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Intensity correlations of a noise-driven diode laser
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We couple noise into the driving current of a laser diode to produce correlated light. We characterize the
intensity correlations of the laser with two different techniques: two-detector photon coincidence and analysis
of the photocurrent from a single detector. The light exhibits bunching with a magnitude and characteristic
time set by the bandwidth and the amplitude of the noise modulating the laser driving current. A simple
model based on amplitude modulation of the laser intensity agrees with the measured correlation functions.
The bunched light can be used to probe systems that are sensitive to intensity correlations. © 1998 Optical
Society of America [S0740-3224(98)01111-4]
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1. INTRODUCTION
The correlation function of the intensity gives information
about the statistics and the temporal distribution of in-
tensity fluctuations of light. For classical light the pres-
ence of intensity fluctuations will lead to bunching of pho-
ton counts detected within the time scale of high intensity
fluctuations. A classical laser operated far above thresh-
old will have zero intensity fluctuations. In a quantum-
mechanical treatment the laser intensity characterized by
photon number n will obey Poissonian statistics. In this
case, photons are just as likely to be close together as far
apart in time. The intensity correlation function can be
obtained by analyzing the current fluctuations out of a
photodetector, or by directly measuring two photon coin-
cidences. As a measure of fluctuation properties of light,
the intensity correlation function can distinguish between
a classical stochastic field and a quantum field.

Since the early measurements of lasers and Gaussian
sources by Arecchi et al.,1 the intensity correlation func-
tion has been used to characterize the behavior of lasers
under various operating conditions. Spurred by mea-
surements of intensity correlations of a dye laser,2 exten-
sive experimental3–5 and theoretical6–9 studies revealed
the importance of multiplicative pump noise in addition
to spontaneous emission in this system. Other work ap-
plied controlled multiplicative noise to a He–Ne laser to
study its effects on the intensity correlations of the
light.10 The photon statistics and the intensity correla-
tions of a free-running diode laser have also been
measured.11 In addition, an extensive body of work ex-
ists on the inherent noise of diode lasers (for a review see
Ref. 12).

A well-characterized source can probe atomic systems
for a dependence on the intensity correlation function of
the light. Mollow13 established the dependence of a two-
photon transition rate on the specific intensity correlation
of the excitation source. The response of nonlinear pro-
cesses to light with different noise spectral densities has
been extensively studied by Smith and collaborators at
JILA.14–17 Ryan et al.18 have measured the noise char-
acteristics of a diode laser using a nonlinear two-photon
0740-3224/98/112646-08$15.00 ©
process. Theoretical19,20 and experimental21 studies
have shown that the rate for a two-photon transition
driven by highly correlated photons from an optical para-
metric oscillator changes from quadratic to linear in the
intensity for low intensities. In the quantum regime,
Carmichael22 and Gardiner23 have analyzed cascaded
quantum optical systems in which correlation effects in
the intensity of the light are significant, requiring a non-
Markovian treatment. We have started an experimental
program in cascaded cavity quantum electrodynamic
(QED) systems24 to pursue studies of these non-
Markovian effects.

We produce correlated light from a diode laser by add-
ing colored pump noise. We characterize the light with
measurements of the second-order intensity correlation
function. The emitted light exhibits bunching. We can
precisely control the noise amplitude and bandwidth to
adjust the degree of bunching and correlation time of the
light. We use a simple model to explain the features of
the correlation in terms of the bandwidth and the ampli-
tude of the noise. We neglect any contribution of the in-
trinsic quantum noise since the external modulation is
large. With the laser operated below threshold, the
bunching grows very large. Experimentally, we employ
two different techniques to measure the intensity correla-
tion of the light: photon coincidences measured with two
detectors, and analysis of an intensity time series from
the photocurrent of a single detector. This highly corre-
lated light could be used to probe systems sensitive to
non-Markovian effects.

