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Abstract. The intensity-field correlation function of the electromagnetic
field is a tool for studying the quantum fluctuations of light. This review in-
troduces the correlation function and its relationship to quadrature squeez-
ing, develops conditions ( Schwartz inequalities) to distinguish between
nonclassical and classical field fluctuations, and discusses its connection to
weak measurements. The theoretical ideas are illustrated by calculations
for three sample systems: the optical parametric oscillator, a cavity QED
system, and the composite system of a single atom coupled to an optical
parametric oscillator. The results of experimental measurements on a cavity
QED system are also reviewed.
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1. Introduction

Studies of the fluctuations of light have occupied quantum optics since its
beginnings. Experimental work in the field has followed two broad lines,
the first focused on intensity fluctuations and the measurement of correla-
tions between pairs of photon detections [particle aspect of light] (Brown
and Twiss (1956), Kimble, Dagenais and Mandel (1977)), and the
second primarily concerned with squeezing experiments where the fluctu-
ation variance of a quadrature amplitude of the optical field is measured
[wave aspect of light] (Slusher, Hollberg, Mertz, Yurke and Valley
(1985), Loudon and Knight (1987), Kimble and Walls (1987)).

Until recently, these two lines of investigation remained separate. It is
now possible, however, to combine them in a new approach that detects the
fluctuations of an electromagnetic field by correlating its intensity and am-
plitude (Carmichael, Castro-Beltran, Foster and Orozco (2000),
Foster, Orozco, Castro-Beltran and Carmichael (2000a)). The
approach draws the particle and wave aspects of light together, and opens
up a third-order correlation function of the electromagnetic field to ex-
perimental study. The new measurement strategy builds upon the rela-
tionship between quantum optical correlation functions and conditional
measurements (Mandel and Wolf (1995)), and its physical interpre-
tation is therefore illuminated through quantum trajectory calculations
(Carmichael (1993a)).

Historically, it was the development of the intensity-intensity correla-
tion technique of Hanbury Brown and Twiss (HBT) (Brown and Twiss
(1956)) that provided the stimulus for a systematic treatment of optical co-
herence within the framework of quantum mechanics (Glauber (1963a),
Glauber (1963b), Glauber (1963c)). A notable feature of the HBT ap-
proach is its reliance on a conditional measurement—i.e., data is collected
on the cue of a conditioning photon count that identifies those times when
an intensity fluctuation is in progress. In this way, the average fluctuation
is recovered as a conditional evolution over time, and a sensitive probe of
the nonclassicality of light is obtained.

The standard squeezing measurement is not, by way of contrast, a con-
ditional measurement. Through balanced homodyne detection (Yuen and
Chan (1983a), Yuen and Chan (1983b)), it effectively measures the sub-
Poissonian variance of a photon counting distribution, after the photon
counts have been integrated over many correlation times. The measure-
ment is insensitive to fluctuations at low photon flux and the observed
degree of squeezing is degraded by collection and detection inefficiencies.
The measurement is resolved in the frequency domain and does not recover
an evolution of the fluctuations over time.
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The intensity-field correlation function is measured through the con-
ditional detection of the quadrature amplitude fluctuations of light. The
measurement cross-correlates the photocurrent of a balanced homodyne
detector (BHD) with an initiating photon count in a natural extension
of the HBT technique. It is extremely sensitive to the nonclassicality of
light at low photon flux (weakly squeezed light) and, given sufficient detec-
tion bandwidth, resolves the fluctuations in time. For the case of Gaussian
statistics, Carmichael, Castro-Beltran, Foster and Orozco (2000)
showed that the full spectrum of squeezing is recovered from the Fourier
transform of the time-resolved fluctuation. The measurement, like the HBT
technique, is independent of detection efficiency, except for the inevitable
efficiency-dependence in the signal-to-noise ratio.

To date, intensity-field correlations have been explored for the opti-
cal parametric oscillator (OPO) (Carmichael, Castro-Beltran, Fos-
ter and Orozco (2000)), in both theoretical (Carmichael, Castro-
Beltran, Foster and Orozco (2000), Reiner, Smith, Orozco, Carmichael
and Rice (2001)) and experimental (Foster, Orozco, Castro-Beltran
and Carmichael (2000a), Foster, Smith, Reiner and Orozco (2002))
studies of cavity QED, and for a single two-level atom coupled to an OPO
(Strimbu and Rice (2003)). On the theoretical side, connections have
been made to fundamental questions in quantum measurement theory and
statistical physics. Wiseman (2002), for example, has demonstrated a con-
nection with weak measurements. Carmichael (2003) has shown that, in
contrast to a conventional squeezing measurement, conditional homodyne
detection distinguishes qualitatively between vacuum state squeezing and
squeezed classical noise. Denisov, Castro-Beltran and Carmichael
(2002) explored the time-reversal properties of the intensity-field correla-
tions. They show that while the intensity-intensity correlation function is
necessarily time symmetric, the intensity-field correlation function may be
time asymmetric for non-Gaussian fluctuations. The time asymmetry indi-
cates a breakdown of detailed balance.

In related but earlier work, Yurke and Stoler (1987) proposed us-
ing intensity-field correlations between signal and idler channels to prepare
and observe Fock sates in the process of parametric down conversion. Re-
cently, the tomographic reconstruction of a one-photon state was achieved
working with an extension of their technique (Crispino, Giuseppe, Mar-
tini, Mataloni and Kanatoulis (2000), Lvovsky, Hansen, Aichele,
Benson, Mlynek and Schiller (2001)). The reconstruction relies on a
time-integrated correlation, since the time scales in parametric down con-
version are too short for current technology to follow the fluctuation over
time. Intensity-field correlations also arise, more indirectly, in various other
contexts: Vyas and Singh (2000), Deng, Erenso, Vyas and Singh
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(2001) on the degenerate OPO and Vogel (1991) for resonance fluores-
cence.

The review is organized as follows. We begin, in Sec. 2, by presenting
the general theoretical framework for the measurement of intensity-field
correlations, including a discussion of the time-reversal properties of the
correlation function. Section 3 illustrates the ideas with theoretical calcula-
tions for three specific quantum optical systems. The results of experiments
in cavity QED are then presented in Sec. 4; there we give a thorough de-
scription of the experimental apparatus required. In Sec. 5 we review work
on time-integrated intensity-field correlations in parametric down conver-
sion. We finish, in Sec. 6, with an overview of the impact intensity-field
correlations have made in the area of quantum measurement theory.

2. Theory

Figure 1 shows a schematic of the intensity-field correlator. It is based upon
the HBT intensity correlator implemented in the modern “start”/“stop”
scheme found for example in Foster, Mielke and Orozco (2000b). The
principal difference is that there is a balanced homodyne detector (BHD) in
place of the second photon detector in what would normally be the “stop”
channel; so it is appropriate to name this method as conditional homodyne
detection (CHD). Operation of the correlator proceeds as follows: within a
few correlation times before and after each “start”, the homodyne current
I(t) is digitized, recorded, and used to update a cumulative average; aver-
aging Ns such samples reduces the shot noise so that the surviving signal is
a conditional average of the quadrature amplitude fluctuations of the input
optical field.

2.1. THE INTENSITY-FIELD CORRELATION FUNCTION Hθ(τ)

For a more detailed analysis of the measurement, we consider a general
optical source with power bandwidth 2κ and output source-field

√
2κb̂ (in

units of the square-root of photon flux). In order to record a nonzero signal,
the firing of the “start” detector must be biased towards the identification
of quadrature amplitude fluctuations of a particular sign. To achieve this,
a coherent offset of the source-field is generally needed (BS1 in Fig. 1).
The offset also carries an adjustable phase, allowing the free selection of
the quadrature to be measured. The input field to the correlator is then
expressed in terms of the source field as

√
2κâ =

√
2κ(b̂ + Aeiϑ), (1)

where Aeiϑ is determined by the complex amplitude of the offset. [A similar
offset is used in some quantum state reconstruction schemes (Banaszek
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Figure 1. Schematic of the intensity-field correlator. The homodyne current I(t) is
sampled over a series of time windows, tj − τmax ≤ t ≤ tj + τmax, each centered on a
“start” time tj .

and Wódkiewicz (1996), Wallentowitz and Vogel (1996), Lutter-
back and Davidovich (1997)).] Sometimes the source-field has a non-zero
mean amplitude, as is the case for the cavity QED system considered in
Sec. 4. In such a case, the offset is not needed.

A fraction η of the input light is now sent to the balanced homodyne
detector, with the remaining fraction 1 − η going to the photon detector
in the “start” channel (BS2 in Fig. 1). The photon flux operator at the
photon detector is thus given in terms of the photon number operator for
the source field (for simplicity, free-field operators are neglected as they do
not contribute to normal-ordered averages):

Ŝ = (1− η)2κâ†â. (2)

The balanced homodyne detector samples the quadrature phase amplitude
that is in phase with the local oscillator field (LO in Fig. 1), with operator
value

D̂ = 2
√

η2κâθ, âθ ≡ 1
2 [âe−iθ + â†eiθ], (3)

where θ is the LO phase. The conditional homodyne photocurrent, averaged
over the Ns “starts”, is then

Hθ(τ) =
〈 : Ŝ(t)D̂(t + τ) : 〉

〈Ŝ〉 + ξ(τ); (4)
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〈 : : 〉 denotes time and normal ordering, and ξ(t) is the residual local oscil-
lator shot noise that is present because the ensemble average is taken over
a finite number of samples only; its magnitude depends in the usual way
on detection bandwidth and the number of samples Ns.

For positive τ , Hθ(τ) can be factorized in a straightforward way with
the help of the quantum regression formula to give

Hθ(τ) = 〈D̂(τ, θ)〉c + ξ(τ), (5)

where the subscript c denotes conditioning of the state at time t on the de-
tection of a photon. This is one of the most powerful results of the intensity-
field correlation function in its quantum mechanical formulation; it gives
access to the conditional dynamics of the quadrature phase amplitudes of
the field, similar to the manner in which the intensity-intensity correlation
function gives the conditional dynamics of the intensity (Carmichael,
Brecha and Rice (1991), Brecha, Rice and Xiao (1999)). For neg-
ative τ , a construction of the post-selected conditional dynamics may be
made on the basis of Baysean inference (Sec. 6.1).

When the source field is small and non-classical, its fluctuations, a
manifestation of the uncertainty principle, dominate over its steady-state
amplitude. It is these fluctuations that are of interest, and therefore the
input-field operator â is conveniently decomposed as â = α + ∆â, with
α = 〈â〉 = |α|eiφ, and ∆â = ∆b̂ ≡ b̂ − 〈b̂〉 the fluctuation of interest.
We now substitute Eqs. (2) and (3) into Eq. (4), and at the same time
make the decomposition into a mean field plus fluctuation. In addition,
for the present discussion we make the assumption, clearly valid for the
case of Gaussian statistics, that third order moments of the field fluctua-
tions vanish. The resulting correlation function in terms of the quadrature
fluctuation ∆âφ = (∆âe−iφ + ∆â†e+iφ)/2 is:

Hθ,φ(τ) =
√

η2κ2|α|
(

cos(φ− θ) +
2〈 :∆âφ(0)∆âθ(τ) : 〉
|α|2 + 〈∆â†∆â〉

)

+ξ(τ). (6)

The assumption of Gaussian statistics is not necessary, and as Denisov,
Castro-Beltran and Carmichael (2002) have shown, presumes de-
tailed balance, which for some systems does not hold (see Sec. 2.3). It is
only for this special case, though, that there is a direct and simple connec-
tion with the spectrum of squeezing.

