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 Although a large part the Physics Education Research (PER) literature 
investigates students’ conceptual understanding in physics, these investigations focus 
on qualitative, conceptual reasoning.   Even in modeling expert problem solving, 
attention to conceptual understanding means a focus on initial qualitative analysis of 
the problem; the equations are typically conceived of as tools for “plug-and-chug” 
calculations.  In this dissertation, I explore the ways that undergraduate physics 
students make conceptual sense of physics equations and the factors that support this 
type of reasoning through three separate studies.   

In the first study, I investigate how students’ can understand physics equations 
intuitively through use of a particular class of cognitive elements, symbolic forms 
(Sherin, 2001).  Additionally, I show how students leverage this intuitive, conceptual 
meaning of equations in problem solving.  By doing so, these students avoid 
algorithmic manipulations, instead using a heuristic approach that leverages the 
equation in a conceptual argument. 
 The second study asks the question why some students use symbolic forms 
and others don’t.  Although it is possible that students simply lack the knowledge 
required, I argue that this is not the only explanation.  Rather, symbolic forms use is 
connected to particular epistemological stances, in-the-moment views on what kinds 
of knowledge and reasoning are appropriate in physics.  Specifically, stances that 
value coherence between formal, mathematical knowledge and intuitive, conceptual 
knowledge are likely to support symbolic forms use.  Through the case study of one 
student, I argue that both reasoning with equations and epistemological stances are 



  

dynamic, and that shifts in epistemological stance can produce shifts in whether 
symbolic forms are used to reason with equations. 
 The third study expands the focus to what influences how students reason with 
equations across disciplinary problem contexts.  In seeking to understand differences 
in how the same student reasons on two similar problems in calculus and physics, I 
show two factors, beyond the content or structure of the problems, that can help 
explain why reasoning on these two problems would be so different.  This contributes 
to an understanding of what can support or impede transfer of content knowledge 
across disciplinary boundaries. 
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Chapter 1: Introduction and Literature Review 

 

INTRODUCTION 

A Tale of Two Problem-Solving Approaches in Physics 
In the fall of 2005, I was taking an upper-division, undergraduate electricity 

and magnetism (E&M) course.  As is standard in such courses, there were weekly 
problem sets assignments.  I often met with a group of fellow undergraduates to work 
on the assignments for this class (and others).  Here, I recount one memorable episode 
while working on a problem about the electromagnetic radiation from a rotating, 
charged ring: 

 
Griffiths 11.9: An insulating circular ring (radius b) lies in the x y plane, 
centered at the origin.  It carries a linear charge density λ = λ0 sin ϕ, where λ0 
is constant and ϕ is the usual azimuthal angle.  The ring is now set spinning at 
a constant angular velocity ω about the z axis.  Calculate the power radiated 
(Griffiths, 1999). 

 
The basic physics concept behind this phenomenon is that accelerating charges 
produce electromagnetic radiation.  This problem can be solved by calculating the 
electric dipole moment of this ring and using that dipole moment with an equation for 
the power radiating from a rotating dipole (given in that section of the textbook) to 
compute the answer.  But attending to more than just the solution to this problem, I 
want to contrast two different approaches to solving this problem that were present in 
our group’s work. 
 I initially started this problem on my own while the other members in the 
group were working on a problem that I had already solved.  I started this problem by 
looking over the previous section in the textbook, my eye particularly drawn to the 
“boxed” equations.  I saw that the chapter the problem came from had at least three 
equations for calculating the radiated power, but I didn’t immediately know from the 
form of the expressions in what situations they were applicable.  I did see that all 
three equations contained terms that were not given in the problem statement: either 

, the second time derivative of the electric dipole moment, or m0, the maximum 
magnetic dipole moment.  It was not immediately obvious to me how to calculate 
either one of these values from the given values in the problem.  In particular, I was 
confused about how to introduce time into a dipole moment, something for which we 
had never learned an equation. 

At this point, the other members of the group finished the problem they had 
been working on.  One of the other group members, Mark, came over to me and 
asked me what I was working on.  I showed him the problem, and he read over it for a 
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moment.  He went up the chalkboard in our physics lounge area and said “ok, let’s 
draw a picture.”  He sketched out the following picture (Fig. 1.1). 
 

 
Figure 1.1: Mark’s diagram of the rotating charged ring in Griffiths problem 11.9 

 
He explained some features of his diagram: the darker parts of the ring indicate a 
higher charge density, and half of the ring must be positive and half of the ring must 
be negative, which he got from the expression for the charge density.  Next, he picked 
up a textbook and flipped through the pages.  He spotted an equation for finding the 
radiated power from an arbitrary rotating charge distribution, one of the three 
equations I was deciding over.  He remarked that we needed the dipole moment of 
our charged ring to solve this problem.  He wrote an expression, , on the 
board.  I asked how we would get dQ.  Mark drew a box around a small section of the 
ring in his diagram.  He called this section of the ring dQ and said that the amount of 
charge in the box was equal to its length times its charge density, .  
Combined with an expression for , this produced an integral that we could solve by 
integrating over the angle to get an expression for the dipole moment: .  
Mark liked this answer, because he saw that it agreed with his diagram, in which the 
dipole moment pointed in the  direction.   

I brought up the fact that the equation actually needed , the second time 
derivative of the dipole moment, and this expression didn’t have time anywhere, so 
the answer would be zero.  Mark agreed and said that this expression was for the 
dipole moment at time t = 0.  Then, he wrote, with no explanation, the expression 

.  After thinking for a second, he put a minus sign in 
front of the  term.  At this point, Mark was satisfied that this problem was solved, 
except for some equation manipulation.   
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Blending Conceptual and Formal Mathematical Reasoning in Problem-
Solving Expertise 

My past self had trouble understanding how Mark had come to this solution.  
It seemed like he knew just the right equation for each part of the problem.  How did 
he know the dipole moment integral?  How did he know exactly how to transform an 
integral in dQ into one that can be evaluated?  The time dependent rotation term he 
added into the dipole moment made sense as a way to get the rotation in there, but 
how did he know that he was allowed to just tack it on without some explicit formula 
for doing so? 
 There are many differences between Mark’s solution and mine.  I recount this 
(partially reconstructed) story to highlight two particular markers of problem-solving 
expertise evidenced by Mark’s solution.  First, Mark’s solution includes many 
examples of translating between a conceptual understanding of the situation and 
formal mathematical expressions.  Mark starts by translating the mathematical 
equation for the charge density of the ring to a picture that makes clear what the 
charge distribution on the ring actually looks like.  This helps him to see features of 
the problem situation, such as the fact that the dipole moment is initially pointing in 
the y-direction.  He understands dQ physically as an infinitesimally small piece of 
charge, not just as an indicator of which variable to take the anti-derivative with 
respect to.  Mark also doesn’t introduce rotation into the dipole moment expression 
through the application of some general formula or procedure.  Instead, the fact that 
he immediately writes down an expression, modifying the sign afterwards, suggests 
that he is constructing on-the-spot the specific equation he needs to represent his 
understanding of the physical system.   On the other hand, my approach dealt 
primarily with the formal mathematics without explicit consideration of the physical 
system.  My approach could be labeled as “plug-and-chug:” I spent my time 
searching for relevant equations and considering whether I had been given enough 
information to determine the required quantities for using those equations.  