The paper is organized as follows. In Section 2 we
briefly review the intensity-correlation function and de-
velop models to compare with our measurements. Sec-
tion 3 describes the apparatus and experimental proce-
dures. We present our results in Section 4 and our
conclusions in Section 5.

2. THEORY
A. Intensity Correlation Function
The normalized correlation function of a classical stochas-
tic process, applied to the intensity of the electromagnetic
field I(t), is
1998 Optical Society of America
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g ~2 !~t ! 5
^I~t !I~t 1 t!&

^I~t !&2 , (1)

where the brackets denote a time average.
This provides a measure of the enhancement or the

suppression of intensity fluctuations relative to an ideal
laser field for which g (2)(t) 5 1. The correlation function
measures the probability distribution that, given an in-
tensity fluctuation at time t, there will be another one at
time t 1 t. The correlation function can be directly cal-
culated from a time series of the light intensity with Eq.
(1).

The value of the correlation function at t 5 0 is a mea-
surement of the statistics of the light. This is made evi-
dent by rewriting g (2)(0) in terms of the variance of the
intensity, ^(DI)2& 5 ^I2& 2 ^I&2:

g ~2 !~0 ! 5
^I2&

^I&2 5
^~DI !2&

^I&2 1 1. (2)

For a classical source, g (2)(0) > 1 because ^(DI)2&
> 0. Two other conditions on the correlation function
for a classical field follow from the Schwarz inequality25:
g (2)(0) . g (2)(t) and ug (2)(0) 2 1u . ug (2)(t) 2 1u. The
correlation function of a classical laser is flat, since
^(DI)2& 5 0 and g (2)(0) 5 1. Classical bunching is ex-
hibited when intensity fluctuations are present, as de-
fined by @ g (2)(0) . g (2)(01) . 1#. There are nonclassi-
cal sources that violate the Schwarz inequality, producing
antibunching and sub-Poissonian statistics.26

The quantum theory of coherence allows treatment of
the intensity correlation function in terms of photons.
With I → Î (normal and time ordered), g (2)(t) is the con-
ditional probability of detecting a photon at time t 1 t
given that one was detected at time t. When g (2)(0)
5 1, the light follows Poissonian statistics, while for
g (2)(0) . 1 the statistics are super-Poissonian. If indi-
vidual photons are detected, we can measure the correla-
tion function by sending the light into an optical cor-
relator in which photon coincidences are detected as a
function of the delay time t.

B. Linear Model
To model the effect of modulating the laser current, we
assume that the intensity of the diode laser light is pro-
portional to the injected current. This assumption is ap-
propriate when the laser is operating significantly above
threshold or below threshold. Near threshold, this is
valid locally if fluctuations in the current are small. The
intensity and the current are linearly related:

I~t ! 5 ai~t !, (3)

where the proportionality constant a is the above or the
below threshold responsivity (mW/mA) divided by the
area of the laser beam.

The laser current i(t) is composed of a constant current
i0 that biases the diode to a particular operating point
within the region above or below threshold and noise
inoise(t) that we add from an external source. We are ne-
glecting other noise contributions in the current source
and the laser diode, such as spontaneous emission, since
the external modulation is much larger:
i~t ! 5 i0 1 inoise~t !. (4)

The noise term averages to zero:

^i~t !& 5 i0 . (5)

We focus our attention on the specific case when the
current noise maps directly into the intensity correlation
function. This is equivalent to saying that the laser has
high quantum efficiency and current fluctuations do not
change its frequency. Making use of Eqs. (3)–(5), we can
write Eq. (1) in terms of the currents:

g ~2 !~t ! 5 1 1
^inoise~t !inoise~t 1 t!&

i0
2 . (6)

This expression converts the correlation function of the
intensity into the correlation function of the applied noise
current. The noise is an independent random process,
characterized by a spectral density F(v) over a finite
bandwidth. We use the Wiener–Khintchine theorem,
which states that the correlation function G(t) is the Fou-
rier transform of the spectral density.26 We then obtain
an expression for the intensity correlation in terms of the
noise-current spectral density:

G~t! 5
1
p E

0

`

F~v! 3 exp~2ivt!dw

5 ^inoise~t !inoise~t 1 t!&. (7)

We model the noise spectral density as shown in Fig. 1,
with four frequencies (a, b, c, d) and a power spectral
density amplitude l 5 inoise

2 /Df that is defined as the
spectral power inoise

2 in bandwidth Df. The five constants
define a trapezoidal spectrum with high- and low-pass
cutoffs. We take the Fourier transform of the spectral
density to obtain an analytic form of the second-order cor-
relation function:

g ~2 !~t ! 5 1 1
A

p
F ~cos dt 2 cos ct!

~c 2 d !t2

1
~cos bt 2 cos at!

~b 2 a !t2 G , (8)

with A 5 l/i0
2. For the case of noise sent through a low-

pass filter a 5 b 5 0, Eq. (8) reduces to

Fig. 1. Model spectral density of the noise source with five pa-
rameters a, b, c, d, and l to specify the spectrum and its Fourier
transform.
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g ~2 !~t ! 5 1 1
A

p

~cos dt 2 cos ct!

~c 2 d !t2 . (9)

The correlation function at t 5 0 is a measurement of
the variance of the light intensity. For low-pass filtered
noise, Eq. (9) gives

g ~2 !~0 ! 5 1 1
1

p

inoise
2 /Df

i0
2 B, (10)

where B 5 (c 1 d)/2 is the bandwidth of the source, set
by the low-pass filter cutoff frequency. Equation (10)
serves as a measure of the degree of bunching of the light
intensity from the diode laser.

In the limit of an infinitely sharp low-pass filter, with
a 5 b 5 0 and c 5 d, Eq. (9) reduces to a more familiar
looking form:

g ~2 !~t ! 5 1 1
Ac
p

sinc~ct!. (11)

This simple and appealing model is valid as long as the
current fluctuations remain in a linear region of the laser
intensity response. Our model reproduces the result ob-
tained analytically for a dye laser with a Fokker–Planck
equation by Noriega et al.9 when the correlation time of
the noise is longer than the deterministic correlation time
of the system. This is true despite the fact that the ratios
of cavity to inversion decay times are very different in dye
and diode lasers.

C. Nonlinear Model
We take into account the nonlinear threshold response by
considering a more realistic laser model. We use single-
mode coupled rate equations for the photon number n and
excited carrier population N (Ref. 27):

dn
dt

5 C~n 1 1 !N 2 gc n, (12)

dN
dt

5 R 1 s~t ! 2 CnN 2 grad N, (13)

where C is the coupling between the excited population
and the mode, gc is the cavity decay rate, and grad is the
radiative decay rate of the excited population. The
pumping rate is given by R, and we include a pumping
noise term s(t). The coupling coefficient is C 5 bgrad ,
where b is the inverse of the cavity enhancement factor
for the lasing mode.

The general approach is to map the driving current
with time-dependent fluctuations into a time series of
photon numbers, n(t). We then calculate the normalized
correlation function g (2)(t). For our calculations we use
typical diode-laser parameters, gc 5 1012 s21, grad
5 109 s21, and b 5 1024. We numerically integrate the
differential equations Eqs. (12) and (13), incrementing
the noise term s(t) at times much shorter than the in-
verse of the highest-noise-frequency component. For
s(t) we use a digitized time series of the noise sent to the
laser. The highest-frequency component (10 MHz) of the
noise is much lower than any of the decay rates in Eqs.
(12) and (13), so the laser intensity achieves steady state
and follows the driving current over the time scale of fluc-
tuations. This allows us to simplify numerical calcula-
tions by considering the steady-state photon number.