The maximum signal to noise ratio is obtained with the coherent inten-
sity much larger than the incoherent intensity, |α|2 À 〈∆â†∆â〉 = 〈∆b̂†∆b̂〉.
If, however, we choose the coherent offset in such a way that the coherent
and incoherent intensities are the same,

|α|2 = 〈∆â†∆â〉 = 〈∆b̂†∆b̂〉, (7)
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although one gives up a little in signal-to-noise ratio (a factor of
√

2), one
gains a different perspective in the discussion of nonclassical features in the
correlation function. With the choice of maximal signal-to-noise ratio, and
the mean field adjusted to be in phase with the local oscillator (φ = θ), we
obtain a normalized correlation function after dividing Eq. (6) by

√
η2κ2|α|

Carmichael, Castro-Beltran, Foster and Orozco (2000),

hθ(τ) = 1 +
2

1 + |α|2/〈∆â†∆â〉
〈 :∆âθ(0)∆âθ(τ) : 〉

〈∆â†∆â〉 +
ξ(τ)√

η2κ2|α| . (8)

In the limit of negligible residual shot noise (Ns → ∞), we denote the
correlation function by

h̄θ(τ) = 1 +
2

1 + |α|2/〈∆â†∆â〉
〈 :∆âθ(0)∆âθ(τ) : 〉

〈∆â†∆â〉 . (9)

The spectrum of squeezing (Collett and Gardiner (1984), Carmichael
(1987)) may then be written as

S(Ω, θ) = 4F

∫ ∞

0
dτ cos(2πΩτ)[h̄θ(τ)− 1], (10)

where F = 2κ〈â†â〉 = 2κ(|α|2 + 〈∆â†∆â〉) is the input field photon flux.
Thus, h̄θ(τ) achieves a time-resolved measurement of the quadrature am-
plitude fluctuations of the squeezed electromagnetic field. Notice that the
measurement is independent of detection and collection efficiencies, though
the efficiency η does appear in Eq. (8) as one of the factors affecting the
single-to-noise ratio. The measured degree of squeezing also depends on
the determination of the photon flux F . The technique is nevertheless less
sensitive to efficiencies than traditional squeezing measurements (Bachor
(1998)) since the propagation losses are taken into account by the normal-
ization of h̄θ(τ).

Under the assumed conditions of Gaussian statistics, h̄θ(τ) is necessarily
symmetric in time. We may then write the Fourier pair:

S(Ω, θ) = 2F
∫ ∞

−∞
dτ exp(i2πΩτ)[h̄θ(τ)− 1],

h̄θ(τ)− 1 =
1

4πF

∫ ∞

−∞
dΩexp(−i2πΩτ)S(Ω, θ). (11)

Notice that the photon flux plays a role, in inverse relationship, in the
relative sizes of the spectrum of squeezing and the intensity-field correlation
function. From this, it would seem that for large photon flux, nonclassical
effects might be observed more readily in measurements of the spectrum
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of squeezing, and for low photon flux, in measurements of hθ(τ). There
is also a relationship between the time averaged h̄θ(τ) and the degree of
squeezing at zero frequency, and between the frequency averaged spectrum
of squeezing and h̄θ(0):

S(0, θ) = 2F
∫ ∞

−∞
dτ [h̄θ(τ)− 1],

h̄θ(0)− 1 =
1

4πF

∫ ∞

−∞
dΩS(Ω, θ). (12)

2.2. CLASSICAL BOUNDS FOR Hθ(τ)

Squeezing is directly related to a reduction in the variance of fluctuations
in one of the field quadrature amplitudes. The squeezing manifests itself in
the time domain through violations of classical bounds on the correlation
function h̄θ(τ). Carmichael, Castro-Beltran, Foster and Orozco
(2000) derived two such classical bounds whose derivation we review here.

We begin from the observation that the fluctuation intensity may be
written as a sum of the normal-ordered variances for the quadrature field
amplitudes:

〈∆â†∆â〉 = 〈 :∆â2
θ : 〉+ 〈 :∆â2

θ+π/2 : 〉. (13)

Combining Eq. (9) with this result leads to an expression for h̄θ(0) in the
form

h̄θ(0)− 1 =
2

1 + |α|2/〈∆â†∆â〉
〈 :∆â2

θ : 〉
〈 :∆â2

θ : 〉+ 〈 :∆â2
θ+π/2 : 〉 . (14)

In the classical case, both quadrature variances are greater than zero, so
we may deduce both lower and upper bounds for hθ(0):

0 ≤ h̄θ(0)− 1 ≤ 2
1 + |α2|/〈∆â†∆â〉 . (15)

The upper bound, in particular, is quite different from the familiar bounds
on the intensity-intensity correlation function. Generalizing to non-zero
time delay, we have the Schwarz inequality

|〈 :∆âθ(0)∆âθ(τ) : 〉|2 ≤ 〈 :∆â2
θ(0) : 〉〈 :∆â2

θ(τ) : 〉 = 〈 :∆â2
θ : 〉2, (16)

which implies

|h̄θ(τ)− 1| ≤ 2
1 + |α|2/〈∆â†∆â〉

|〈 :∆â2
θ : 〉|

〈∆â†∆â〉 , (17)
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or
|h̄θ(τ)− 1| ≤ |h̄θ(0)− 1|. (18)

This second condition and the lower bound in Eq. (15) are similar to
the classical bounds associated with the definition of photon antibunch-
ing (Kimble, Dagenais and Mandel (1977), Walls (1979), Loudon
(1980), Paul (1982)).

For a classical field such that the intensity is much larger than the
variance, one can prove in addition an inequality relating the intensity-field
correlation function h̄θ(0) and the intensity-intensity correlation function
g(2)(0); one finds

|h̄θ(0)| ≤
√

g(2)(0), (19)

If there is an offset field α such that the intensity is equal to the variance,
then the inequality is:

|h̄θ(0)| ≤
√

2g(2)(0). (20)

2.3. TIME REVERSAL PROPERTIES OF Hθ(τ)

The time symmetry of the cross-correlation of fluctuations about thermal
equilibrium, 〈B(t+τ)A(t)〉 = 〈B(t−τ)A(t)〉, where A and B are thermody-
namic quantities, has a central place in statistical physics; it provides the
fundamental basis for the Onsager relations (Onsager (1931), Casimir
(1945)). The symmetry follows from microscopic reversibility (A and B are
assumed both symmetric or antisymmetric under time reversal), which re-
quires that the equilibrium state be maintained through detailed balance
(Tolman (1938)). In quantum optics, one is usually concerned with steady
states away from equilibrium, where correlation functions of the light emit-
ted by an open system are measured through photoelectric detection. The
detected radiation field is outgoing and absorbed by the environment; its
steady state is thus manifestly not symmetric under time reversal. In a sit-
uation like this, fluctuations about the steady state may exhibit a specific
time order.

The majority of studies in quantum optics have focused, nonetheless,
on time-symmetric correlations. There are two main reasons for this. First,
nonclassical phenomena such as photon antibunching and squeezing deal
with autocorrelations, 〈A(t + τ)A(t)〉, which are symmetric by definition
for a stationary process. Second, although detailed balance is not required
by microreversibility away from equilibrium (Klein (1955), Tomita and
Tomita (1973), Tomita and Tomita (1974)), it may follow, nevertheless,
from symmetry and boundary conditions (Graham (1971)). A laser, for
example, maintains its steady state through detailed balance (Graham
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and Haken (1971)) in spite of the fact that it operates far from thermal
equilibrium.

The cross-correlation of field intensity and amplitude provides, in prin-
ciple, for the observation of time asymmetric correlations. Concerning the
requisite failure of detailed balance, Tomita and Tomita (1973) and
Tomita and Tomita (1974) determined what is needed in the case of
Gaussian fluctuations: there must exist “a coupling between more than one
degrees of freedom, so that there can be a direction” in the nonequilib-
rium flux through the system. Such a coupling—between the atom(s) and
the cavity field—is a central feature in cavity QED. In the case of Gaus-
sian fluctuations, however, hθ(τ) reduces to the autocorrelation of Eq. (8),
which is necessarily time symmetric. It follows that conditional detection
of the kind considered can reveal time asymmetry only in a regime where
the fluctuations are non-Gaussian (cross-correlating a “start” detection in
one channel with homodyne detection in another provides wider possibili-
ties). In this case a time asymmetric hθ(τ) not only indicates a breakdown
of detailed balance, it also provides direct evidence of non-Gaussian fluctu-
ations.

We might expect resonance fluorescence to provide the simplest ex-
ample of a time asymmetric hθ(τ); its fluctuations are non-Gaussian and a
coupling between degrees of freedom enters through the optical Bloch equa-
tions. Quantum transitions, on the other hand, occur between two states
only; this suggests that detailed balance has to hold, since it is the only sort
of balance that can maintain a steady state (Klein (1955)). It is indeed
readily shown that hθ(τ) is symmetric in resonance fluorescence.

The two-state restriction is lifted, on the other hand, for multiphoton
scattering in cavity QED. In this context, Denisov, Castro-Beltran
and Carmichael (2002) recently computed time-asymmetric intensity-
field correlation functions which demonstrate the breakdown of detailed
balance. Examples of their results are presented in Sec. 3.2.3.

2.4. INTENSITY-FIELD CORRELATIONS IN CLASSICAL OPTICS

In Chapter 8 of their celebrated book, Mandel and Wolf (1995) treat
correlation functions of arbitrary order in the field, both even and odd or-
ders. They develop Schwarz inequalities for cross-correlations of arbitrary
order and show that in the case of Gaussian noise, the odd-order correla-
tion functions are zero, the result we drew on in passing from Eq. (4) to
(6). Moreover, when the field is quasi-monochromatic and the statistical
ensemble characterizing the fluctuations is stationary—though not neces-
sarily Gaussian—the odd-order correlations are zero except at very high
orders.
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The same authors treat quantum mechanical correlation functions of
arbitrary order in Chapter 12 of their book, where they note that the
odd-order correlation functions arise naturally in connection with nonlin-
ear media. In these media the quantum expectation value of the intensity
depends on odd-order correlation functions (involving unequal numbers of
creation and annihilation operators). They show again, however, that when
the electromagnetic field is stationary and quasimonochromatic, the odd-
order correlations must vanish unless the order is very large.

The approach presented in 1 for the intensity-field correlation strictly
speaking uses four fields: two for the intensity detection and two for the
homodyne detection, except that the contributions of the strong local os-
cillator are averaged away.