Certainly it seems that Mark had stronger knowledge of E&M than I – he 
knew what the different radiated power formulae applied to, and he was able to 
calculate the dipole moment of our distribution from the definition – but beyond this, 
underlying our two approaches are two different notions of what it means to learn and 
understand physics.  My approach to this problem was typical of my approach to 
learning physics at the time.  I would sit in lectures and follow individual steps of 
derivations without seeing the big picture of what those derivations meant 
conceptually.  I would approach problems by seeking out nearby equations and see if 
their application would help me solve the problem.  It would not be until years later 
that I would start stably approaching problems more like Mark, using my conceptual 
understanding of situations to structure the mathematics. 

I am embarrassed to say that I received an A+ as a final grade in this class.  
This grade represented my facility in finding and manipulating equations more than 
my understanding of the basic physics of E&M.  Please note: I am not condemning 
the intentions of the instructor.  I believe that the instructor’s goal was to impart the 
fundamental ideas of E&M.  For Mark, this course seemed to be successful in 
communicating those ideas.  If I were to take this class again now, I believe that I 
would also be able to “see” those basic physics concepts and connect them to the 
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equations I was manipulating.  However, at the time, I was somehow not equipped to 
understand or take up that approach in physics class, just as I could not fully 
understand or take up Mark’s approach when he presented it to me.  As my views on 
what it means to learn physics have evolved, I can now understand what Mark was 
doing in his solution to the E&M problem, and I now see how his approach 
demonstrates problem-solving expertise.  I also look back at my E&M course as a 
missed opportunity: I could have spent that time practicing this blending of physical 
understanding and formal mathematics rather than the manipulation of equations.   

One goal of a physics classroom is to develop problem-solving expertise.  As 
Mark’s solution illustrates, this expertise is more than simply the ability to solve 
problems correctly; for Mark, it includes the interconnection of conceptual 
understanding and formal mathematical expressions.  In this dissertation, I investigate 
aspects of this blending between conceptual and formal mathematical reasoning in 
working with physics equations.  Specifically, I explore 1) how this type of reasoning 
is conceptualized in models of expert physics problem-solving practice, 2) how this 
reasoning is connected to epistemological stances towards what it means to learn and 
understand physics and physics equations, and 3) whether the use of this type of 
blended reasoning is affected by changing disciplinary contexts (i.e. will students 
similarly use this blended conceptual and formal mathematical reasoning in working 
across two different disciplines – for example, physics and math).    

The three data chapters, each investigating one of these issues, are meant to 
stand alone as independent papers.  They each contain more detailed literature 
reviews and descriptions of the methods specific to particular arguments in those 
chapters.  In the rest of this chapter, I provide an overview of the literature point out 
how the work in this dissertation contributes to broader arguments in the field.   

 

LITERATURE REVIEW 

Physics Education Research Has Focused on Conceptual Reasoning as 
Separate from Reasoning with Equations 

A resource letter in Physics Education Research (PER) was published in 1999 
(McDermott & Redish, 1999), listing the systematic studies of student learning and of 
the efficacy of reformed instructional techniques.  This resource letter lists 115 
publications (of the 224 publications total) under the category of “conceptual 
understanding:” studies that attend to students’ understandings of physics topics 
(often referred to as misconceptions, preconceptions, alternative conceptions, prior 
knowledge, difficulties, or understandings), instruction developed to improve those 
conceptual ideas, and assessments designed to probe for conceptual understanding.  
These papers span the physics topics of kinematics, dynamics, relativity, electric 
circuits, electricity & magnetism, light & optics, properties of matter, fluid 
mechanics, thermodynamics, waves, and modern physics.  

Although this resource letter is not meant to be totally comprehensive, it is 
representative of a trend in PER that continue to be true: a primary area of focus in 
Physics Education Research is students’ conceptual understanding of the physics 
topics.  These studies tend to focus on students’ qualitative understanding (or 
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misunderstanding) of the physics content, separate from their conceptual 
understandings of the formal mathematical equations involved.  Yet, this focus on 
conceptual understanding that is independent of the relevant physics equations is 
discontinuous with the importance of mathematics in physics courses and 
professional physics practice as tools for expressing and extracting conceptual 
meaning.  How did it come to be that conceptual understanding in PER is studied 
separately from an understanding of physics equations? 
 
The fruitfulness of research and instructional design centered on qualitative 
conceptual reasoning   

A major contribution of PER is the growing body of qualitative questions that 
probe students’ conceptual understanding of physics along with common student 
responses to these questions.  The most coherent body of knowledge of this type has 
been produced by the University of Washington’s Physics Education Group, who 
have systematically documented common conceptual difficulties with qualitative 
physics problems covering a wide range of physics content (e.g. Ambrose, Shaffer, 
Steinberg, & McDermott, 1999; Goldberg & McDermott, 1987; Kautz, Heron, 
Loverude, & McDermott, 2005; Scherr, Shaffer, & Vokos, 2001; Trowbridge & 
McDermott, 1980, 1981) and used these findings to design instructional interventions 
targeting these difficulties (McDermott, Shaffer, & the Physics Education Group at 
the University of Washington, 2002).   

Another major area where PER has contributed in this way is in developing 
conceptual inventories: typically multiple-choice surveys consisting of qualitative 
questions designed to measure conceptual understanding on a certain subset of 
physics content (Chasteen & Pollock, 2009; Hestenes, Wells, & Swackhamer, 1992; 
Maloney, O’Kuma, Hieggelke, & Van Heuvelen, 2001; Thornton, Kuhl, Cummings, 
& Marx, 2009).  These concept inventories have become commonly used tools for 
instructors in assessing student conceptual understanding, as well as tools for 
researchers to assess the success of reform-based instructional curricula in developing 
that conceptual understanding.   

