental
techniques used for directly measuring step fluctuations.
The data are the same sort, too.

Theoretical analysis of the DST—even on simple
growth models—has led to a few surprises. In particular,
it turns out that for models described by the Langevin
equation, the DST depends only on the substrate dimen-
sion and on the order of the relaxational term. That is, the
DST for step fluctuations has only three different func-
tional forms, and they correspond to the three classes of
diffusion mechanism—just like the temporal correlation
function, G(t).

This class of Langevin process has provided another
surprise: Ergodicity breaks down across a critical spatial
dimension d*. In general, an ergodic variable is one that,
given enough time, will eventually adopt every one of its
possible values. But here, when d > d*, persistence is high-
ly favored—that is, once positive (or negative), a site will

remain positive (or negative). Above d*, however, persist-
ence decays rapidly.

The existence of this critical dimension is, in fact, a
key manifestation of the difference between fluctuations
mediated by attachment–detachment and those mediated
by periphery diffusion. Furthermore, attachment–detach-
ment tends to predominate in the tails of the DST—that
is, for residence times that tend either to zero or to the
elapsed time t.
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Historically, observations of thermal fluctuations have
been interpreted in terms of Brownian motion or through
the relationship between fluctuations or the macroscopic
quantities, such as the diffusion coefficient and magnetic
susceptibility. The advent of our ability to observe step
fluctuations in real time at the nanoscale has changed our
perspective profoundly. Nowadays, any theoretically inter-
esting correlation function is experimentally accessible.
On the theoretical front, it has been truly and pleasantly
surprising that a relatively simple approach yields solu-
tions that are also simple, belying Wolfgang Pauli’s belief
that the devil—not God—is responsible for the fiendishly
complex nature of surfaces.

Some of the applications of this technological advance
are clear and immediate. Quantitative predictions of struc-
tural stability, for example, are well under way. Other poten-
tial applications, such as those stemming from direct exper-
imental connections to persistence problems, are in that
pleasant state limited only by our imaginations.
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