3. Examples

The intensity-field correlation function has been calculated for three im-
portant sources of nonclassical light. We review the results in this section.
The first is the Optical Parametric Oscillator (OPO) well below threshold
(Carmichael, Castro-Beltran, Foster and Orozco (2000)), where
results for hθ(τ) clarify how such a source of highly bunched light can nev-
ertheless show quadrature squeezing. For the second, a cavity QED source,
the intensity-field correlation captures the oscillatory exchange of excitation
between the cavity mode and atoms, the normal-mode or polariton oscilla-
tion; the oscillation is related to the spectrum of squeezing (Carmichael,
Castro-Beltran, Foster and Orozco (2000)) and a discussion of
its degradation through spontaneous emission is given (Reiner, Smith,
Orozco, Carmichael and Rice (2001)). The third example is a two-
level atom coupled to the intracavity field of an OPO, which shows a mix-
ture of the behavior demonstrated in the first two examples (Strimbu and
Rice (2003)).

Various methods are available for calculating the intensity-field cor-
relation function. Most directly, the two-time average in Eq. (4) may be
evaluated from a knowledge of the source master equation,

dρ

dt
= Lρ, (21)

using the quantum regression formula. Generally, a different formula applies
for positive and negative τ (Carmichael (1999)), allowing for the time
asymmetry of Sec. 2.3. We have

〈 : Ŝ(t)D̂(t + τ) : 〉√
η2κ〈Ŝ〉 = 〈â†â〉−1

{
tr[âe−iθeL|τ |(âρssâ

†)] + c.c. τ ≥ 0

tr[(â†â)eL|τ |(âe−iθρss)] + c.c. τ ≤ 0
,

(22)
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where â is related through Eq. (1) to the source quasimode b̂.
Alternatively, a simulation of the conditional averaging process that

yields the correlation function may be given within the framework of quan-
tum trajectory theory. As is well known, the theory of quantum trajectories
is formulated around the experimental data, viewed as a stochastic mea-
surement record (Carmichael (1993a)). For the detection scheme of Fig. 1,
the record comprises the continuous homodyne current, I(t), and the set of
start times {tj}. The source quasimode is in a quantum state |ψREC(t)〉, con-
ditioned on this record. Realizations of I(t),{tj}, and |ψREC(t)〉 obey a set
of stochastic differential equations that may be simulated on a computer.
By sampling an ongoing realization of I(t), one calculates the conditionally
averaged photocurrent as

Hθ(τ) =
1

Ns

Ns∑

j=1

I(tj + τ). (23)

To carry out this program, the explicit quantum stochastic process (un-
ravelling of the density operator ρ) must be formulated in line with the
principles introduced in Secs. 8.4 and 9.4 of Carmichael (1993a), gener-
alized in this case to include the coherent offset of Fig. 1 and to combine the
continuous evolution under homodyne detection with the quantum jump
conditioning, |ψ̄REC(tj)〉 → â|ψ̄REC(tj)〉, at the start times tj (the state
|ψ̄REC(t)〉 is not normalized). Clearly, in time step dt, the probability of a
start count is (1 − η)2κ〈(â†â)(t)〉RECdt. Between starts, |ψ̄REC(t)〉 evolves
according to the stochastic Schröedinger equation

d|ψ̄REC(t)〉 = [(ĤS/ih̄− 2κAe−iφb̂)dt +
√

ηκ âe−iθdQt]|ψ̄REC(t)〉, (24)

where ĤS is the non-Hermitian source Hamiltonian. The source state is
conditioned through this equation on the ongoing realization of charge,

dQt =
√

η2κ 〈âθ〉RECdt + dWt, (25)

deposited in the homodyne detector output circuit; the Wiener increment
dWt incorporates the shot noise. The simple filtering equation 26 introduces
a realistic detection bandwidth Γ:

dI = −Γ(Idt− dQt). (26)

If spontaneous emission is present, it may be incorporated in the usual way
through additional quantum jumps.

The limit of weak excitation is a special case, since in this limit the
correlation function is time symmetric and may be calculated from the
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quantum trajectory equations by a straightforward analytical method. We
write

|ψREC(t)〉 =
2∑

n+{m}=0

Cn,{m}(t)|n, {m}〉 (27)

where n denotes the photon number of the source quasimode, and {m} is
the set of all other relevant quantum numbers (referring to the internal
states of atoms in a cavity QED system, for example). Note that under the
assumption of weak excitation, we may truncate the expansion at the level
of two quanta. This is the minimal nontrivial truncation; one quantum is
required to provide the “start” count, and at least one other is needed if
there is to be a nontrivial conditional signal at the BHD. Note now that
for weak excitation, the “start”counts are extremely infrequent on the time
scale taken by the source to relax to its steady state. The time interval
between one “start” and the next is then almost certain to be long enough
for the steady state,

|ψss
REC〉 =

2∑

n+{m}=0

Css
n,{m}|n, {m}〉, (28)

to be reached. The approach to the steady state may be calculated from

d|ψ̄REC〉
dt

=
1
ih̄

ĤS |ψ̄REC〉, (29)

where the terms proportional to â and b̂ in Eq. (24) are neglected as higher
order contributions. The conditional state after each “start” is now obtained
as

|ψREC(t+j )〉 ≡
1∑

n+{m}=0

Cn,{m}(t
+
j )|n, {m}〉 =

â|ψss
REC〉√

〈ψss
REC|â†â|ψss

REC〉
, (30)

and solving Eq. (29) with this state as the initial condition yields

|ψREC(tj + τ)〉 =
2∑

n+{m}=0

Cn,{m}(tj + τ)|n, {m}〉. (31)

From Eqs. (1), (28), and (31), we obtain

〈âθ〉ss = Re
[(

Css
1,{m=0} + Aeiϑ

)
e−iθ

]
, (32)

〈âθ(tj + τ)〉REC = Re
{[

C1,{m=0}(tj + τ) + Aeiϑ
]
e−iθ

}
, (33)
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Figure 2. Schematic of the OPO. A classical drive E , of frequency 2ω, injects energy into
a cavity which contains a medium that has a nonlinear susceptibility χ(2). The output is
a field at the subharmonic frequency ω.

and finally, taking the limit Ns →∞ in Eq. (23) (also Γ →∞), the result
for the normalized correlation function is

h̄θ(τ) ≡ H̄θ(τ)√
η2κ〈âθ〉ss =

Re
{[

C1,{m=0}(tj + τ) + Aeiϑ
]
e−iθ

}

Re
[(

Css
1,{m=0} + Aeiϑ

)
e−iθ

] . (34)

3.1. OPTICAL PARAMETRIC OSCILLATOR

Because of its simple nonlinearity, the process of parametric down con-
version in a cavity has been the subject of extensive research in quantum
optics. This process is the basis of the optical parametric oscillator (OPO),
which is modelled (see Fig. 2) by two modes of the electromagnetic field,
with frequencies ωa and ωb, and a nonlinear interaction proportional to
ih̄(â†2b̂− â2b̂†). The Hamiltonian for the two coupled modes may be writ-
ten as

H = h̄ωaâ
†â + h̄ωbb̂

†b̂ +
ih̄χ

2
(â†2b̂− â2b̂†). (35)

Energy conservation requires that the frequencies are related, with ωb =
2ω, ωa = ω. The coupling χ between the modes is proportional to the
second order nonlinear susceptibility of the medium, χ(2). In addition to the
interaction shown, the modes also couple to reservoirs with decay constants
γa and γb to account for cavity loss, and there is a strong coherent drive E
of cavity mode b̂. The OPO shows a point of instability as a function of the
drive at E = Eth ≡ γaγb/χ; below this threshold the subharmonic mode has
zero mean amplitude, while for E > Eth a nonzero mean field is established
and parametric oscillation sets in.
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The fluctuations in this system exhibit very large squeezing just be-
low threshold (Collett and Gardiner (1984), Collett and Gar-
diner (1985)). Conditions of low photon flux, well below threshold where
the squeezing is small, are of particular interest from the point of view of
the intensity-field correlations. Although the squeezing is small, the output
spectrum is a Lorentzian squared (Collett and Loudon (1987)), a mani-
festation of squeezing induced linewidth narrowing (Rice and Carmichael
(1988)). The output intensity shows very large bunching as the photons are
created in pairs, a condition that has been of interest for producing a con-
ditional source of single photons for quantum cryptography.

With regard to the intensity-field correlation, conditions of low photon
flux are of particular interest because they lead to extremely large violations
of the upper bound of Eq. (15) (Carmichael, Castro-Beltran, Foster
and Orozco (2000)). The OPO with normalized pump parameter Ē ¿ 1,
(Ē ≡ E/Eth) has quadrature variances and fluctuation intensity (Milburn
and Walls (1981))

〈 : (∆q̂X)2 : 〉 ≈ Ē(1 + Ē)/4, (36)
〈 : (∆q̂Y )2 : 〉 ≈ −Ē(1− Ē)/4, (37)

and
〈∆â†∆â〉 = 〈 : (∆q̂X)2 : 〉+ 〈 : (∆q̂Y )2 : 〉 ≈ Ē2/2. (38)

The ratio 〈 : (∆q̂X,Y )2 : 〉/〈∆â†∆â〉 which enters on the right-hand side of
Eq. (14) is of the order of 1/Ē . If Ē ¿ 1, the upper bound in Eq. (15) may
be exceeded by orders of magnitude.

Figures 3i and ii illustrate this prediction for broadband detection. Well
below threshold, where the squeezing is small (8% at line center), the classi-
cal bounds are violated dramatically. A violation exists for both quadratures
of the field. It is permitted because of the anomalous phase of the fluctu-
ation in Fig. 3ii, where, although the BHD current sampling is triggered
by photon counts, the averaged data records a fluctuation that is out of
phase with the offset; surely trigger counts would be more probable at the
times of in phase fluctuations. The anomalous phase allows the sum of the
quadrature variances to be much smaller than the modulus of either taken
individually, and hence leads to the large violation of inequality (15).

The results displayed in Fig. 3 show that conditional homodyne detec-
tion is not simply an alternate method for the detection of squeezed light,
but provides a completely different window on its nonclassicality. This is
underlined by Fig. 4, where the violation of inequality (15) is increasing for
decreasing pump parameter, while the squeezing and photon flux both de-
crease. For small Ē , CHD detects anomalously large fluctuations of the field
amplitude which are isolated in time through the conditional measurement.
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Figure 3. Quantum trajectory simulation of CHD for the OPO: (i) X-quadrature am-
plitude (unsqueezed), (ii) Y -quadrature amplitude (squeezed); with intracavity photon

number 〈â†â〉 = 2.0 × 10−4 (Ē = 0.02), η = 0.5, Ns = 10, 000. The dashed lines are the
classical bounds.

It records only the real fluctuations associated with the rare two-photon
pulses seen in direct photon detection. While the intensity-intensity cor-
relation of the photon pulses is highly bunched and looks classical, with
g(2)(0) ∼ 1/Ē2, CHD resolves this correlation into quadrature amplitude
components and uncovers the anomalous phase behavior at the level of the
field amplitude.