 
Success in quantitative problem solving does not necessarily indicate an 
understanding of physics concepts 

In his guide to Peer Instruction, Mazur (1999) recounts a transformative 
experience in his teaching.  Inspired by work in PER showing that, even after 
instruction, students have difficulty answering basic conceptual questions, Mazur 
tested his students with both a qualitative and quantitative electric circuit problem.  
He found that, although most physicists would judge the qualitative problem to be 
easier, students performed better on the quantitative problem.  Mazur concluded that 
students could perform well on standard physics problems by memorizing algorithms 
without learning the underlying physics, and that success on these standard problems 
could mislead both teachers and students into thinking that they had mastered the 
topic.  In response, Mazur developed his reformed physics curriculum, Peer 
Instruction, which includes qualitative discussion questions that target conceptual 
understanding.   
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Along these lines, other work has also explicitly argued against success with 
equation use as a marker of conceptual understanding.  Lawson and McDermott 
(1987) found that students who successfully completed an introductory physics 
course could not make qualitative arguments with the work-energy or impulse-
momentum theorems.  These researchers argue that these students’ success in their 
physics courses makes it likely that they were able to successfully use the work-
energy theorem or impulse-momentum theorem to solve problems, even though they 
had not learned the underlying concepts well enough to make qualitative 
comparisons.  Huffman (1997) showed that students who successfully adopted an 
explicit quantitative problem-solving strategy for solving dynamics problems did not 
show improvement over a control group in their conceptual understanding of 
dynamics – as measured by the Force Concept Inventory (Hestenes et al., 1992).  Kim 
and Pak (2002) showed that even after solving thousands of physics problems, 
students still provided evidence of common conceptual difficulties in kinematics and 
dynamics.   

The point that success in quantitative problem solving is not always an 
accurate measure of conceptual understanding, as well as the demonstrated 
fruitfulness in attending only to qualitative conceptual understanding has likely 
supported this divide between conceptual understanding and an understanding of 
physics equations.  However, I propose that expertise in physics also involves 
blending the conceptual understanding of the physical situation with relevant 
mathematics, and that there is a dearth of research studying conceptual understanding 
of physics equations in PER.  As I illustrated in the opening tale, Mark’s problem-
solving approach involves not just conceptual understanding or formal mathematical 
understanding, but the ability to translate between and blend the two in problem-
solving practice. 

All of this is not to say that PER has been devoid of research investigating 
physics students’ mathematical understanding.  However, swinging the pendulum the 
other way, these studies tend to focus on students’ understanding of the formal 
mathematics used in physics, separate from a conceptual understanding of the 
underlying physics concepts.  To be clear, students’ understandings of the 
mathematics are often seen as connected to conceptual meaning at the level of the 
meanings of the individual symbols (e.g. m stands for mass, v stands for velocity, E 
stands for electric field) but independent from an understanding of the underlying 
physics that those mathematical formalisms represent (Breitenberger, 1992; 
Christensen & Thompson, 2012; Clement, Lochhead, & Monk, 1981; Cohen & 
Kanim, 2005; D. H. Nguyen & Rebello, 2011; N. L. Nguyen & Meltzer, 2003; 
Torigoe & Gladding, 2011).  For example, Nguyen and Rebello (2011) studied 
student difficulties with integration in the context of electrostatics, concluding that 
physics students have difficulty understanding the infinitesimal term in the integral 
and have difficulty considering direction when integrating a vector quantity – 
difficulties that are not necessarily tied to an understanding of the underlying physics 
of the problems.  This is not to say that no existing studies in the PER problem-
solving literature investigate how a conceptual understanding of physics is blended 
with the use of mathematics.  However, these few studies (Bing & Redish, 2009; 
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Redish & Smith, 2008; Sherin, 2001; Tuminaro & Redish, 2007) are the exception 
and not the rule. 

One field of study that has explicitly proposed the importance of connecting 
conceptual reasoning to formal mathematics (in the form of physics equations) is the 
quantitative physics problem-solving literature.  In the next section, I will describe 
how this connection between conceptual and formal mathematical reasoning tends to 
be described in the physics problem-solving literature, along with a possible 
directions for expanding this connection. 

 

Expert Problem Solving Starts with Formal Physics Concepts to Select the 
Relevant Equations  

Problem solving is central to physics.  Because of this, one area of research 
has focused on describing, modeling, and teaching expert problem-solving practice 
(Hsu, Brewe, Foster, & Harper, 2004; Maloney, 1994, 2011).  These problem-solving 
studies have attended to the importance of conceptual reasoning in problem solving, 
where the primary finding is that experts tend to begin problem-solving episodes with 
a qualitative, conceptual analysis that leads into the relevant mathematics and novices 
do not.  Yet, there has not been attention to how that conceptual reasoning continues 
to be relevant to the mathematical equations even after they are selected.  Most 
conceptions of expert problem solving treat the mathematical processing of equations, 
once selected, as algorithmic manipulations.  In the following section, I will situate 
this argument in the literature, describing the findings of the expert problem-solving 
research, and follow up by describing the studies that have started to attend to how 
conceptual reasoning may be relevant in the mathematical processing of physics 
equations. 

Research investigating how individuals solve quantitative problems in math 
and science spans many different research literatures so to attempt to discuss them all 
here is impossible.  Because this dissertation pertains to quantitative physics problem 
solving, I limit the discussion of the literature to the problem-solving research 
published and commonly referred to in the PER literature.  This will include 
discussion of some of the problem-solving research from cognitive science and 
psychology that formed the foundation on which the PER literature builds.   

 
Experts start with what you know.  Novices start with what you want to find. 

One main finding in the problem-solving literature is that expert and novice 
approaches to quantitative problem solving differ.  One characterization of this 
difference is that novices “backwards chain” and experts “forward chain:” novices 
initially select equations based on what quantity they wish to find, whereas experts 
initially select equations based on what quantities they already know (Larkin, 
McDermott, Simon, & Simon, 1980; Simon & Simon, 1978; Taasoobshirazi & 
Glynn, 2009).   

Related studies show that experts tend to start by drawing a diagram of the 
problem situation, whereas novices tend to engage immediately with the 
mathematical equations.  The common explanation is that experts tend to begin 
problem-solving with a qualitative analysis that leads into relevant calculations, 
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whereas novices typically take a means-end approach to problem solving – attending 
to what quantity is desired and finding equations that can be used to calculate that 
quantity (Larkin & Reif, 1979; Walsh, Howard, & Bowe, 2007).   