The steady-state solution of Eqs. (12) and (13) for the
photon number in the absence of noise is

nss 5
1

2b
F S R

Rth
2 1 D 1 AS R

Rth
2 1 D 2

1 4
R

Rth
bG ,

(14)

with the threshold pumping rate given by Rth 5 gc /b.
We use the steady-state result Eq. (14) to calculate the

intensity correlation by taking the slowly varying noisy
pumping rate R → R 1 s(t) to obtain nss(t). We take
the calculated photon-number time series and set it equal
to a classical intensity time series. From this series we
obtain the intensity correlation function using Eq. (1).
The results agree quantitatively with the full numerical
integration. They also reproduce the features of the
simple model.

3. APPARATUS
We measure the correlation function using both intensity
time series and photon coincidence techniques. While
the first approach permits high intensities, the second re-
quires small photon fluxes. For photon-counting mea-
surements, one detector serves as the start for the timing
of photon arrivals at a second detector. The distribution
of conditional detections at this detector is proportional to
the intensity correlation function. We use this detection
system for other measurements investigating nonclassi-
cal features of a cavity QED system.28 The advent of
high-speed digital oscilloscopes allows photocurrents to be
sampled and stored with sufficient time resolution to per-
form correlation measurements. The recorded time se-
ries is then used to calculate the correlation function di-
rectly. We use a single detector to measure the intensity
of the laser light as a function of time. This serves as a
check of our photon-counting technique.

Figure 2 shows a diagram of our apparatus. A laser
current controller drives a free-running (;780-nm) diode
laser (Sharp LT024) with ithr. 5 59 mA. The current
driving the diode is the sum of the controller current and
a capacitively coupled noise current produced by a signal
generator (Stanford Research System DS 340). The DS
340 digitally generates white noise with a total band-
width (6-dB point) of 10 MHz. We characterized the
spectral density of both the voltage noise out of the DS
340 and the resulting current noise applied to the laser
diode. The power spectrum of the noise applied to the la-

Fig. 2. Simplified diagram of the experimental setup.
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ser diode is shown in Fig. 3. We use a Lecroy 9354A digi-
tal oscilloscope (DO) to measure the power spectrum and
to record a time series of the noise current for use in
simulations. Five-pole Chebyshev high- and low-pass fil-
ters shape the spectrum of the noise current and limit the
bandwidth. The modulated laser light is sent into the
photon correlator.

Our photon correlator consists of two avalanche photo-
diodes (APD’s), EG&G SPCM-AQ-151 (50% quantum effi-
ciency), situated beyond the output ports of a 50/50 beam
splitter. Detection of a photon by APD 1 starts a Lecroy
3377 time-to-digital converter (TDC) that measures the
time of detection of up to 16 consecutive photons at APD
2. The TDC has a resolution of 0.5 ns and can measure
time intervals up to 32 ms. A delay line of 400 ns in the
stop path allows coincidences at t 5 0 to be observed.
The location of t 5 0 is determined by counting with the
starts and stops provided by a 10-kHz pulser. The di-
rectly measured delay coincides with a calculation taking
into account wire lengths and electronic delays between
the start and stop path. A computer downloads and his-
tograms the data.

To avoid the effects of detector dead time, we keep the
light intensity low such that the hits/start is much less
than one. The hit/start is the number of photon counts in
the stop detector during a count interval. Coupled with
the ability to register up to 16 stop events for every start,
we are able to measure a close realization of g (2)(t).29

We do not need to make a pileup correction because the
rates are small enough that the event of 16 consecutive
stops in a count interval is highly unlikely. The input la-
ser light is substantially attenuated to prevent damage to
the APD’s and to ensure that the number of hits per start
is much less than unity. Typical counting rates for the
detectors are 100 kHz with a background count rate of
less than 1 kHz. Interference filters and polarizers in
front of each detector suppress photons emitted by the
APD’s during the avalanche process,30 which could lead to
false counts.

We adjust the photon counters to maximize the count
rates at the two detectors before taking data. A typical
count interval is 2 ms. Data collection may take up to 10
min to achieve 100 counts per 0.5-ns bin in the long t re-

Fig. 3. Measured power spectrum of the 10-MHz-wide noise
source at the current supply output. Df 5 20 kHz.
gion. The histogram gives directly the correlation func-
tion once we normalize it by the long-term average (be-
tween t 5 1.75 and 2 ms). For no modulation the
correlation function is flat, as expected for a coherent
source. The number of hits per start for the histograms
also agrees with an independently measured count rate of
the number of stops.