In related work, several authors have used the beating of a local oscilla-
tor with a signal field on a beam splitter to enhance the ability to measure
nonclassical effects such as photon antibunching and squeezing. This in-
cludes work by Vogel (1991) on resonance fluorescence, and Vyas and
Singh (2000) and Deng, Erenso, Vyas and Singh (2001), and on the
OPO. In the latter case, the output of the OPO mixed with the LO yields
antibunched light, whereas it is highly bunched on its own. Neither of these
schemes relies on a conditioned measurement. A scheme that does use a
conditioned measurement to see antibunching in an OPO system has re-
cently been proposed by Leach, Strimbu and Rice (2003). Siddiqui,
Erenso, Vyas and Singh (2003) discuss conditional measurements as
probes of quantum dynamics and show that they provide different ways to
characterize quantum fluctuations in a subthreshold degenerate OPO.

3.2. CAVITY QED

We next consider a cavity QED system that consists of a single mode of
the electromagnetic field interacting with a collection of two-level atoms
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Figure 4. The intensity-field correlation at zero delay for the OPO: hX(0) − 1 (i) and
hY (0) − 1 (ii) as a function of normalized pump parameter Ē . The dashed lines are the
classical bounds.

(see Fig. 5). Two spherical mirrors form an optical cavity that defines the
field mode. A single or a few two level atoms are optimally coupled at rate
g to the cavity mode. Dissipation occurs through decay of the field from
the cavity at rate κ and decay of the atomic inversion γ‖ = 1/τ (τ is the
radiative lifetime of the atomic transition) and polarization γ⊥. For purely
radiative decay, γ‖ = 2γ⊥. The field E/κ drives the system through one
of the mirrors and it is possible to detect the light that escapes from the
cavity mode through the output mirror.

The atom-cavity coupling rate is given by:

g =

(
µ2ω

2h̄ε0V

)1/2

(39)

for cavity mode volume V , atomic transition frequency ω, and dipole mo-
ment µ.

Work on Optical Bistability (OB) (Lugiato (1984)) produced a large
amount of experimental and theoretical literature on the transmission prop-
erties of an optical cavity filled with two-level atoms. Two dimensionless
numbers from the OB literature are useful for characterizing cavity QED
systems: the saturation photon number n0 and the single atom coopera-
tivity C1. Defined as n0 = 2γ⊥γ‖/3g2 and C1 = g2/2κγ⊥, they scale the
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Figure 5. Schematic of Cavity QED a classical drive E at frequency ω injects energy
into a single mode of the cavity cavity with one or more two-level atoms coupled to the
cavity at a rate g with atomic decay γ and cavity decay κ

influence of a photon and the influence of an atom in the system. The strong
coupling regime of cavity QED n0 < 1 and C1 > 1 implies very large effects
from the presence of a single photon and of a single atom in the system.

The Jaynes-Cummings Hamiltonian describes the interaction of a two-
level atom with a single mode of the quantized electromagnetic field (Jaynes
and Cummings (1963)),

Ĥ = h̄ωaσ̂
z + h̄ωcâ

†â− ih̄g(σ̂+â− â†σ̂−), (40)

where σ̂± and σ̂z are the Pauli spin operators for raising, lowering, and
inversion of the atom, and â†, â are the raising and lowering operators for
the field. The eigenstates for Eq. (40) reveal the entanglement between the
atom and the field. The spectrum has a first excited state doublet with
states shifted by ±g from the uncoupled resonance.

The equilibrium state of the atom-cavity system is significantly altered
by the escape of a photon. The dynamics consists of a collapse of the system
state |ψ〉 followed by a damped Rabi oscillation back to equilibrium. We
are interested in the reduction of the equilibrium state of the cavity QED
system after detecting a photon emitted from the cavity mode. Defining
Âθ ≡ (âexp(−iθ) + â†exp(iθ))/2, where â is the annihilation operator for
the cavity field and θ is the homodyne detector phase, we consider the
quadrature amplitude, Â0◦ , in phase with the steady state of the field at
low driving λ ≡ 〈â〉 = E/[κ(1 + 2C)]. We limit the discussion to the case
where the cavity and laser are resonant with the atomic transition. For
weak excitation, and assuming fixed atomic positions the equilibrium state
to second order in λ is the pure state (Carmichael, Brecha and Rice
(1991), Brecha, Rice and Xiao (1999))
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|ψSS〉 = [|0〉+ λ|1〉+ (λ2/
√

2)χβ|2〉+ · · ·]|G〉
+ [ς|0〉+ λςβ|1〉+ · · ·]|E〉+ · · · (41)

where |G〉 is the N atom ground state and |E〉 is the symmetrized state for
one atom in the excited state with all others in the ground state. We assume
that all N atoms are coupled to the cavity mode with the same strength,
g, with χ, β and ς derived from the master equation in the steady state
(Carmichael, Brecha and Rice (1991)):

χ = 1− 2C ′
1 ; β =

1 + 2C

1 + 2C − 2C ′
1

; ς = −
√

Ng0λ

γ⊥
(42)

where:
C ≡ NC1 ; C ′

1 ≡
C1

(1 + γ⊥/κ)
. (43)

After detecting the escaping photon, the conditional state is initially the
reduced state â|ψ〉/λ, which then relaxes back to equilibrium. The reduction
and regression is traced by (Carmichael, Brecha and Rice (1991),
Brecha, Rice and Xiao (1999))

|ψ〉 → {|0〉+ λ[1 +AF(τ)]|1〉+ · · ·}|G〉+ · · · , (44)

where

A = − 4C ′
1C

1 + 2C − 2C ′
1

(45)

F(τ) = exp
(−(κ + γ⊥)τ

2

) (
cosΩ0τ +

κ + γ⊥
2Ω0

sinΩ0τ

)
(46)

Ω0 =
√

g2
0N − 1

4
(κ− γ⊥)2. (47)

From Eqs. 41 and 44 it is possible to see that after a photodetetion, the
quadrature amplitude expectation makes the transient excursion 〈Â0◦(τ)〉 →
λ[1 +AF(τ)] away from its equilibrium value 〈Â0◦〉 = λ.

In the weak driving limit, which assumes up to two excitations in the
steady state of the system, the conditional field measurement is:

hθ(τ) = (1 +AF(τ)) cos θ. (48)

The correlation function measures the coefficient of the single photon
state in Eq. (44), it is usually a very small number and it is appropriate to
talk of a field fluctuation at the sub-photon level. A is the relative change of
the field inside the cavity caused by the escape of a photon (Carmichael,
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Brecha and Rice (1991), Reiner, Smith, Orozco, Carmichael and
Rice (2001)): The limit of large N gives A ≈ −2C1/(1 + γ⊥/κ), showing
the importance of the single atom cooperativity as the parameter that
establishes the non-classicality of the field. The sign of A tells us that the
cavity field goes negative causing a possible reduction.

Two dimensionless fields and intensities follow from the OB literature
that allow to make contact with experiments: The intracavity field (inten-
sity) with atoms in the cavity is given by x ≡ 〈â〉/√n0, (X ≡ 〈â†â〉/n0),
and the field (intensity) without atoms in the cavity y ≡ E/κ

√
n0, (Y = y2),

note that 2E2/κ is the input photon flux.

3.2.1. Low Field, weak driving limit
Figure 6 presents results from Reiner, Smith, Orozco, Carmichael
and Rice (2001) with the intensity-field correlation function and the spec-
trum of squeezing for very low intensity; at most two excitations in the
system. Both calculations are for a single atom maximally coupled using
quantum trajectories. The size of the non-classicality of h(τ) is very large
and as it is the case with the OPO the size of squeezing is very small.
There are very few fluctuations, but they are very large compared to the
mean. A single photon fluctuation is too large compared to a saturation
photon number of 0.01 and the system is driven with an intracavity in-
tensity X ≈ 3 × 10−4. The oscillations present are at the coupling con-
stant g. The spectrum of squeezing is the so-called “vacuum Rabi” doublet
(Carmichael, Brecha, Raizen, Kimble and Rice (1989)); the fluc-
tuations develop as spontaneous Rabi oscillations. The negative phase at
τ = 0 of conditional field is responsible for the squeezing, otherwise there
would be peaks instead of valleys at the Rabi frequency. The dashed line in
Fig. 6ii is the spectrum of squeezing calculated directly from the quantum
regression theorem. The solid line is the Fourier transform (see Eq. (10)) of
Fig. 6i which comes from averaging the photocurrent from a quantum tra-
jectory simulation over 55000 “starts”. Both approaches show the damped
Rabi oscillations which precede and follow a photodetection. In the weak
field excitation limit, Rice and Carmichael (1988) derived an analytical
expression for the spectrum of squeezing (thin line in Fig. 6ii) which agrees
with these results.

Figure 7i from Reiner, Smith, Orozco, Carmichael and Rice
(2001) shows the evolution of the field following the detection of a photon
escaping through the cavity mode and Fig. 7ii shows the field evolution
following the spontaneous emission of a photon out the side of the cavity.
The collapse operation on the state |ψ〉 of the type found in Eq. (44) is the
dynamical mechanism which describes these two results.

These two distinct behaviors correspond fairly loosely to the regression
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Figure 7. Regression of a cavity QED system back to steady state; N=1, low intensity
i. after the detection of a photon escaping out of the cavity mode ii. after the escape of a
photon through spontaneous emission. The inset shows the sequence of events in terms of
the cavity QED system and the detector. The parameters used are the same as in Fig. 6.

to equilibrium observed in the step excitation in the field, Fig. 7i, and a
step excitation in the atomic polarization, Fig. 7ii. Note the phase shift
between the two responses. The steady state wavefunction determines the
size of the steps. An undetected spontaneous emission produces the reduced
state σ̂−|ψ〉/λ, which sets up a completely different evolution as shown in
Fig. 7ii.

Quantum trajectories allow calculation with more than one atom and
even permit to include the effects of an atomic beam. This approach gives
a more accurate picture of the process in the laboratory. Fig. 8 from
Carmichael, Castro-Beltran, Foster and Orozco (2000) illustrates
a calculation of the conditional field applied to cavity QED. Fig. 8i shows vi-
olations of the inequality from Eq. 15, while squeezing is evident from both
the anomalous phase of the oscillation and the calculation of the spectrum of
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squeezing from the Fourier transform of the x quadrature correlation func-
tion (Fig. 8ii). This calculation takes into account a typical transit time for
an atomic beam experiment,dipole coupling constant g = 3.77κ, and atomic
decay rate of γ = 1.25κ, intracavity photon number 〈â†â〉 = 1.5 × 10−4,
η = 0.5, Ns = 20, 000, and an overall detection bandwidth of Γ = 10κ. The
results for many atoms show that the predictions for one atom hold at a
reduced size in an atomic beam.

3.2.2. High Field, outside the weak driving limit
The weak field calculations of the previous section make it clear that in the
strong coupling regime a cavity emission will always produce a negative
shift in the field. The ratio of the probability for a spontaneous emission to
the probability for a cavity emission from steady state is

Pspont

Pcavity
= 2NC1. (49)

Then in the strong coupling regime it is more likely for an atom to
spontaneously emit out the sides of the cavity than for the cavity to emit
a photon out through the exit mirror. Next we consider what happens in
the likely event that a cavity photon follows a spontaneous emission.