 
Experts draw on well-structured knowledge of physics principles to analyze physics 
problems 

Building on this research investigating differences in expert and novice 
problem-solving approaches, some research focuses in on differences in the 
knowledge structures of those experts and novices.  One well-known set of studies by 
Chi and colleagues (Chi, Feltovich, & Glaser, 1981; Chi, Glaser, & Rees, 1982) 
sought to understand how and why experts and novices differentially categorize 
physics problems according to how they would be solved.  Experts tended to group 
these problems according to which general physics principles would be applied in the 
solutions – principles like conversation of energy, conversation of momentum, or 
Newton’s second law, for example.  Novices, on the other hand, tended to group these 
problems according to salient surface features – rotation, springs, inclined planes, etc.   
Although the presence of springs can indicate the relevance of particular physics 
concepts and equations related to springs – such as the energy stored in a spring being 
½kx2 – these novices apparently tended to see these as primary instead of the 
overarching principle applied to solve the problem – such as conversation of energy.   

To understand differences in expert and novice knowledge structures, 
interviews were conducted that prompted individuals to describe their problem-
solving knowledge with respect to particular categories introduced by the interviewer.  
For the category of “inclined planes,” the novice connected this to other relevant 
problem-solving features, such as the angle of the plane, whether there is a block on 
the plane, what the mass and height of the block are, whether there is friction, etc.  
Principles such as conversation of energy are mentioned but only at the end of the 
interview, after the relevant surface features of the problem are described.  By 
contrast, the expert explanation starts with relevant physics principles, conservation 
of energy and Newton’s laws and their applicability conditions.  Chi et al. (1981) 
conclude that experts’ knowledge is structured such that surface features can cue 
applicable physics principles – what are called “second-order features” – whereas 
novices do not directly read features beyond the relevant surface features.  This could 
explain why novices often resort to means-end analysis while experts begin with a 
conceptual analysis: an expert’s conceptual knowledge allows them to identify and 
start with the relevant physics principles.   

Other research in this vein has specified theoretical models of effective 
problem-solving knowledge structures and the associated procedures for activating 
that knowledge in problem solving.  Optimal problem-solving knowledge is described 
as hierarchically structured so that the search for applicable knowledge can proceed 
efficiently (Reif & Heller, 1982; Reif, 1995, 2008; Van Heuvelen, 1991a).  These 
specified procedures define how the knowledge base is used to generate the initial 
problem description and the subsequent mathematics for solving the problem (J. I. 
Heller & Reif, 1984; Reif, 2008). These procedures inform the design of instructional 
expert problem-solving procedures. 
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Expert/novice differences inform the design of instructional problem-solving 
procedures 

Although some research questions the validity of these characterization of 
expert/novice differences in problem solving – specifically, the finding that experts 
start with an initial conceptual analysis and novices do not (Chi et al., 1982) and the 
finding that experts forward chain and novices do not (Priest & Lindsay, 1992) – 
these expert/novice findings have been taken up to inform the design of instructional 
interventions aiming to develop students’ problem-solving expertise in physics.  
Some interventions provide explicit procedures that direct students through a step-
wise problem-solving approach (Gaigher, Rogan, & Braun, 2007; P. Heller, Keith, & 
Anderson, 1992; Huffman, 1997; Reif, Larkin, & Brackett, 1976; Reif, 2008; Van 
Heuvelen, 1991b).  For example, Heller et al. (1992) direct students to generate a 
description of the problem, to create a representation of the problem incorporating a 
physical analysis, to select a relevant physics principle/equation, to apply this 
equation to the problem at hand to compute a symbolic or numerical solution, and 
then to check this answer.  By following an expert procedure like this, the intention is 
that these students learn to internalize this procedure, and post-tests confirm that, 
unscaffolded, they continue to follow these expert-like problem-solving approaches 
(Gaigher et al., 2007; P. Heller et al., 1992; Huffman, 1997; Van Heuvelen, 1991b).  

A primary goal of these step-by-step problem-solving prescriptions is to get 
novices to start the problem with a qualitative, conceptual analysis, mimicking expert 
approaches.  Some instructional approaches focus only on developing this initial 
analysis, helping students to develop good initial problem descriptions and analyses 
and to search for the underlying concepts of physics problems (Ding, Reay, Lee, & 
Bao, 2008; Leonard, Dufresne, & Mestre, 1996; Mualem & Eylon, 2010).  Related 
instructional interventions aim to help students develop expert categorization of 
problems according to physics concepts (Docktor, Mestre, & Ross, 2012; Dufresne, 
Gerace, Hardiman, & Mestre, 1992).  
 

How Can Conceptual Understanding Inform the Mathematical Processing of 
the Relevant Equations? 

Ultimately, the focus of the expert problem-solving research is the leveraging 
of an initial qualitative analysis to select relevant physics concepts and associated 
mathematical equations.  But while the physics concepts related to Newton’s 2nd law 
would be used to point to the relevance of the equation F = ma, that equation would 
typically then be treated as a tool for algorithmic manipulations.  Although experts do 
algorithmically manipulate equations in problem solving, this is not the only way they 
use mathematical equations.  In this section, I revisit my and Mark’s approaches to 
the E&M problem, to show how Mark’s expertise went beyond using his conceptual 
understanding to pick out relevant generalized physics equations.  He generated, 
evaluated, and modified novel mathematical expressions in ways that reflect his 
conceptual understanding of this specific problem.   
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Mark leverages conceptual reasoning to inform the use of equations in ways that 
cannot be described as “equation selection.” 

The expert/novice paradigm of initial qualitative analyses and well-structured 
knowledge describes some aspects of the differences in my and Mark’s approaches to 
the radiation problem.  In my “novice” approach, I started with a means-end or 
backwards-chaining approach, searching for equations that would give the desired 
final quantity, seeing what quantities in those equations were known or unknown, and 
looking for methods to solve those unknowns.  Mark’s “expert” approach started with 
a diagram of the problem situation, a brief planning episode for identifying relevant 
equations, and forward chaining to the final solution.   

However, in other ways, this description misses aspects of Mark’s expertise in 
relating mathematics to his conceptual understanding of the problem.  For Mark, it 
wasn’t just that the concepts pointed to which equations should be manipulated.  
Rather, his conceptual understanding influenced the creation and manipulation of 
those equations.  In translating the formal definition of the electric dipole integral into 
one that can be evaluated, one could have relied on the application of completely 
generalized, formal definitions, possibly leading to an expression like: 

.  Instead, Mark relies 

on his conceptual understanding of how to represent “a small piece of charge.”  He 
draws a box and says that the charge in that box is .  Mark’s 
conceptual understanding of dQ as representing a tiny piece of charge helps him to 
evaluate the integral using expressions generated from his conceptual understanding 
of the physical situation, rather than starting from formal definitions and completely 
generalizable methods that would require explicit integration over r, θ, and ϕ 
 Similarly, Mark tacks on the dipole moment rotation term 

 at the end of the problem, based on his conceptual 
understanding of the physical situation.  In the expert problem-solving procedures, 
checking the answer against a conceptual understanding of the physical situation is an 
explicit step.  However, Mark, finding an inconsistency, does not begin a search for 
where an error was made, redoing the mathematics to arrive at a different solution.  
Instead, he simply adds onto his final expression based on what he understands the 
answer must be.  Again, Mark is generating, modifying, and manipulating 
mathematical expressions based on his conceptual understanding of the situation, 
rather than only using his conceptual understanding to pick out relevant physics 
concepts and the corresponding general equations.  

