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ABSTRACT 

 We use the context of problem solving to show that students exhibit a local 
coherence but not a global coherence in their physics knowledge.  When presented 
with a problem-solving task, students often activate a coherent set of knowledge called 
a schema to solve the problem.  This schema consists of strongly related knowledge 
and procedures.  Although the schemas students develop in the physics course are 
usually sufficient for success in the class, they are often insufficient for solving 
complex problems.  Complex problems require that students have a deep 
understanding where they have integrated their qualitative knowledge with their 
quantitative knowledge and have integrated related physics topics.  We show that our 
students activate schemas consisting of small amounts of knowledge and these 
schemas are often isolated from other schemas. 

Physics Education Research (PER) has shown that students in introductory 
physics lack a deep understanding of physics principles and concepts.  Through 
research-based curricula, conceptual understanding can be improved.  In addition PER 
has shown that students can be taught problem solving skill s through a modified 
curriculum.  Despite these improvements, students still have difficulty developing a 
coherent knowledge of physics.  In particular, students often have difficulty 
connecting related physics concepts.  In addition, they view quantitative problems and 
qualitative questions as distinct types of tasks, possessing different types of knowledge 
and different sets of rules for responding.  
 We discuss some possible methods that physics instructors and physics 
education researchers can use to examine coherence in student knowledge.  Using 
these methods, we provide evidence for the local coherence in student physics 
knowledge by identifying distinct schemas for different physics topics and concepts, 
as well as distinct schemas for qualitative and quantitative knowledge.  After 
identifying some of these difficulties in student understanding, we look at how 
students are connecting qualitative knowledge to quantitative knowledge after going 
through concept-based curriculum.  The research identifies benefits as well as 
shortcomings in the concept-based curriculum and talk about possible modifications 
that may foster coherence.  In addition, we compare performance on quantitative 
questions between a physics class using the traditional problem-solving recitation and 
a class using Tutorials in Introductory Physics on quantitative problems.   
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