For the single-detector technique we use a photomulti-
plier tube (PMT) Hamamatsu R636 to measure the light
intensity. After determining that the PMT is not satu-
rating, the photocurrent from the PMT is sent to the digi-
tal oscilloscope that we use to store the current time se-
ries, i(t), for later analysis. We calculate g (2)(t) from
the time series using Eq. (1), assuming I(t) 5 i(t). The
comparison of the correlation measured by photon count-
ing and from a photocurrent time series is an important
check of our photon-counting technique. Another benefit
is that the operating state of the laser can be monitored in
real time by observing the intensity measured by the
PMT. Mode hopping can be seen as steps in the laser in-
tensity. The laser can then be made single mode by a
slight adjustment of the operating current.

4. RESULTS
We study several different regimes to characterize the la-
ser response to noise. We are interested in observing a
dependence on the bandwidth of the noise. Second, we
want to confirm our linear-theory dependence on the driv-
ing noise current. Finally, we want to find a regime that
maximizes the bunching.

Figure 4 shows intensity correlation function measure-
ments for different noise bandwidths with the laser oper-
ating below threshold, i 5 56 mA. The bandwidth is de-
termined by the external filters imposed on the noise
source as well as by the coupling into the laser controller.
The coupling cuts out the low-frequency components of
the noise. The integrated noise power coupled into the
laser diode increases going from the top to the bottom of
Fig. 4. Table 1 details the measured parameters for each
particular filter case. These are determined from mea-
surements of the noise spectrum sent to the laser diode.
For low noise power the laser remains below threshold.
When the bandwidth is small, the correlation function is
broad and shows very little enhancement around t 5 0.
For larger bandwidths the presence of bunching is clear
and has a sinclike character oscillating about g (2) 5 1.

Figure 5 shows plots of the linear model Eq. (8) using
the measured parameters in Table 1. The plots show
qualitative agreement for all the cases. The model plots
for the two low-pass filters reproduce quantitatively the
oscillations and the amplitude of the correlation measure-
ments. As the total noise power increases, the measured
behavior differs from the linear model.

The amplitudes of the higher-bandwidth correlation
functions are smaller than the model predictions. This is
due to the nonlinearity of the laser intensity near thresh-
old. As seen in Table 1 the integrated noise current for
the direct and the 6-MHz high-pass filtered noise are
larger than the low-passed noise currents. The laser
threshold region is not linear for large current excursions.
In this region, negative current fluctuations decrease the
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intensity less than the linear model predicts, and positive
current fluctuations cause larger intensity fluctuations.
This results in an increased average intensity and a de-
crease in the size of bunching observed.

We next investigate the intensity correlations above
threshold with a laser current of i 5 64 mA. We apply a
noise spectral density with inoise < 1 mA, including the
low-frequency components. Figure 6 shows data taken
with inoise 5 1 mA applied through the 2.6-MHz filter.
The dashed curve shows the prediction of our linear
model, Eq. (9). The solid curve shows the calculation of
the nonlinear steady-state intensity calculation. The os-
cillations in the theory agree closely with the data. The
apparent background in the data from t 5 0 to 500 ns
may arise because of mode hops to different lasing modes,
or random frequency modulation of the laser.26 The
closer agreement of the data with the steady-state calcu-
lation demonstrates that the nonlinearity of the threshold
plays an important role in the size and dynamics of the
correlation function.

Fig. 4. Experimental plots of the correlation function for differ-
ent bandwidths of the noise source and the laser operating below
threshold, i 5 56 mA: (a) 1.2-MHz low-pass filter, (b) 2.6-MHz
low-pass filter, (c) no filter, and (d) 6-MHz high-pass filter. Note
the different vertical scales.