The expert/novice research in general has not attended to the particular ways 
in which Mark flexibly blends his conceptual understanding with the mathematics.  In 
the expert/novice paradigm, mathematical processing of the equations is typically 
conceived of only as the algorithmic manipulation of equations.  Yet, this is not a 
sufficient descriptor of Mark’s expertise. 
 
Beyond the algorithmic manipulation of mathematics in problem solving 

In elementary mathematics, Wertheimer (1959) showed that when given 
problems of the type (283+283+283+283+283)/5, students would find the sum of the 
numerator (in this case, 1415) and then divide by the denominator to reach the correct 
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answer, 283.  In these examples, students’ mathematical processing relied on mastery 
of algorithmic computations, whereas a conceptual understanding of the operations 
involved could lead to a quick, heuristic solution that does not require explicit 
computation.   In this way, a conceptual understanding of the mathematics involved 
can affect mathematical processing. 

Similarly, Redish and Smith (2008) suggest that a conceptual understanding 
of the physical equations can alter the processing of those equations.  In describing 
physical problem solving as the modeling of the physical system in a mathematical 
representation, the processing of those mathematics, and the translation back into the 
physical system, they warn that “…because of the fact that the equations are physical 
rather than purely mathematical, the processing can be affected by physical 
interpretations” (Redish & Smith, 2008, p. 302).  While the problem-solving literature 
commonly treats mathematical processing as a purely formal mathematical enterprise 
(i.e. once the equations and variables are defined from the physical system, the 
resulting processing only depends on algorithmic machinery that doesn’t depend on 
the previous conceptual analysis), Redish and Smith suggest that a conceptual 
understanding of the equations can affect the mathematical processing.  But, so far, 
how the conceptual understanding of equations can affect the mathematical 
processing of physics equations has not been attended to in the literature.   

One likely candidate for how a conceptual understanding of equations can 
affect the mathematical processing of equations is through symbolic forms (Sherin, 
2001).  As an example, Sherin found that students asked to come up with an equation 
for the acceleration of an object in free-fall experiencing air resistance do not use 
canonical force principles to generate the correct equation, a = -g + f(v)/m , where f(v) 
is the drag force.  A solution that aligns with common conceptions of expert problem-
solving expertise would begin with a qualitative analysis of the forces through a free 
body diagram, selecting Newton’s 2nd law (F=ma) as the applicable physics principle, 
filling in the specifics for this situation (-mg + f(v) = ma), and then dividing both 
sides by m to arrive at the final equation.   

However, that is not what Sherin’s interviewees do.  Instead, they start by 
describing the total acceleration as being the net effect of two competing 
accelerations: the “upward” acceleration (f(v)/m) and the “downward” acceleration 
(g).  They immediately write out their final equation, without going through the steps 
of Newton’s 2nd law.  Although it’s possible that the students simply did some mental 
arithmetic, Sherin instead models the generation of this equation as an expression of 
students’ intuitive idea of the upward and downward acceleration being in opposition.  
Rather than following the canonical physics principles, Sherin describes their 
reasoning as incorporating what he termed the Opposition symbolic form: a cognitive 
element that ties the intuitive idea of “two entities in opposition” to a mathematical 
structure.     

Similarly to the rest of the physics problem-solving research, symbolic forms 
are used to model how conceptual reasoning can be used to model new equations and 
how conceptual reasoning can be read out from mathematical solutions (Sherin, 
2001).  However, there has thus far not been research indicating how symbolic forms 
could be used to influence the mathematical processing step in problem solving, 
although they serve as a plausible candidate.  
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Dissertation chapter 3 – How does the blending of conceptual and formal 
mathematical reasoning support expert problem-solving approaches? 
 I have pointed out the dearth of studies in PER that seek to incorporate 
investigations of students’ qualitative conceptual reasoning with investigations of 
how they understand formal mathematics.  Although the problem-solving literature 
more commonly speaks about both, conceptual reasoning is commonly related to the 
equations only in their selection, not in their use. 
 Building on the construct of symbolic forms, chapter 3 of this dissertation 
deals with one way in which the blending of conceptual and formal mathematical 
reasoning is a component of expert problem-solving practice.  Through a case study 
of how two students take different approaches to explaining an equation and using 
that same equation in solving a physics problem, I illustrate how students can, using 
symbolic forms, interpret equations as expressing a conceptual meaning, and how 
they can leverage symbolic forms for heuristic shortcut solutions in physics problem 
solving that avoid algorithmic manipulation.   
 

A Role for Epistemology in Studying the Blending of Conceptual and 
Formal Mathematical Reasoning in Physics 

Thus far, questions of how conceptual and formal mathematical reasoning are 
blended have been discussed in terms of how the two can come together in problem 
solving for processing the mathematical equations.  However, looking beyond just the 
relevant content knowledge and reasoning in problem solving, other studies have 
shown that how students reason about mathematical equations in physics is connected 
to their views towards knowledge and learning, or epistemologies.  For this reason, 
understanding students’ blending of conceptual and formal mathematical reasoning is 
naturally aligned with understanding students’ epistemologies towards physics.   
 
What is epistemology (in physics)? 

Students’ epistemologies in science have been studied along various 
dimensions - for instance, whether science is the accumulation of a static set of facts 
of whether it is the continued testing and reevaluation of ideas (Carey & Smith, 1993; 
Roth & Roychoudhury, 1994; Smith, Maclin, Houghton, & Hennessey, 2000; Songer 
& Linn, 1991).  Specifically in physics, Hammer (1994) identifies three dimensions 
of students’ epistemologies: whether physics consists of disconnected pieces or a 
coherent system; whether the content of physics is facts, formulae, and procedures or 
concepts; and whether physics is learned by authority or from independent thinking.   