Figure 9 from Reiner, Smith, Orozco, Carmichael and Rice
(2001) shows representative quantum trajectories calculated with two atoms
in the cavity and the drive allows to have more that two excitations in the
system, so we are outside the weak driving limit. In Fig. 9i the evolution
starts with a spontaneous emission (A) out the side of the cavity, followed
at (B) by a photon escaping through the cavity mode that gets registered
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by the detector. The field jumps positive and changes curvature with the
escaping cavity photon.

The driving field (E/κ), atom-field coupling (g), and decay rates (κ, γ⊥)
are such that the system is in a regime where the cavity field is bunched.
Qualitatively, if there is a spontaneous emission event when the system has
few excitations it returns to the steady state as in Fig. 6i. If the spontaneous
emission event happens while in the bunched regime, followed by a cavity
emission, then there are probably more excitations in the system. With one
of the atoms removed from the system following the spontaneous emission,
the probability for this energy to be in the cavity mode is increased. If
there is a detection of a cavity photon soon after the spontaneous emission,
then the system is in a regime where the intracavity field undergoes a large
amplitude fluctuation, and the value of the cavity field is higher than the
steady state value. This causes an upward jump in the expectation of the
field. These types of events increase linearly with the number of atoms in
the cavity, since the ratio of spontaneous emission events to cavity loss
events is 2NC1.

The time evolution of the conditional field of the same system, driven
much harder, shows multiple jumps; some from spontaneous emission and
some from escapes through the mirror. The dynamics get very complicated
and Fig. 9ii shows an example for illustration. The average value of the
field from the conditional fluctuations still is much larger than the steady
state in such cases.

Figure 9 demonstrates the insight that can be gained by studying in-
dividual trajectories. In this case, when the system is undergoing a large
fluctuation, the intracavity photon number increases. This provides for a
larger excited state population and higher probability of spontaneous emis-
sion, typically followed by a series of cavity emissions. Quantum trajectories
give us insight into the underlying physics of the system which might not
be evident from direct numerical solution of the master equation. Here we
can see how spontaneous emission produces an incoherent field that can
degrade the non-classicality of the correlation function and the squeezing.

The entire trajectory is a collection of events well separated in time of
the type in Figs. 9i and 9ii. The average over many random realizations of
these different events with an initial cavity emission setting the trigger at
t = 0, recovers the conditioned field evolution.

Figure 10 shows results for two atoms maximally coupled to the cavity
mode with a drive that corresponds to a steady state intracavity intensity of
n/n0 = 18, far from the low driving limit. The coupling constant g produces
a similar vacuum Rabi oscillation Ω0 as that of Fig. 6. The background that
is visible in Fig. 10i around τ = 0 comes from the spontaneously emitted
photons (Reiner, Smith, Orozco, Carmichael and Rice (2001)). This
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background leads to a modification of the spectrum of squeezing, calculated
from the symmetrized correlation function in Fig. 10i, shown in Fig. 10ii.
Comparing the spectra in Fig. 6 to that of Fig. 10 a positive peak centered
at the LO frequency (Ω = 0) has appeared, corresponding to the higher
rate of spontaneous emission.
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3.2.3. Time asymmetry in cavity QED
Figures 11, 12, 13 present results of Denisov, Castro-Beltran and
Carmichael (2002) for the time asymmetry, that we mentioned before,
of the correlation function for cavity QED. Here they have not made any
assumptions about the nature of the noise. First they look at the pure
system as they increase the drive strength of the external field in cavity
QED in Fig. 11 [(i)-(iv)], and for increasing external noise in absorptive
bistability in Fig. 12 [(i)-(iv)]. The two sets of results are selected for the
qualitatively similar development. They do not correspond to the same
operating parameters; although the decay rates and coupling strengths are
matched. In both the weak and strong excitation limits the correlation
functions are time symmetric. Time asymmetry is limited to a transition
region of non-Gaussian fluctuations. Note how the oscillation is inverted and
much bigger in Fig. 11 compared with Fig. 12. These distinctly nonclassical
features are violations of the inequalities discussed earlier (See Eqs. 15 and
18.

Figure 13 shows results for many atom cavity QED without external
noise. Again these results come from many realizations through quantum
trajectories. The results are more similar to what happens in the laboratory
Foster, Orozco, Castro-Beltran and Carmichael (2000a), Fos-
ter, Smith, Reiner and Orozco (2002). Results are averaged over
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√
Ng/κ = 8 and γ/κ = 1.25, Y = 13 and

noise strength 2Υ2 = 25 (i), 50 (ii), 80 (iii), and 120 (iv).

200 configurations of the five atoms most strongly coupled to a TEM00

standing-wave cavity mode [gj = g cos θj exp(−r2
j /w2

0)] assuming a uni-
form spatial distribution of atoms: for N̄eff = 11 atoms inside the mode
waist, g0/κ = 3.7, γ/κ = 1.25, and mean intracavity photon numbers
〈â†â〉 ≈ 2.1×10−3 (i) and 7.3×10−3 (ii). The main deficiency of the approx-
imation is an overestimate of the dephasing caused by atomic beam fluctu-
ations. In spite of this, time asymmetry is found in qualitative agreement
with the experimental results (Figs. 3(a) and 4(b) of Foster, Orozco,
Castro-Beltran and Carmichael (2000a)); in particular, they repro-
duce the change in the sign of the asymmetry with increasing excitation
strength.

3.3. TWO-LEVEL ATOM IN AN OPTICAL PARAMETRIC OSCILLATOR

Strimbu and Rice (2003) have considered the intensity-field correlation
function for a two level atom in a degenerate optical parametric oscillator.
They show large violations of the Schwartz inequalities in h(τ). We may
view the system as an atom-cavity system driven by the occasional pair of
correlated photons.
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Figure 14. Two-level atom inside a driven optical parametric oscillator. E is the driving
field at frequency 2ω, g is the atom-field coupling, γ is the spontaneous emission rate out
the sides of the cavity, and 2κ is the rate of intracavity intensity decay.

3.3.1. The physical system
Consider a single two-level atom inside an optical cavity, which also contains
a material with a χ(2) nonlinearity. The atom and cavity are assumed to be
resonant at ω and the system is driven by light at 2ω. The system is shown
in Fig. 14. The interaction of this driving field with the nonlinear material
produces light at the sub-harmonic ω. This light consists of correlated pairs
of photons, or quadrature squeezed light. In the limit of weak driving fields,
these correlated pairs are created in the cavity and eventually two photons
leave the cavity through the end mirror or as out the side before the next
pair is generated.

The system Hamiltonian is

H = ih̄E(â†2 − â2) + ih̄g(â†σ̂− − âσ̂+) + h̄ω(â†â +
1
2
σ̂z) (50)

Here, g is the usual Jaynes-Cummings atom-field coupling defined in
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Eq. 39 in the rotating wave and dipole approximations. The effective two-
photon drive E is proportional to the intensity Iin(2ω) of a field at twice
the resonant frequency of the atom (and resonant cavity) and the χ(2) of
the nonlinear crystal in the cavity.

We use standard techniques to treat dissipation with a Liouvillian de-
scribing loss due to the leaky end mirror at a rate κ and spontaneous
emission out the side of the cavity at a rate γ.

3.3.2. Discussion of the model
Jin and Xiao (1993), Jin and Xiao (1994) considered the spectrum of
squeezing and incoherent spectra for this system. Clemens, Rice, Rungta
and Brecha (2000) considered the incoherent spectrum in this system in
the weak field limit, and found a variety of nonclassical effects. In the strong
coupling regime, the incoherent spectrum consisted of a vacuum-Rabi dou-
blet with holes in each sideband. Outside the strong coupling regime spec-
tral holes and narrowing were reported. These were attributed to quantum
interference between various emission pathways, which vanishes when the
number of intracavity photons increases and the number of pathways in-
creases.

As we are working in the weak driving field limit, we only consider states
of the system with up to two quanta, i.e. |−, n〉, |+, n〉 where the first index
denotes the number of energy quanta in the atoms (− for ground state, and
+ for excited state) and the second index corresponds to the excitation of
the field (n =number of quanta). In this case we describe the system by a
conditioned wave function, which evolves via a non-Hermitian Hamiltonian,
and associated collapse processes.Carmichael (1993a) These are given by

|ψc(t)〉 =
∞∑

n=0

C−,n(t)e−iE−,nt|−, n〉+ C+,n(t)e−iE+,nt|+, n〉 (51)

HD = −iκâ†â− iγ⊥σ̂+σ̂− + ih̄E(â†
2 − â2) + ih̄g (â†σ̂− − âσ̂+) (52)

and collapse operators

Ccav. =
√

κa (53)

Cspon.em. =
√

γ

2
σ−. (54)

For an initial trigger detection in the transmitted field, the appropriate
collapsed state is given by

|ψT
c 〉 =

â|ψSS〉
| â|ψSS〉 | (55)
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In the weak field limit this becomes

|ψT
c 〉 =

√
2CSS−,2 | −, 1〉+ CSS

+,1 | +, 0〉√
2| CSS−,2 |2 + | CSS

+,1 |2
(56)

Note there is no population in the ground state. Upon detection of a trans-
mitted photon, as they are created in pairs, the system has one quanta,
either in a cavity mode excitation (photon) or an internal excitation of the
atom. In the weak field the probability of more than two quanta in the sys-
tem initially is negligible; this is not the case for higher excitations. The
certainty of the number of quanta is at the heart of all the nonclassical
effects observed, these will vanish as the driving field increases. It is this
driving of the system by the occasional pair of photons in an entangled
state that creates most of the interesting effects. While this might be a dif-
ficult way to prepare such a state, by proper choice of g, κ, and γ⊥, any
superposition of |+, 0〉 and |−, 1〉 may be created. After the detection, the
system evolves in time,

|ψT
c 〉 = CCT

−,1(τ) | −, 1〉+ CCT
+,0(τ) | +, 0〉 (57)

where the superscript CT indicates a collapse associated with a photon
detection in transmission. The appropriate initial conditions are

CCT
−,1(0) =

√
2CSS−,2√

2| CSS−,2 |2 + | CSS
+,1 |2

(58)

CCT
+,0(0) =

CSS
+,1√

2| CSS−,2 |2 + | CSS
+,1 |2

(59)

In terms of the one-photon probability amplitudes,

hθ(τ) = 1 +

√
2CCT−,1(τ)CSS−,2 + CCT

+,0(τ)CSS
+,1√

2| CSS−,2 |2 + | CSS
+,1 |2

+
CCT−,1(τ) cos θ√

2| CSS−,2 |2 + | CSS
+,1 |2

(60)

The first two terms are of order unity, while the third term is of order
1/F . For weak fields, this term can be arbitrarily large, in violation of the
inequality in Eq. (15)

3.3.3. Results
Figure 15i shows results from Leach, Strimbu and Rice (2003) with
a plot of hθ(τ) for weak coupling (g/γ = 0.1, g/κ = 0.02), with cavity
decay dominant over spontaneous emission (κ/γ = 5); it presents large
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violations of the inequality from Eq. (15), both above (hθ(τ) > 2) and below
(hθ(τ) < 0). For the ordinary OPO, only the former is true. Fig. 15ii plots
hθ(τ) for weak coupling (g/γ = 0.1, g/κ = 1.0), with spontaneous emission
dominant over cavity decay (κ/γ = 0.1) and there are only violations above,
as in the ordinary OPO. Fig. 16 shows results of the correlation function
(hθ(τ) in the regime of strong coupling: (g/γ = 5.0; g/κ = 10.0), there are
large violations of the Schwartz inequality Eq. (15), both above and below,
with the appearance of vacuum-Rabi oscillations.