Table 1. Model Parameters

Filter (MHz) a b c d *ldv (mA2)

1.2 Low pass 0 1.1 1.1 1.38 0.88
2.6 Low pass 0 2.3 2.3 2.8 7.2
None 0 4 8 14 43.2
6 High pass 4 5.5 6.5 14 86.24
Figure 7 shows the dependence of g (2)(0) on the ampli-
tude of the noise source for two different bandwidths (1.2
and 2.6 MHz). The data show a quadratic dependence on
the noise amplitude for low noise power. The solid
curves are plots of Eq. (10) with the measured bandwidth,
operating current, and noise currents used, with no ad-
justable parameters. There is good agreement for both

Fig. 5. Plots of the model correlation functions [Eq. (8)] corre-
sponding to the data of Fig. 4. Note the different vertical scales
(see Table 1 for parameters).

Fig. 6. Bunching for inoise 5 1 mA filtered with the 2.6-MHz low
pass. The continuous curve is a theoretical calculation based on
the nonlinear model. The dashed curve is the prediction of the
linear model with a 5 b 5 0, c 5 2.25 MHz, d 5 2.75 MHz, and
inoise 5 1 mA.
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noise bandwidths below g (2)(0) 5 1.4. The integrated
noise power is the same at this point for both filters. At
higher noise power the linear theory begins to separate
from the measured data. When fluctuations reach
threshold, the intensity no longer varies linearly with the
current. This leads to an increase in the average inten-
sity because the effect of positive current fluctuations are
not balanced by negative fluctuations. Bunching de-
creases (since we normalize by the average intensity) as
fluctuations cross threshold, as opposed to increasing, as
predicted by the linear model. In Fig. 7 we see this effect
above inoise 5 0.5 mA for the 2.6-MHz filter. The mea-
sured values of g (2)(0) are less than the linear model pre-
dictions above this current.

The dotted curve is a calculation of the nonlinear model
with b 5 1.0 3 1024 and ithr 5 0.059 mA. This follows
the data more closely than the linear model, taking into
account the nonlinear threshold. We find the correlation
function is very sensitive to the precise operating condi-
tions of the laser. By adjusting the laser current down by
only 0.3%, the apparent background in Fig. 6 disappears
and the data points follow the model calculation better.

Fig. 7. Bunching as a function of applied noise current. The
circles (squares) are the measured values of g (2)(0) for the noise
modulation passing through a 2.6-MHz (1.2-MHz) low-pass filter.
The solid curves are predictions based upon the linear model out-
lined above with no adjustable parameters. The dotted curve is
a calculation with the nonlinear model (b 5 1.0 3 1024, ithr
5 59 mA).

Fig. 8. Comparison of g (2)(t) from (a) photon counting and (b)
from a time series of intensities measured with a single PMT.
At this operating point we also made a comparison
measurement with a single PMT as outlined above. Fig-
ure 8 shows the correlation function measured with pho-
ton counting (a) and the correlation from the PMT (b). A
current of inoise 5 1 mA is coupled into the laser through
the 2.6-MHz filter. The PMT data are compiled from five
200-ms time series with 4-ns resolution. The photon-
counting data are binned into 4-ns bins. The size and the
oscillation frequency match very well for t > 100 ns.
The 8-ns-wide feature at t 5 0 of the PMT correlation
agrees with the single-photon current pulse width. Near
to t 5 0, the PMT time series result exceeds the photon-
counting result by 15%. This may be due to a suppres-
sion of counts owing to the 30-ns dead time of the APD.