Redish, Saul, and Steinberg (1998) built on Hammer’s work by constructing 
the Maryland Physics Expectations (MPEX) survey, probing students’ epistemologies 
on Hammer’s three dimensions as well as others.  With the MPEX, they found that 
traditional physics courses typically have a negative effect on students’ 
epistemologies (i.e. moved students towards less “expert” views).  As such, reform 
efforts in physics have designed courses targeting the development of students’ 
epistemologies in addition to conceptual knowledge (Elby, 2001; Hammer & Elby, 
2003; Redish & Hammer, 2009).  More recent work on surveying students’ 
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epistemologies and studying the effects of reformed instruction on those 
epistemologies has built on this original MPEX study (Adams et al., 2006; Gray, 
Adams, Wieman, & Perkins, 2008; Perkins, Adams, Pollock, Finkelstein, & Wieman, 
2005).  
 
How students reason with mathematics is connected to particular epistemological 
stances 
 Students’ epistemologies have been shown to be connected to how they 
reason with mathematics in physics problem solving.  Hammer (1994) presented a 
case study of two students who make the same mistake in solving a problem; both 
Roger and Tony noticed the same issue with their solution to a problem asking them 
to solve for the acceleration of two blocks connected by a taut string.  They both 
found that the accelerations of the two blocks were different and both noticed that this 
didn’t make physics sense – two blocks connected by a taut string should move 
together.  Tony saw this inconsistency and went back to his work, finding his error 
and eventually correcting it.  On the other hand, Roger noticed the error, but, in the 
end, chose to rely on his calculations.  Hammer (1994) described this difference in 
approaches as reflecting an epistemological difference: Tony, who tended to view 
physics as consisting of concepts rather than facts and formulas, interpreted equations 
as representing common sense ideas, whereas Roger, who tended to view physics as 
consisting of formulas – taking up coherence between these formulas and conceptual 
reasoning when apparent, but not as a general expectation – viewed mathematics as 
both more trustworthy than and independent from his common sense understanding.  
 Similarly, Gupta & Elby (2011) showed that, at least initially, a student, Jim, 
working with a particular equation that doesn’t seem to match with his everyday 
intuition, takes an epistemological stance that formal physics equations need not align 
with his intuitive ideas and that equations should be trusted over everyday common 
sense.  However, later, when he resolves the inconsistency between the equation and 
his common sense, he takes a different epistemological stance that values this 
agreement, illustrating the tight coupling between reasoning with formal mathematics 
and the associated epistemological stances.    

Lising and Elby (2005) presented an example of a student who did not resolve 
inconsistencies between formal mathematical reasoning and intuitive reasoning.  
They argued that a deficit in knowledge or skills alone couldn’t explain this, because 
the student was skilled at both formal mathematical reasoning and intuitive reasoning 
separately.  They therefore modeled the student as having an epistemological barrier 
separating formal physics reasoning and intuitive reasoning.    

Bing and Redish (2009) identified four different ways that students 
epistemologically frame what kinds of knowledge and activity are appropriate in 
problem solving, including “calculation” and “physical mapping onto mathematics.”  
These frames are also connected to particular aspects of students’ epistemologies, 
such as “trusting in calculations” and “symbolic representation characterizes some 
features of a physical system,” respectively.  They show that the different stances on 
what kinds of knowledge or activity are appropriate can lead to different ways of 
using the equations.  For example, a student activating a “physical mapping” frame 
may find taking a partial derivative with respect to Planck’s constant (ħ), a universal 
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constant, problematic whereas a student activating an “invoking authority” frame may 
not if the problem explicitly requires it (Bing & Redish, 2012).  

In these studies, students’ epistemologies are connected to whether or not they 
reason with mathematical equations in ways that incorporate or value coherence with 
conceptual or intuitive meaning.  Some studies show this coherence between 
equations and conceptual meaning in how equations are explained (Hammer, 1994; 
Lising & Elby, 2005), others in how quantitative solutions in problem solving are 
compared to conceptual understanding, and how that understanding might inform 
modifications to the solution (Bing & Redish, 2009; Gupta & Elby, 2011; Hammer, 
1994).  However, in none of these studies is epistemology seen as consequential for 
influencing different ways in which students can interpret equations as expressing 
conceptual meaning or leverage that conceptual meaning in the mathematical 
processing of equations.  This is a specific connection I investigate in this 
dissertation. 
 
Dissertation chapter 4: How is the blending of conceptual and formal mathematical 
reasoning connected to epistemologies? 

Chapter 4 aims to connect symbolic forms use to epistemological stances that 
value coherence between formal physics knowledge and everyday reasoning, or 
between physics equations and physics concepts.  In an intuitive way, this connection 
makes sense, because symbolic forms are nothing more than a way to combine formal 
physics equations with conceptual or everyday reasoning.  I aim to investigate this 
connection broadly across 13 interviews, as well as within the interview of one 
individual, Devon, in order to explain the shifting presence and absence of symbolic 
forms use in his reasoning with equations throughout an interview.  I will explain this 
shifting in symbolic forms use as aligning with corresponding shifts in his 
epistemological stance with respect to this coherence. 
 

Does the Disciplinary Context Matter for How Conceptual and Formal 
Mathematical Reasoning Interact? 

A large part of this dissertation focuses on the nature of mathematical sense 
making in physics – specifically, how conceptual understanding can influence the use 
of formal mathematics.  One question this raises is whether the type of reasoning 
investigated is specific to the domain of physics, or whether this reasoning is more 
generally used across domains.  How can different disciplinary contexts affect this 
reasoning? 

 
Transfer of knowledge across the disciplines 

This question about whether this reasoning is particular to physics problem 
contexts or whether it is used across problem contexts is fundamentally related to the 
studies of transfer of knowledge.  One definition of the phenomenon of transfer is 
“the ability to extend what has been learned in one context to new contexts” 
(Bransford, Brown, & Cocking, 1999, p. 74).  So what supports or impedes transfer 
from one context to the next? 
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One widespread finding is that specific contextual details of different problem 
contexts may impede transfer.  One approach to fostering transfer is to provide the 
same underlying problem structure in many different contexts (Anderson, Reder, & 
Simon, 1996; Singley & Anderson, 1989).  Gick and Holyoak (1980, 1983) aim to 
foster transfer by providing multiple problem contexts to help individuals develop a 
generalized “convergence” schema.  In a military problem context, an army wants to 
conquer a fortress, but the roads are mined such that a large army cannot go on the 
roads.  The solution to this problem is to split the army into smaller parts and to send 
each part down a different road to converge at the fortress.  In a radiation problem 
context, radiation beams can destroy a tumor, but sufficiently strong beams will also 
destroy the incident healthy tissue.  The solution in this problem also depends on the 
“convergence” schema: by aiming multiple weaker beams at the tumor from many 
different paths, only the tumor will experience the combined strength of the beams.  
Studies have shown that individuals instructed in only one example initially will have 
difficulty in spontaneously extending this “convergence” solution to an analogous 
problem situated in a different domain (Duncker, 1945; Gick & Holyoak, 1980; 
Novick, 1988; Reed, Ernst, & Banerji, 1974).  