The intensity-field correlation functions for transmitted fields of a two-
level atom in an optical parametric oscillator in the weak field limit behaves
essentially as a cavity QED system where an occasional pair of photons ap-
pears in the cavity and interacts with the system. For the intensity-field
correlation function, which is essentially a quadrature field measurement
conditioned on a photon detection, the system shows violations of the clas-
sical Schwartz inequality (Eq. (15)). Unlike the OPO without a two-level
atom the system violates the upper and lower bounds over a wide range of
parameters. Vacuum-Rabi oscillations appear for large Jaynes-Cummings
couplings (g > κ, γ⊥). The inequality is violated from below only in the
weak coupling regimes, and both above and below in the strong coupling
regime. This is due in part to the field being π out of phase with the driv-
ing field. The nonclassical behavior tends to go away as the driving field
is increased (i.e. more photons are present) or as atoms are added to the
system.
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4. Experiment in Cavity QED

The experimental investigation of the intensity-field correlation function
in cavity QED (Foster, Orozco, Castro-Beltran and Carmichael
(2000a), Foster, Smith, Reiner and Orozco (2002)) demonstrates the
power of conditional homodyne detection. The measurement scheme detects
the fluctuations of one quadrature of the cavity field as they happen in the
laboratory. In this section we review the experimental results and present
a description of the apparatus.

4.1. CAVITY QED APPARATUS

The cavity QED system consists of a beam of optically pumped Rb atoms
traversing a driven high finesse Fabry-Perot cavity. At its heart is the opti-
cal cavity. Piezo-electric transducers are attached to the cavity mirrors to
provide control over the cavity length. During measurements, a feedback
loop holds it on the TEM00 resonance, where it supports a Gaussian stand-
ing wave mode with waist w0 = 21µm and length l = 410µm. A one-sided
configuration is used with 300 ppm transmission at the output mirror and
10 ppm transmission at the input mirror.



34 H. J. CARMICHAEL ET AL.

An effusive oven, 35 cm from the cavity, produces a thermal beam of Rb
atoms in a chamber pumped by a large diffusion pump operated at typical
pressures of 1× 10−6 Torr. The oven is heated to ≈ 430K± 0.1K with the
help of computer controlled feedback. Final collimation is provided by a
70µm slit on the front of the cavity holder. The cavity is surrounded by a
liquid nitrogen cooled Cu sleeve to reduce the background atomic vapor, as
the presence of too much background destroys the observed correlations.

The excitation source is a Verdi 5 pumped titanium sapphire (Ti:Sapph)
laser, a modified Coherent 899-01. The primary laser beam is split into a
signal beam and auxiliary beams for laser frequency locking, cavity lock-
ing, and optical pumping. All beams are on resonance with the 5S1/2, F =
3 → 5P3/2, F = 4 transition of 85Rb at 780 nm. The atoms are optically
pumped into the 5S1/2, F = 3,mF = 3 state in a 2.5Gauss uniform mag-
netic field applied along the axis of the cavity using the appropriate circular
polarization of the pumping light.

The cavity is locked with a Pound-Drever-Hall scheme. During data col-
lection, the laser beam traverses a chopper wheel which alternately passes
the lock beam and opens the path from the cavity to the photon counting
detectors at ≈ 1.1kHz. Polarizing optics separate the signal from the lock.
The signal beam is directed to the correlator. Between 50 and 85% of the
signal emitted from the cavity is sent to the BHD. The remaining 50 to 15%
of the signal goes to the avalanche photodiodes. The choice is guided by
experimentally finding the best signal to noise ratio after averaging some
60, 000 samples.

The three rates governing the atom-cavity coupling, cavity decay, and
atomic decay in the cavity QED apparatus are (g, κ, γ⊥)/2π = (12, 8, 3) MHz,
which yield C1 = 3 and n0 = 0.08, placing the experiment in the strong
coupling regime of cavity QED. The measurements are carried out with an
average intracavity field less than that of one photon.

4.2. CONDITIONAL HOMODYNE DETECTOR

Measurement of the intensity-field correlation requires a homodyne mea-
surement of the signal to be made correlated with photon detections. A
modified Mach-Zehnder interferometer was implemented to perform the
measurement. Fig. 17 shows a schematic of the interferometer and its in-
tegration with the cavity QED apparatus. Light enters the Mach-Zehnder
interferometer, driving the cavity QED system on one arm and provid-
ing a local oscillator (LO) for the BHD on the other (Yuen and Chan
(1983a),Yuen and Chan (1983b)). A fraction of the signal is directed to
the BHD and the remainder is sent to the intensity detector (avalanche
photodiode APD). The photocurrent from the BHD is proportional to the
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Figure 17. Schematic diagram of the cavity QED experimental setup.

LO-selected quadrature amplitude of the signal field. Photon detections
at the APD are correlated with the BHD photocurrent to measure the
intensity-field correlation function via Eq. (23). We discuss each compo-
nent of the measurement in the following.

4.2.1. Mach-Zehnder Interferometer
The Mach-Zehnder interferometer is used to separate the laser into a local
oscillator and a signal beam which, although they follow separate paths,
maintain a constant relative phase. Control of the relative phase is critical
for the measurement. It is achieved by adjusting the path difference of the
two arms with a piezo-actuated mirror and actively stabilizing the interfer-
ometer length with a feedback system. The stabilization uses a thermally
stabilized He-Ne laser (λ = 633nm) or diode laser (λ = 640nm) locked us-
ing FM sidebands to an Iodine cell. The cavity QED system is transparent
to the red wavelengths, but they form fringes at the Mach-Zehnder output.
An edge filter separates the 780nm and red wavelengths at the output.
The MZ length is continually adjusted so such that it sits at a red fringe
maximum or minimum. A phase change may be introduced by locking the
length to different red fringes. In this way the IR phase can be adjusted in
steps of δθIR = 146◦ = (180◦ × 633/780). There is also an optical path de-
lay that can be mechanically adjusted to bring the IR and red in phase at
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a particular fringe.

4.2.2. Amplitude Detectors
The combined signal and LO field is directed to a pair of biased silicon
photodiodes configured as a BHD. The AC coupled current from the pho-
todiodes is amplified and subtracted to allow common mode rejection of
local oscillator intensity noise (technical noise). The current from each de-
tector first passes through a bias T which filters DC components below
100kHz. The DC component provides a direct measure of the local oscilla-
tor current.

4.2.3. Intensity Detectors
The intensity detectors are arranged as a photon correlator consisting of two
avalanche photodiodes (APD) behind an unpolarized 50/50 beam splitter.
The detectors have a quantum efficiency of 50%, a dark count rate of less
than 50Hz, and a 30ns dead time. The detector electronics produce a TTL
pulse for each photon detection, a copy of which goes to a counter that
measures the photon count rate of each APD. These rates yield the mean
intensity of the light emitted from the cavity after correcting for efficiencies
and linear losses.

4.2.4. Correlator Data Acquisition
The homodyne current is sampled with a digital oscilloscope triggered by
photon detections registered at the APDs. The trigger is produced by the
apparatus used elsewhere for intensity correlation measurements (Foster,
Mielke and Orozco (2000b)). Instead of correlating the signals from the
APDs, for the intensity-field correlation the two signals are combined in a
logical OR. The digital oscilloscope samples the BHD photocurrent over a
500 ns window at 2 Gs/s with an 8 bit analog to digital (A/D) converter.
It performs a summed average of the triggered samples. Typically up to
5× 104 samples are taken.

4.3. MEASUREMENTS

The saturation photon number n0 in the experiment is less than one and
hence the observed fluctuations are associated with the emission of a sin-
gle conditioning photon. Fig. 18 shows data taken at an intracavity inten-
sity n/n0 = 0.30, corresponding to a mean intracavity photon number of
0.027. The data is in the low intensity regime. The trace on the left is the
unormalized correlation function H(τ); it shows non-classical behavior, vi-
olating the bound of Eq. (15), as the correlation has a minimum at τ = 0.
On the right is its FFT, which in accord with Eq. (10) is proportional
to the spectrum of squeezing. The squeezing spectrum shows a dip at the
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vacuum Rabi frequency Ω0. There is qualitative agreement with the pre-
diction of Fig. 6, although the data is not normalized as would be required
for a quantitative comparison. The continuous line fitted to the FFT has
the functional form predicted by the low intensity theory (Reiner, Smith,
Orozco, Carmichael and Rice (2001)).

The BHD measures the interference between the local oscillator and
the emitted cavity field, which depends on their relative phase (Eq. (6)).
A comparison of the conditionally averaged AC coupled photocurrent for
two different local oscillator phases is shown in Fig. 19. When the relative
phase is changed by 146◦ ≈ 180◦ (see Sect. 4.3.1) the sign of the interference
changes. The normalization of these raw results is discussed in detail in the
next section. Notice, however, that even without the normalization, the
value of the field at τ = 0 in Fig. 19i is clearly smaller than its steady-
state value. This is further evidence of a non-classical field, since it violates
the lower bound of Eq. (15). This nonclassical feature demonstrates that
the field fluctuations are anticorrelated in a similar way to the intensity
in photon antibunching. Rather than seeing random field fluctuations, we
see explicit evidence of the projection of the polarization field out of phase
with the steady-state intracavity field.

4.3.1. Normalization
The correlation function defined by Eq. (8) is normalized to the mean field;
therefore, obtaining the proper normalization calls for precise knowledge of
this field. As the detection system is AC coupled, the mean field must be
determined in some indirect manner. In practice, the proper DC level and
normalization has been determined by comparing the expected shot noise
after averaging with the measured noise in the data. In this way, knowledge
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of the averaging procedure allows the normalized correlation function to be
extracted.

The noise amplitude for the normalized correlation function is given by

δh =
1

2〈â〉√η2κ

√
Bκ

2Ns
, (61)

where, as in Sec. 2, Ns is the number starts, κ is the cavity bandwidth, B is
the detector bandwidth in units of the cavity bandwidth, η is the fraction
of the output power sent to the BHD, and 〈â〉 is the mean intracavity field
(no offset is used in this measurement). Assuming then that the data can
be scaled with two constants, Ξ and Υ, such that

h(τ) = Ξhexpt(τ) + Υ, (62)

the normalization of h(τ) requires that

Ξhexpt(∞) + Υ = 1. (63)

To determine Ξ we note that Ξδhexpt = δh, and then assuming that the co-

herent transmission dominates the incoherent transmission (〈â〉 ≈
√
〈â†â〉),

Eq. (61) yields

Ξ ≈ 1
4δhexpt

√
B

〈â†â〉ηNs
. (64)

Υ is then recovered from Eq. (63). Aside from the reasonable assumption,
this method determines the scaling from quantities measured in the exper-
iment. The number of starts is recorded on the digital oscilloscope. The in-
tracavity intensity and η are obtained from the measured flux at the APDs,
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and the detection bandwidth is determined by the 70 MHz low pass filter.
The noise amplitude δhexpt is determined by taking the standard deviation
of the unnormalized data.

