

USING THE CONTEXT OF PHYSICS PROBLEM SOLVING TO EVALUATE THE COHERENCE OF STUDENT KNOWLEDGE.

Mel Stephan Sabella, Doctor of Philosophy, 1999

Dissertation directed by: Professor Edward F. Redish Department of Physics

ABSTRACT

We use the context of problem solving to show that students exhibit a local coherence but not a global coherence in their physics knowledge. When presented with a problem-solving task, students often activate a coherent set of knowledge called a schema to solve the problem. This schema consists of strongly related knowledge and procedures. Although the schemas students develop in the physics course are usually sufficient for success in the class, they are often insufficient for solving complex problems. Complex problems require that students have a deep understanding where they have integrated their qualitative knowledge with their quantitative knowledge and have integrated related physics topics. We show that our students activate schemas consisting of small amounts of knowledge and these schemas are often isolated from other schemas.

Physics Education Research (PER) has shown that students in introductory physics lack a deep understanding of physics principles and concepts. Through research-based curricula, conceptual understanding can be improved. In addition PER has shown that students can be taught problem solving skills through a modified curriculum. Despite these improvements, students still have difficulty developing a coherent knowledge of physics. In particular, students often have difficulty connecting related physics concepts. In addition, they view quantitative problems and qualitative questions as distinct types of tasks, possessing different types of knowledge and different sets of rules for responding.

We discuss some possible methods that physics instructors and physics education researchers can use to examine coherence in student knowledge. Using these methods, we provide evidence for the local coherence in student physics knowledge by identifying distinct schemas for different physics topics and concepts, as well as distinct schemas for qualitative and quantitative knowledge. After identifying some of these difficulties in student understanding, we look at how students are connecting qualitative knowledge to quantitative knowledge after going through concept-based curriculum. The research identifies benefits as well as shortcomings in the concept-based curriculum and talk about possible modifications that may foster coherence. In addition, we compare performance on quantitative questions between a physics class using the traditional problem-solving recitation and a class using *Tutorials in Introductory Physics* on quantitative problems.

USING THE CONTEXT OF PHYSICS PROBLEM SOLVING TO EVALUATE THE COHERENCE OF STUDENT KNOWLEDGE.

by

Mel Stephan Sabella

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy 1999

Advisory Committee:

Professor Edward F. Redish, Chair/Advisor Professor Sarah C. Eno Professor S. James Gates Professor David Hammer Professor Daniel P. Lathrop Professor Emily van Zee

TABLE OF CONTENTS

List of Figures	V
List of Tables	_ix
Chapter 1: Introduction and Background	
What do we mean by coherent physics knowledge?	1
Motivation	
Dissertation overview	3
Schema theory and previous research in student problem-solving	3
Physics education research: methods and context	3
Results: Students use locally coherent knowledge in problem-solving con	ntexts
Results: How does the tutorial curriculum affect student coherence and	
problem-solving ability?	_4
Curriculum designed to address problem-solving ability	_5
Summary and speculations for the future	
Chapter 2: Schema Theory and Previous Research on Student Problem-Solvin Introduction Beyond the basic elements Definition of a problem	_7 _7
Schema theory	8
From patterns of association to schemas	9
Introduction to schemas and schema theory	
Important characteristics of schemas for problem-solving	
Schemas use in this dissertation	
Existing research in problem-solving	
Introduction	
Differences between expert and novice problem solvers	_14
Hierarchical organization	
Summary	_22
Chapter 3: Background, Methods, and Context	
Physics education research background	_27
Methods of physics education research	_27
Interviews	_27
Multiple-choice questions and diagnostics	_28
Open-ended questions and problems	_29
Summary of research methods	_30
Error analysis	_30

Context of the research	31
Undergraduate engineering students	31
Advanced students	34
Summary of the data	34

Chapter 4: Using Context to Probe for Coherence within Physics Topics

Introduction	37
Newton's 1 st law	39
Impetus force	42
Motion diagrams and the velocity vector	43
Newton's 3 rd law	44
Summary	47

Chapter 5: Using Complex Problems to Evaluate Coherence in Physics Understanding Introduction 50

Dynamics and work-energy problem	50
Introduction	50
Graduate student interviews	51
Eagle	
Peter	54
Granola	55
Erica	56
Advanced students' reasoning maps	57
Analysis of ungraded quiz	
Bridging problem analysis	67
Interview analysis	
Pink	_70
Michelle	74
Thermodynamics question	75
Introduction	_75
Pretest analysis	75
Summary	78

Chapter 6: Using Complex Problems to Evaluate Coherence in Qualitative and Quantitative Knowledge

Introduction	82
Sample analysis	87
Momentum question	90
Circuits question	94
Electric potential problem	97
Interference problem	100
Summary	104

Chapter 7: How does Conceptual Instruction Affect Coherence Between Qualitative and Quantitative Knowledge?