The aim of this classical view on transfer – the application of the same 
problem-solving knowledge and approaches across analogous problems situated in 
different domains – is naturally aligned with questions of transfer across disciplinary 
contexts.  However, there have been a limited number of studies of transfer between 
physics and another disciplinary context.  Bassok and Holyoak (1989) investigated 
transfer between isomorphic algebra and physics problems.  Students trained on the 
algebra problems transferred their learned problem-solving approaches to the physics 
problems more often than students trained on the physics problems transferred to the 
algebra problems.  They conclude that the original physics learning situation encodes 
the physics surface features as essential conditions for applicability (Dziembowski & 
Newcombe, 2005) rather than background details, whereas the algebra learning 
condition presents the problem solving approach in a more general manner that better 
supports abstraction.  This aligns with work suggesting that learning in the most 
abstract context provides the best chance for transfer (Sloutsky, Kaminski, & Heckler, 
2005).  Bassok (1990) also showed that isomorphic problems in math and physics 
containing similar types of variables – both intensive or extensive – better support 
transfer than when isomorphic problems contain variables of different types.   

In contrast to these classical views of transfer, there are more modern views 
that attend to more than structural similarities in the problems and the application of 
generalized abstract problem schemata (Bransford & Schwartz, 1999; Engle, Lam, 
Meyer, & Nix, 2012; Engle, 2006; Greeno, Moore, & Smith, 1993; Hammer, Elby, 
Scherr, & Redish, 2005; Lobato, Rhodehamel, & Hohensee, 2012; Lobato, 2003).  
However, these views have thus far not been applied to studying transfer across 
disciplinary contexts.  In this dissertation, I argue for views of transfer across 
disciplines that look beyond similarities in content and structure, drawing on these 
more modern views of transfer for studying student reasoning across disciplinary 
problem contexts. 
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Dissertation chapter 5 – How is the interaction between conceptual and formal 
mathematical reasoning connected to disciplinary contexts? 

Chapter 5 studies how student reasoning with mathematics may be affected by 
different disciplinary problem contexts in ways not accounted for by the classical 
transfer focus on content and structure of the problems.  In this chapter, I aim to add 
to the studies of transfer across physics and math, in particular showing the 
productiveness of tools from more modern transfer perspectives.  Specifically, I will 
show how a student takes two different approaches to similarly structured problems 
set across two disciplinary problem contexts and argue that an explanation of this 
student’s reasoning that attends only to the content and structure in the problems (as 
from a classical transfer perspective) is insufficient for explaining the differences in 
his reasoning. 
 

Dissertation Overview 
 The goal of this dissertation is to contribute to an understanding of how 
students make sense of the equations they encounter in physics.  By “making sense of 
equations,” I mean how students connect these formal mathematical equations to 
intuitive understandings or conceptual understandings in physics.  Additionally, I aim 
to connect students’ reasoning with mathematical equations to other factors beyond 
the content of their reasoning, such as their epistemological stances, in order to 
understand the dynamics of how students’ reasoning may differ depending on the 
particular situation in which they are engaged. 
 Chapter 2 presents a theoretical framework for modeling the phenomena of 
students’ expressed reasoning and their expressed epistemological stances in terms of 
cognitive resources. 
 Chapter 3 asks the question “how can the blending of conceptual and formal 
mathematical reasoning be productively leveraged for physics problem solving?”  
Sherin provides a starting point with the notion of symbolic forms: cognitive 
resources that blend an intuitive, conceptual schema with the symbol template of a 
mathematical equation.  However, the research on symbolic forms has not shown how 
students leverage this type of reasoning in physics problem solving with canonical 
physics equations.  We present a case study of how Alex and Pat explain and solve a 
problem with a physics equation, v = v0 + at.  Whereas Alex treats the equation as a 
computational tool, Pat uses the Base + Change symbolic form to interpret an 
intuitive meaning in the equation.  In solving the problem, this symbolic forms-based 
interpretation of the equation affords him a heuristic approach to the problem that 
avoids explicit computation.  We argue that the opportunistic use of a symbolic 
forms-based interpretation to leverage the equation in a more conceptual solution, 
what we call blended processing, is a component of problem-solving expertise in 
physics. 
 Chapter 4 asks the question “does the absence of symbolic forms use imply a 
knowledge deficit?”  That is, how can we explain why some individuals use symbolic 
forms and others don’t?  Is it because some individuals simply don’t “know” 
symbolic forms?  I argue that the absence of symbolic forms use need not indicate a 
knowledge deficit.  Rather, it could be the presence of an epistemological stance that 
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does not support symbolic forms use.  I code a series of interviews for both symbolic 
forms-based reasoning and epistemological stances that either value coherence – 
specifically, between formal reasoning in physics and everyday intuition or 
conceptual physics ideas – or see them as disconnected.  The coding illustrates the 
plausibility of symbolic forms use being connected to epistemological stances valuing 
this coherence.  I also show how one interviewee, Devon, does not use symbolic 
forms to interpret a physics equation initially but does so later on an isomorphic 
equation relating to money in one’s bank account, indicating no deficit in symbolic 
forms knowledge. I argue that shifts in the presence or absence of symbolic forms use 
in Devon’s reasoning correspond to shifts in Devon’s epistemological stance.   
 Chapter 5 asks the question “what affects how individuals reason with 
mathematics across disciplinary contexts?”  In this study, I present the interview of a 
student, Will, in which he was asked to reason about infinite series approximations on 
two isomorphic problems presented in the different disciplinary contexts of physics 
and calculus.  Will’s reasoning on these two problems takes different approaches.  
Although it is possible to explain some of these differences by attending to 
differences in content or structure in the problems that could support different 
approaches on the problems, I argue that attending to factors beyond the content and 
structure of the problems, such as Will’s different epistemological stances towards the 
two problems and his different senses of accountability towards recalling relevant 
knowledge on the two problems, can help in explaining the differences in Will’s 
reasoning approaches to those problems.  
 Chapter 6 summarizes the main points of this dissertation, discusses the 
implications of this work, and lists possible future directions. 
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Chapter 2: Theoretical Framework 
 

INTRODUCTION 
This dissertation deals extensively with students’ reasoning around conceptual 

and formal mathematical ideas as well as students’ in-the-moment epistemological 
stances.  In this section, I will detail aspects of both the phenomenon of expressed 
reasoning and expressed epistemological stances, as well as the theoretical tools for 
modeling this reasoning through cognitive resources. 
 