A second approach to the normalization of h(τ) uses the knowledge
that the normalized field correlation is the square root of the intensity
correlation g(2)(τ) in the weak field limit. This permits a DC level for the
raw field measurement to be determined that properly scales the normalized
intensity-field correlation function. The approach is less reliable for these
particular measurements, however, because the data is not strictly taken in
a weak field regime.

Finally, one might determine the normalization by calculating the DC
field expected from the measured photon flux. From the measured flux, the
expected DC voltage level can be calculated. Adding this level and dividing
the total by the same mean level normalizes the correlation data to give a
long-time mean of unity.

The difference between the first method of normalizing, on the basis of
the expected noise, and the other two, is that it only includes the fraction
of light directed to the BHD, without including the signal LO overlap,
quantum efficiency, and additional losses. The first method of normalization
was employed for the results presented here.

As an example of the normalized results, Fig. 20 shows h(τ) for a larger
intracavity intensity (n/n0 = 1.2). The dashed area in the figure marks the
limits from the Schwartz inequalities in Eq. (15) and Eq. (18). The field is
clearly non-classical. It is interesting to note that the intensity-intensity cor-
relation function for an input intensity within 10% of that used to obtain
Fig. 20 shows only classical fluctuations, in the form of significant pho-
ton bunching (Foster, Orozco, Castro-Beltran and Carmichael
(2000a)). Note that in comparison with Figs. 18 and 19 a significant back-
ground has appeared. Qualitatively the correlation function agrees with
that in Fig. 10i, where the stronger driving field causes many spontaneous
emissions which interrupt the oscillatory evolution of the system back to the
steady state. Reiner, Smith, Orozco, Carmichael and Rice (2001)
study the effects of spontaneous emission in greater detail.

4.3.2. Spectrum of Squeezing
The Fourier transform of the normalized intensity-field correlation function,
when multiplied by the source photon flux, gives the spectrum of squeezing
(Eq. (10)). Thus, a single time domain measurement of the fluctuation
of the field quadrature amplitude yields the entire spectrum of squeezing
in the frequency domain. The spectrum in Fig. 21 is computed from the
normalized data of Fig. 20. Since the data contains noise, the time series
was first symmetrized and then ordered in a one-dimensional array, with
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Figure 20. Measured normalized field correlation for an in-phase field in cavity QED.
N=13 and n/n0 = 1.2. The dashed region is classically allowed.

the positive times appearing first followed by the negative times in reverse
order. The real part of the fast Fourier transform (FFT) is then taken,
and multiplied by the time resolution of the data and twice the flux F
(Eq. (11)), as determined from the measured rates at the APDs and their
measured efficiencies.

There is squeezing below the standard quantum limit (or the shot noise
level) at the vacuum Rabi frequency Ω0. The magnitude at this frequency
is ≈ 5%. The positive peak at zero is primarily caused by the spontaneous
emission noise (Reiner, Smith, Orozco, Carmichael and Rice (2001))
and is in qualitative agreement with the result displayed in Fig. 10.

The measurements of the cavity QED system show that the detection
of a photon projects the system into a quantum state that evolves in time
with a well-defined phase (relative to the mean field). The conditional ho-
modyne detection uses this feature to observe the evolution of the field
fluctuation; by triggering the collection of data from the BHD on a pho-
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ton detection, one recovers the subphoton field fluctuation from the large
shot noise background. The time-domain measurement provides the infor-
mation required to construct the full spectrum of squeezing in an efficiency
independent manner.

5. Equal-Time Cross- and Auto-Correlations

We review in this section a series of theoretical and experimental papers
that have studied conditional homodyne measurements at equal times, this
means they do not look at the dynamics of the state as we have shown in
previous sections, but they show very interesting results that demonstrate
the quantum nature of conditional states of the electromagnetic field.

The entanglement available on the output field produced in the paramet-
ric down-conversion process has been exploited thoroughly to perform stud-
ies of conditional quantum measurements. Yurke and Stoler (1987) pro-
posed a cross correlation measurement, a conditional measurement, of the
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quadrature of the electromagnetic field as a way to measure the ampli-
tude probability distributions for photon-number operator eigenstates. Ban
(1996) studied the photon statistics of conditional output states with a pho-
ton counting detector at one output of a beam splitter and a homodyne
detector at the second output of the beam splitter for different input fields.
This treatment is equivalent to h(0) the auto-correlation between the in-
tensity and the field of a signal beam and enables the author to study the
Mandel Q factor of the conditional output state in detail.

More recently Crispino, Giuseppe, Martini, Mataloni and Kana-
toulis (2000), and Lvovsky, Hansen, Aichele, Benson, Mlynek
and Schiller (2001) performed a cross correlation measurement and ap-
plied tomographic methods to reconstructed the Wigner distribution for a
one photon state using conditional homodyne detection. Fiurasek (2001)
studied the photon statistics conditioned on the homodyne detection in a
similar system. Resch, Lundeen and Steinberg (2002a) and Resch,
Lundeen and Steinberg (2002b) used intensity-field cross-correlations
for measurements of conditional coherence in prepared quantum states and
to implement a conditional phase switch at the single photon level.

5.1. CROSS-CORRELATIONS

We generalize the definition of the unormalized correlation function Hθ(τ)
in Eq. 4 to allow two different modes, allowing us to cross correlate the
intensity fluctuations on one mode with the field fluctuations of another
mode:

Hθ(τ)i,j =
〈 : Ŝi(t)D̂j(t + τ) : 〉

〈Ŝi〉
+ ξ(t). (65)

where the labels i and j refer to two different modes. The normalization
proceeds in the same way as in section 2 so we can now talk about the
conditional field on mode j given a photon detection on mode i. This is
useful in the case of the two entangled modes of a parametric down conver-
tor. (See Fig. 22). The connection with squeezing given by Eq. (10) for the
auto-correlation h(τ) is not valid in the case of the cross-correlation h(τ)i,j .

5.1.1. Proposal for measuring the amplitude probability of a Fock state
Yurke and Stoler (1987) present measurement strategy to obtain the
probability distribution of an n photon Fock state. They suggest the highly
correlated process of parametric down conversion where the number of pho-
tons counted by a photodetector in the idler beam during a coherence time
could be used to gate a homodyne detector in the signal beam. The in-
tegrated output of the homodyne detector over a coherence time is only
recorded when an m-photon wave packet enters its input port. In this way
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Figure 22. Simplified apparatus for measurement of the cross-correlation H(0)i,j in
parametric down conversion.

it is possible to map out the probability distribution for a field-amplitude
component of a number-operator eigenstate.

They propose to measure the cross-correlation or conditional amplitude
H(τ)i,j in a parametric down converter, where the idler beam is the mode
i, and the signal beam is the mode j. Their proposal does not show a
way to normalize the correlation function, as is suggested in Section 2 of
this review by adding a coherent offset (See Fig. 1). They suggest that
this conditional measurement could be used for the same purpose on other
non-linear sources that produce non-classical light.

5.1.2. State Reconstruction of a Fock state and Quantum-Optical
Catalysis.
Crispino, Giuseppe, Martini, Mataloni and Kanatoulis (2000) and
Lvovsky, Hansen, Aichele, Benson, Mlynek and Schiller (2001) have
reconstructed the quantum state of optical pulses containing single photons
using the method of phase-randomized pulsed optical homodyne tomogra-
phy. The method they apply is very similar, but we review here in more
detail the experiment of Lvovsky, Hansen, Aichele, Benson, Mlynek
and Schiller (2001). They prepare a single-photon Fock state |1〉, in a
well-defined spatiotemporal mode, using conditional measurements on pho-
ton pairs born in the process of parametric down-conversion following the
original suggestion by Yurke and Stoler (1987).

A single-photon counter is placed into one of the emission channels
(labelled trigger in Fig. 22) to detect photon pair creation events and to
trigger the readout of a homodyne detector placed in the other (signal)
channel. (See Hansen, Aichele, Hettich, Lodahl, Lvovsky, Mlynek
and Schiller (2001) for a description of their detector).

The signal beam as shown in Fig. 22 is not an optical beam in the
traditional sense. The down-converted photons are in fact emitted randomly
over a wide solid angle. The optical mode of the signal state is usable when
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Figure 23. Simplified scheme of the experimental setup for H(0) of a Fock State with
the help of an offset field.

a photon of a pair hits the trigger detector and is registered. Once the
approximation of the Fock state is prepared, it is subjected to balanced
homodyne detection Yuen and Chan (1983a), Yuen and Chan (1983b).

They obtain a probability distribution of the phase-averaged electric
field amplitudes with a non-Gaussian shape. They then reconstruct the
angle-averaged Wigner function from this distribution that shows a dip
reaching classically impossible negative values around the origin of the
phase space.

This is an intensity-field cross-correlation at equal times (see Eq. (65)),
here presented as a conditional measurement. The evolution of the para-
metric down conversion process is very fast so they do not get the time
dependence. They do not have an average field to normalize the correla-
tion function that they measure, so the results are not independent of the
quantum efficiency of the detectors.

Lvovsky and Shapiro (2002) have used the equal time intensity-field
cross-correlations to measure and characterize non-classical light. Another
use of the cross-correlation between the intensity of one mode and the field
of another as done in the work described above is the work of Fiurasek
(2001). Instead of conditioning on the intensity fluctuations (photodetec-
tion) the paper proposes to use the homodyne signal to condition the pho-
todetections. The photodetector only counts if the absolute value of the
measured idler quadrature lies inside a certain range. The conditioned gen-
erated signal is sub-Poissonian.

As a follow up of their previous cross-correlation work Lvovsky and
Mlynek (2002) use a intensity-field cross-correlator to measure the con-
ditional field of a single photon. (See Fig. 23 for a schematic of their ap-
paratus). They prepare the single photon through the parametric down
conversion process with a conditional measurement and then they use the
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Fock state as the “source” (See Fig. 1) for their intensity-field correlator.
Since the Fock state does not have a steady state amplitude, they add a
coherent bias field to do the auto-correlation measurement Hθ(0) at equal
times.

Lvovsky and Mlynek (2002) show that with the appropriate choice
of offset, they can prepare and characterize a coherent superposition states
t|0〉 + α|1〉 of the electromagnetic field by conditional measurements on a
beam splitter. The single photon plays the role of a catalyst: it is explicitly
present in both the input and the output channels of the interaction yet
facilitates generation of a nonclassical state of light. Although their mea-
surement does not give the full time dependent intensity-field correlation
function, since they can obtain the value at τ = 0, from the Fourier Trans-
form relations presented in section 2 (see Eq. (12)) it is possible to obtain
the integrated spectrum of squeezing for this Fock state.