Introduction	107
Context	107
Pre-tutorial responses	111
Post-tutorial instruction	112
Case examples	114
Pre-post progression	115
Summary	118

Chapter 8: Student Performance on Quantitaitve Exam Problems in Two Instructional Modes

Introduction	121
Comparison of performance: two examples	122
Heat transfer problem	122
Physical optics problem	127
Curricula that address problem-solving	129
Cooperative group problem-solving (UMinn)	130
Qualitative strategies for problem-solving (UMass)	132
Overview, case study physics	133
Bridging problems and problem-solving tutorials (UMd)	135
Lecture homework worksheets (UW)	136
Common elements	136
Summary	137

Chapter 9: Summary and Speculations for the Future	
Specific examples	141
Summary	144
How can instructors and researchers evaluate coherence?	145
Speculations for future work	146

Appendix A: Selected Bridging Problems	_148
Appendix B: Selected Problem Solving Tutorials	_165
Appendix C: Full Transcripts of the Interviews Used in the Dissertation: Advance Students	ced 179
Appendix D: Full Transcripts of the Interviews Used in the Dissertation: Undergraduate Students	_197
Appendix E: The Force Concept Inventory	_208
Bibliography	<u>213</u>

LIST OF FIGURES

FIGURE 2 - 1	Representations of schemas.	11
FIGURE 2 - 2	Graphs representing two schemas in physics.	13
FIGURE 2 - 3	Yoyo problem asked by Anzai and Yokoyama.	16
FIGURE 2 - 4	Schematic diagram of a hierarchical knowledge organization from Reif and Eylon.	20
FIGURE 2 - 5	Concept map for electromagnetism from Bagno and Eylon.	22
FIGURE 3 - 1	Schematic showing a traditional recitation class and a tutorial class.	32
FIGURE 4 - 1	Exam question testing student understanding of Newton's 1^{st} and 2^{nd} laws and motion diagrams.	38
FIGURE 4 - 2	Exam question testing student understanding of Newton's 2^{nd} and 3^{rd} laws.	39
FIGURE 4 - 3	Comparison of how students answered the questions depending on whether the object was moving up or down.	42
FIGURE 4 - 4	FCI question 13.	46
FIGURE 5 - 1	Revised version of the original bridging problem and with a model solution.	52
FIGURE 5 - 2	Reasoning map showing the main statements from Granola's interview.	58
FIGURE 5 - 3	Erica's reasoning map.	59
FIGURE 5 - 4	Eagle's reasoning map.	60
FIGURE 5 - 5	Peter's reasoning map.	60

Sample student responses comparing the net force on the friction surface to the non friction surface.	62
Performance on the quantitative part of the hand-block problem.	64
Paths of solution on the long version and the short version of the hand-block problem.	66
Bridging problem asked as part of the tutorial homework assignment and as a one-on-one interview with undergraduate students.	68
Performance on the quantitative part of the bridging problem and a sample student response.	69
Two versions of a thermodynamics question asked as a pretest.	77
Inductive circuits problem from Serway.	84
Sample student response to problem shown in Figure 6 - 1 showing a qualitative response.	85
Sample student response to problem shown in figure 6 - 1 showing a quantitative response.	86
Inductive circuits problem asked as exam question in physics 263.	88
Student solution to question in figure 6 - 3.	89
Question on momentum conservation asked on physics 161 final exam.	90
Sample solution to the momentum exam question shown in figure 6 - 5.	93
A final exam problem on circuits with a qualitative part and a quantitative part.	95
Electric potential bridging problem asked as part of the tutorial homework assignment.	98
	 friction surface to the non friction surface. Performance on the quantitative part of the hand-block problem. Paths of solution on the long version and the short version of the hand-block problem. Bridging problem asked as part of the tutorial homework assignment and as a one-on-one interview with undergraduate students. Performance on the quantitative part of the bridging problem and a sample student response. Two versions of a thermodynamics question asked as a pretest. Inductive circuits problem from Serway. Sample student response to problem shown in Figure 6 - 1 showing a qualitative response. Inductive circuits problem asked as exam question in physics 263. Student solution to question in figure 6 - 3. Question on momentum conservation asked on physics 161 final exam. Sample solution to the momentum exam question shown in figure 6 - 5. A final exam problem on circuits with a qualitative part and a quantitative part.