Coupling large noise power into the laser operated be-
low threshold leads to a significant increase in the ob-
served bunching. Fig. 9(a) shows a measurement of the
correlation function when the modulated laser is well be-
low threshold, i 5 37 mA. In this case the noise is sent
through the 2.6-MHz low-pass filter. The results show a
very large enhancement of the super-Poissonian nature of
the light with large bunching evident. The light is emit-
ted in pairs or bunches of photons that escape the laser
and go into the correlator. The presence of the threshold
leads to the large amplification of the correlation between
photons. When the current fluctuates above threshold,

Fig. 9. Intensity correlation for noise modulation below thresh-
old: (a) experiment and (b) simulation with i0 5 37.3 mA, ithr
5 59 mA, and b 5 0.91 3 1024. The inset shows the sensitiv-
ity of the peak to changes in ithr and b. The dashed curves are
the curves with ithr 6 2%. The dotted curves show the effect of
varying b by 610%.
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the laser intensity increases dramatically in comparison
to the average below threshold intensity.

Figure 9(b) shows g (2)(t) calculated from a time series
of intensity fluctuations as outlined above. The large
bunching is reproduced with the experimental param-
eters of the measurement. The calculated peak is nar-
rower than the measured peak. It is possible to adjust
the parameters to obtain closer agreement of the model
and the measured peak, but this leads to a difference be-
tween the model and measured shape of the laser power
curve.

We studied the sensitivity of the steady-state intensity
model to variations in the input parameters ithr and b at
the operating current i0 . We estimate ithr from measure-
ments of the laser intensity response with an uncertainty
of 2%. b is estimated to be of the order of 1024, which
produces laser response curves that are similar to the
measured response. The inset of Fig. 9(b) shows how the
bunching peak changes as we vary these parameters.
The dashed curves show how an increase (decrease) in ithr
by 2% leads to a substantial decrease (increase) in the
peak height. Varying b downward (upward) by 10% re-
sults in an increase (decrease) in the peak size given by
the dotted lines. Above threshold at i0 5 64 mA, the
model is much less sensitive to changes in ithr and b. In-
creasing or decreasing ithr by 2% leads to a corresponding
7% increase or decrease of the peak height. Changing b
by 50% leads to only a 1% decrease in g (2)(0).

The sensitivity of the parameters to variation is easily
understood by considering how the laser responds in dif-
ferent regions of its operating curve. Far below thresh-
old, the modulated laser emits low-intensity light (fluo-
rescence) linearly with the current. As we near
threshold, the current occasionally fluctuates across the
threshold, leading to bursts of light as the laser turns on.
If we move closer to threshold, more fluctuations across
threshold occur. This enhances the bunching until the
growth of intensity fluctuation is balanced by the growing
mean intensity. After this point, the bunching continu-
ously decreases as the operating point is increased.

The b parameter determines the slope and the shape of
the laser threshold. If this is made smaller, the slope of
the laser response increases. Below threshold, we expect
a higher intensity for current fluctuations across thresh-
old if the slope is steeper. Above threshold, the laser is
operating with a large intensity proportional to the driv-
ing current. The slope does not affect the bunching since
all fluctuations scale with the same linear response. The
size of the bunching above threshold is insensitive to
variations in b. Since we hold the threshold constant,
changing b effectively changes the decay rate of the laser
cavity.

5. CONCLUSIONS
We have a well-characterized source of correlated light
from a noise-modulated diode laser. We have measured
the intensity correlations using two experimental ap-
proaches: analysis of photocurrent time series and pho-
ton coincidence. The results show quantitative agree-
ment with a simple model that considers only amplitude
modulation of the laser. The linear version of the theory
relates the Fourier transform of the spectral density of
the noise to the intensity correlation with excellent quan-
titative agreement if the noise-current excursions are not
too large. The behavior near threshold requires a model
based on the steady state of laser rate equations that ac-
count for the nonlinearity of the threshold.

The variance of the intensity fluctuations is propor-
tional to the noise power coupled to the laser. This per-
mits a gradual modification of the statistics of the light.
Below threshold, the value of g (2)(0) can greatly exceed
the value of two for a chaotic source. We can control the
size of bunching by varying the noise-current amplitude,
and the time response by adjusting the spectrum of the
noise current.

Such a modulated diode laser, with well-characterized
intensity correlations, could be a very attractive source
for experiments in cavity QED to explore the non-
Markovian regime.
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