6. Quantum Measurements and Quantum Feedback

The intensity-field correlation function has introduced a new way to an-
alyze and study the non-classicality of the electromagnetic field. It does
that mainly through the two Schwartz inequalities in Eqs. 15, 18. Recent
works by Wiseman (2002) and Carmichael (2003) show that the condi-
tional homodyne detection, key to measuring h(τ), has further implications
in the quantum theory of measurement through its relationship with the
weak measurements of Aharonov, and in distinguishing qualitatively be-
tween vacuum state squeezing and the mere squeezing of classical noise.
Carmichael (in press)has used the connection between the intensity-field
correlation and the particle-wave aspects to further elucidate this important
question. Conditional measurements and quantum feedback are intimately
related Wiseman (1994). The last part of this section presents a proposal
to use CHD in quantum feedback to modify the the response of a cavity
QED system.

6.1. WEAK MEASUREMENTS

We review the main ideas behind a weak measurement and follow Wiseman
(2002) in developing the connection between h(τ) and weak measurements.
A weak measurement is one that minimally disrupts the system, while con-
sequently yielding a minimal amount of information about the observable
measured (Aharonov, Albert and Vaidman (1988)). For a given initial
system state, the ensemble average of weak-measurement results is the same
as for strong i.e., projective measurement results. Where weak measure-
ments are interesting is when a final as well as an initial state is specified.
Here the final state is the result of a second measurement (a strong one), so
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that the ensemble average is taken over a postselected ensemble, in which
the desired result for the final measurement was obtained.

A homodyne measurement gives a current proportional to the expecta-
tion value of the quadrature operator and so conditions the system state.
The photon counting also gives a continuous measurement that is weak in
the sense that the average change in the conditioned system in time δt is
of order δt, as seen in quantum trajectories (Reiner, Smith, Orozco,
Carmichael and Rice (2001)). However, unlike homodyne detection,
sometimes the change is great, there is a quantum jump and either the
system changes state or continues its evolution.

Looking at the negative time side of the correlation function it is possible
to see that this is a weak value preselected by the system being in its
stationary state, and postselected on the photon detected at time τ = 0.
The measurements of the correlation function, as a function of time shows
the dynamics of a weak value (quadrature of the electromagnetic field)
over time. The strangeness of the weak values in this experiment is not
surprising, since the conditions set by Aharonov, Albert and Vaidman
(1990) are fulfilled. That is, the postselection is done on a rare event, the
detection of one photon rather than zero photons.

The formulation of the quantum trajectory has to have the influence of
the homodyne detection to be consistent and describe the times before the
detection of a photon. Wiseman (2002) shows that h(τ), the intensity-field
correlation function reduces to a form as simple as that originally derived
by Aharonov, Albert and Vaidman (1988)

6.2. VACUUM STATE SQUEEZING VERSUS SQUEEZED CLASSICAL
NOISE

It is apparent from Eqs. (9) and (10) that conditional homodyne detection
offers a somewhat different view of squeezed light than the conventional
squeezing measurement. Certainly, the latter is usually carried out in the
frequency domain, but this difference is not important. In both cases we
have a Fourier relationship between frequency and time of the sort given
in Eq. (11). The important difference is that in the conventional measure-
ment, the relevant temporal correlation function is the direct autocorre-
lation of the current, i(t), from the balanced homodyne detector, which
is calculated from a symmetrically ordered quantum average, rather than
the normal-ordered average of Eq. (9). The difference is a direct mani-
festation of conditioning, and from it, it follows that whereas a conven-
tional homodyne measurement distinguishes quantitatively between vac-
uum state squeezing and squeezed classical noise, conditional homodyne
detection distinguishes quantum from classical squeezing in a qualitative
way (Carmichael (2003)).
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Physically, in any realistic example, squeezing is restricted to a finite
bandwidth, outside of which the field fluctuations are not squeezed. For
vacuum state squeezing, the unsqueezed fluctuations appear as shot noise
on i(t), the shot noise commonly being interpreted as a manifestation of the
vacuum fluctuations of the measured field. If, in addition, this field carries
broadband classical noise, the unsqueezed classical fluctuations also add to
the fluctuations of i(t). Thus, in a conventional squeezing measurement,
unsqueezed classical noise and shot noise contribute to the autocorrelation
of i(t). In conditional homodyne detection, by comparison, only the classi-
cal noise contributes; the shot noise is eliminated; through the conditional
sample average, the term ξ(τ) in Eq. (9) is reduced (in the ideal limit) to
zero.

To illustrate the comparison, we consider the squeezing of broadband
classical noise, as depicted in Fig. 24i. Classical noise of bandwidth (halfwidth)
Bcκ = 15κ is squeezed by a sub-threshold degenerate parametric oscilla-
tor over the bandwidth κ. Fluctuations on the squeezed quadrature of Eout

are then measured using either conventional homodyne detection or condi-
tional detection; the detection bandwidth is Bdκ = 25κ. Figures 24ii and iii
show simulated results for the direct autocorrelation of the homodyne cur-
rent, and thus provide the time-domain view of a conventional squeezing
measurement. The presence of squeezing is evident from the broad nega-
tive dip, while fluctuations outside the squeezing bandwidth produce the
narrow spike around τ = 0. In frame ii, this spike is contributed to by both
classical fluctuations and shot noise. The shot noise alone contributes in
frame iii; here the height of the spike is correspondingly reduced.

For comparison, Fig. 25 displays simulated results of conditional ho-
modyne detection. In this case, there is no shot noise contribution to the
central spike. The spike shrinks and eventually disappears as the classical
noise level is decreased. A central spike in hθ(τ) is therefore a qualitative
indicator of the squeezing of classical, as opposed to vacuum state noise.

Carmichael (2003) has also investigated to what extent stochastic
electrodynamics is able to reproduce this distinction between classical and
vacuum noise squeezing. He finds that the results of Fig. 25 are reproduced,
but with an additional background contribution generated by “starts” in-
duced by the explicit vacuum noise (unphysical dark counts). In related
work, triple correlations of the quadratures of the electromagnetic field
have been used by Drummond and Kinsler (1995), Kinsler (1996),
Chaturvedi and Drummond (1997), and Pope, Durmmond and Munro
(2000) to investigate differences between the predictions of stochastic elec-
trodynamics and quantum mechanics. They compare the former with the
positive P representation and also focus their attention on the parametric
oscillator.
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Figure 24. i Sketch of the degenerate OPO squeezer with broadband classical noise input.
Under conventional homodyne detection of the field Eout [ii and iii], the autocorrelation of
the homodyne current reveals nonsqueezed fluctuations over a wide bandwidth (central
spike) and a narrow bandwidth of squeezed fluctuations (negative dip): for a classical
noise bandwidth Bcκ = 15κ, detection bandwidth Bdκ = 25κ, and classical noise photon
numbers (in the degenerate OPO cavity) of ii n̄c = 0.2 and iii n̄c = 0; the degenerate
OPO squeezer is operated at 40% of threshold.

6.3. APPLICATION OF Hθ(τ) TO QUANTUM FEEDBACK

Most quantum feedback proposals use the BHD photocurrent to modify the
drive acting on a quantum system. The goal of such feedback can vary from
reducing out-of-quadrature noise (Tombesi and Vitali (1995)) to modify-
ing the system dynamics (Wang and Wiseman (2001)). All these propos-
als rely on continuous feedback. Doherty and Jacobs (1999) showed that
one can improve these schemes with knowledge of the conditioned state. A
recent experiment by Smith, Reiner, Orozco, Kuhr and Wiseman
(2003) shows the success of quantum feedback in a strongly coupled system
through conditional intensity measurements.

We consider adding feedback to the single atom cavity QED system (See
section 3.2 for theoretical details). A photon leaves the cavity which initiates
a fluctuation. Conditioning the BHD detectors to observe this fluctuation
also creates the opportunity to apply feedback.

The dynamics of this system, once the detection of the photon is made,
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Figure 25. Broadband classical noise squeezing under conditional homodyne detection.
The correlation function hY (τ), with Y the squeezed quadrature, is plotted for the pa-
rameters of Fig. 24 and classical noise photon numbers (in the degenerate OPO cavity)
of i n̄c = 0.2, ii n̄c = 0.1, iii n̄c = 0.05, and iv n̄c = 0.

are governed by the regression to steady state of the field. That for weak
fields reduce in the Optical Bistability notation of Lugiato (1984) to:

ẋ = κy + gp− κx + Gx

ṗ = −gx− γ⊥p. (66)

where y is the normalized intracavity field in the absence of atoms (pro-
portional to the drive), x the intracavity field in the presence of atoms, p is
the atomic polarization, and G quantifies the strength of the field feedback.

The intensity-field correlator measures the conditioned BHD photocur-
rent,

i(t) =
√

2κη〈x(t)〉+ ξ(t), (67)



50 H. J. CARMICHAEL ET AL.

ATOMS

SIGNAL

    LOCAL  
OSCILLATOR

AVALANCHE 
PHOTODIODE

CORRELATOR

TRIGGER

PHOTOCURRENT

+
_

BALANCED 
HOMODYNE 
DETECTOR

CAVITY

LIGHT

ELECTRO OPTICAL 
MODULATOR 

i(t 1)
i(t2)

i(t3)
t2  t3  t1  < <MODULATOR 

DRIVER

FEEDBACK
CURRENT

Figure 26. Schematic of the feedback apparatus. The running average is feedback to
reduce the contribution of the shot noise component.

which is proportional to the intra-cavity field and contains shot noise (ξ(t)).
We propose modulating the amplitude of the driving laser with the con-
ditioned BHD photocurrent. This modifies the system Hamiltonian HS to
include:

Hfb = Gi(t)
(
â− â†

)
. (68)

We improve this feedback by averaging away the shot noise contribution
in Eq. (68).

H(N, τ)fb =
∑Ns

j=1 λic(tj + τ)
Ns

(69)

Figure 26 presents a suggestion of how the intensity-field correlator in
the experiment of Foster, Orozco, Castro-Beltran and Carmichael
(2000a) would be modified to apply quantum feedback. Photons arrive at
the avalanche photodiode at different times, t1, t2 and t3. These are well
separated to show the reduction in shot noise with consecutive averages.

Figure 27 shows the conditioned field evolution of a single maximally
coupled stationary atom in cavity QED without and with the feedback
protocol defined by Eq. (68) set to enhance the vacuum Rabi oscillations of
the system. The evolution has been maintained well beyond the limits set by
(κ+γ⊥)/2. The plot is the result 10,000 averages to reduce the contribution
from the shot noise.
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Figure 27. Single atom cavity QED quantum conditioned field evolution: i without
feedback, and ii with feedback. (g, κ, γ⊥, Γ,G)/2π = (38.0, 8.7, 3.0, 100, 3.5) MHz.

7. Conclusion and Outlook

Future studies may try to map out a full phase space picture of the condi-
tional field as it evolves in time. This would involve sampling the field at
various phases and performing some type of tomographic reconstruction to
arrive at a quasi-probability distribution (Leonhardt (1997)).

The conditional homodyne technique may have more general application
to studying other sources both classical and non-classical since the informa-
tion obtained through this intensity-field correlation approach complements
and synthesizes that coming from intensity-intensity correlations (particle
aspect) and squeezing (wave aspect).
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