FIGURE 6 - 9	Exam question on physical optics.	101
FIGURE 6 - 10	Solution to the problem shown in figure 6 - 9.	102
FIGURE 6 - 11	Two sample student responses showing the "equation- concept" error.	102
FIGURE 6 - 12	Graph showing the type of response given by the students versus their total score in the class.	103
FIGURE 7 - 1	The NII-tension problem given on the first and third exams with a model solution.	108
FIGURE 7 - 2	Question asked by the University of Washington PEG. The question is similar to the one shown in Figure 7 - 1.	110
FIGURE 7 - 3	Student performance on the free-body diagrams for each block on exam 1.	111
FIGURE 7 - 4	Examples of four different types of responses on the quantitative part of the NII-tension problem.	112
FIGURE 7 - 5	Student performance on the free-body diagrams for each block on exam 3.	113
FIGURE 7 - 6	Examples of how two students responded on exam 1 and exam 3.	116
FIGURE 8 - 1	Tipler question on heat transfer asked as part of the homework assignment.	122
FIGURE 8 - 2	Heat transfer exam problem asked in a tutorial class and a recitation class.	123
FIGURE 8 - 3	Solutions to the heat transfer homework problem and the exam problem.	124
FIGURE 8 - 4	Performance on the heat transfer exam problem in two instructional settings.	125
FIGURE 8 - 5	Two sample student responses on the heat transfer exam problem.	126

FIGURE 8 - 6	Graph showing how the students solved the problem in the tutorial and recitation classes.	127
FIGURE 8 - 7	Physical optics exam problem asked in a tutorial class and a recitation class.	128
FIGURE 8 - 8	Performance on the physical optics exam problem in the two instructional settings.	128
FIGURE 8 - 9	Problem-solving steps from Reif's Millikan lecture.	130
FIGURE 9 - 1	Summary example from chapter 4.	141
FIGURE 9 - 2	Summary example from chapter 5.	142
FIGURE 9 - 3	Summary example from chapter 6.	143
FIGURE 9 - 4	Summary example from chapter 7.	144

LIST OF TABLES

TABLE 2 - 1	The characteristics of a schema.	10
TABLE 3 - 1	Summary of each question(s) discussed in the dissertation.	35
TABLE 4 - 1	List of four topics covered on the FCI and their corresponding questions.	37
TABLE 4 - 2	Success on the FCI question and the exam question on Newton's 1^{st} law.	41
TABLE 4 - 3	Success on the FCI question and the exam question on the impetus force.	43
TABLE 4 - 4	Success on the FCI question and the exam question on motion diagrams.	44
TABLE 4 - 5	Success on the FCI questions and the exam question on Newton's 3 rd law.	45
TABLE 4 - 6	Comparison of how students responded on FCI question 13 and how they responded on the open-ended problems.	47
TABLE 5 - 1	Performance on part b of the hand-block problem.	62
TABLE 5 - 2	Performance on part c of the hand-block problem.	63
TABLE 5 - 3	Inconsistencies in the student responses on the hand-block problem.	65
TABLE 5 - 4	Performance on the final part of the thermodynamics problem.	78
TABLE 5 - 5	A more detailed description of the performance on the quantitative part of the thermodynamics problem.	78
TABLE 6 - 1	Summary of student performance on the momentum question.	92

TABLE 6 - 2	How students answered different parts of the momentum question in figure 6 - 5.	94
TABLE 6 - 3	The types of responses given on the qualitative and the quantitative circuits questions.	96
TABLE 6 - 4	Performance on the qualitative and the quantitative parts of the circuits question.	96
TABLE 6 - 5	Summary of the results on the electric potential problem.	99
TABLE 7 - 1	Timeline for the section of Physics 161 covering Newton's laws and tension.	109
TABLE 7 - 2	Class A's performance on the quantitative part of the NII- tension problem.	114
TABLE 7 - 3	Pre-post progression table showing how students responded on the NII-tension problem on exam 1 and exam 3.	117