REASONING & CONCEPTUAL RESOURCES 

Relevant Aspects of Expressed Reasoning for This Dissertation 
In this dissertation, one major phenomenon of study is student reasoning on 

physics problems.  There are many ways in which to understand and categorize 
students’ espoused reasoning.  For the purposes of this study, focused on the blending 
of conceptual and formal mathematical reasoning, I attend to the differences in the 
following kinds of reasoning: 
 

Conceptual reasoning: This is typically qualitative reasoning.  Reasoning of 
this type may be related to physical concepts learned in a physics course.  It 
may also be tied to common sense or everyday experience from living in the 
world.   
Formal mathematical reasoning: Students sometimes rely on the algorithmic 
machinery of mathematics.  Equations can be used for algorithmic 
manipulations or as tools for transforming a desired numerical value from a 
set of known values (commonly referred to as “plug-and-chug” calculations).  
The use of the word “formal” means that this type of reasoning leverages the 
definitions and algorithmic procedures of mathematics.  Of course there can 
also be a conceptual aspect of mathematical reasoning.  However, I group this 
under “conceptual reasoning” in order to distinguish it from the “formal 
mathematical reasoning” I describe here.  As a simple example, division by 3 
can conceptually mean splitting up a set of objects into 3 equal groups.  This 
conceptual understanding can live separately from the algorithmic rules for 
long division.   
 
Of course, this split between conceptual and formal mathematical reasoning is 

not the only way to categorize student reasoning, nor are these the only two types of 
reasoning that might be espoused.  However, in investigating how students may blend 
formal mathematical reasoning and conceptual reasoning, these are my definitions for 
identifying these two different types of reasoning.   

Additionally I don’t mean for formal mathematical reasoning and conceptual 
reasoning to be mutually exclusive.  In fact, the search for the blending of these two 
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types of reasoning assumes that individuals’ expressed reasoning will sometimes 
incorporate reasoning of both types.  The question in this dissertation is how these 
two can be blended together with a very particular goal: to make progress in physics 
problem solving. 

 

One Possible Theoretical Model: Unitary Concepts 
The relevant question here is how to model the reasoning a student expresses 

in a particular moment.  In order to understand my theoretical framework, first I 
present another as a contrasting case.  One approach, which I do not adopt in this 
dissertation, has been to identify an individuals’ reasoning as resulting from a 
network of stable concepts (Carey, 1986; Clement, 1983; Driver, 1981; Halloun & 
Hestenes, 1985).  These concepts are often seen as intact representations of the 
expressed reasoning.  In studies of novices, these concepts are commonly seen as 
incorrect, often described as naïve theories or misconceptions.  For example, 
McCloskey (1983) found that students’ incorrect predictions of motion clustered 
around some common incorrect answers.  These incorrect predictions are consistent 
with a theory of impetus: that objects set in motion possess an “impetus” that, 
unmaintained, gradually dies away.  Because of the commonalities in students’ 
incorrect predictions, and because of the parallels to the historical scientific theory of 
impetus, these students are often seen as having a stable, naïve theory.  The 
presumption is that these stable misconceptions lead to consistent, though incorrect, 
reasoning.   

These types of models have been referred to as unitary (Hammer et al., 2005), 
because they suggest that a student’s expressed reasoning in a moment depends solely 
on what concepts the student has, suggesting stability and consistency in an 
individual’s reasoning around particular topics and situations.  Correct reasoning 
means that individuals possess the correct concepts; incorrect reasoning means that 
they possess incorrect concepts.  Changing these unitary frameworks can be difficult, 
requiring the replacement of old core concepts with new ones.  This process involves 
generating dissatisfaction in some way with existing concepts, presenting 
understandable and plausible alternative concepts, and coming to see these 
alternatives as ultimately more productive (Posner, Strike, Hewson, & Gertzog, 
1982).  The conceptual system is then restructured, accommodating the new concepts 
by restructuring or removing the old ones.  This process has been described as 
“conceptual conflict” between competing concepts (Hewson & Hewson, 1984; 
Nussbaum & Novick, 1982).  Underlying this model is an assumption that there exists 
an incorrect core concept to be confronted, deposed, and replaced by a canonical 
alternative.   

 

Manifold Conceptual Resources 
By contrast, an alternative view of cognition models an individual’s expressed 

reasoning as consisting of the activation and coordination of multiple pieces of 
knowledge.  In this view, an expressed reasoning doesn’t arise from a static network 
of concepts.  Rather, reasoning consists of the activation of some subset of an 
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individuals’ knowledge.  Unlike the unitary models of knowledge, expressing 
incorrect reasoning does not imply having only incorrect conceptual knowledge and 
not having the canonically correct knowledge.  Rather, individuals are seen as 
possessing manifold conceptual resources, many of which can be applied to a 
particular situation, leading to different possible lines of reasoning.  Analogously, a 
novice construction worker may pick, out of all the tools on their tool belt, the wrong 
tool for a job.  In this case, it would then be incorrect to necessarily infer that this 
construction worker only possessed this particular tool or lacked the appropriate tool 
for this job.  In the same way, a student’s knowledge is multifaceted, and the 
expressed reasoning represents just one of those facets.   

For example, diSessa (1993) found that students made predictions about 
motion using different interpretations of forces: either force as a mover (forces can 
lead to translational motion), force as a spinner (forces can lead to rotation), or force 
as a deflector (forces can change the path of moving objects).  Although a physicist 
views these as special cases of more fundamental physical laws, diSessa theorizes 
that these three intuitions about force are phenomenological primitives (or p-prims) 
that are abstracted from experiences from living in the physical world.   Rather than 
appealing to a single, generalized notion of forces and motion across all the problems, 
diSessa sees novices’ ideas of forces as more fragmented such that drawing on 
different fragments at different times can lead to different predictions of the resulting 
motion.   

To address an issue of clarity, I point out that the “conceptual” in “conceptual 
reasoning” is not the same as the one in “conceptual resources.”  Conceptual 
reasoning refers to reasoning about qualitative physics concepts or everyday, intuitive 
ideas.  It is defined to be separate from reasoning with equations (although this 
reasoning can be blended with formal mathematical reasoning.  However, formal 
mathematical reasoning does not necessarily indicate the presence of conceptual 
reasoning, and vice versa).  This comes from PER’s focus on qualitative questions 
that do not include mathematics.  “Conceptual resources” refer to pieces of 
knowledge that individuals possess that relate to the content of their reasoning.  
Therefore, “conceptual resources” are so named to be distinct from other cognitive 
resources that may relate to epistemological, affective, or motivational factors, for 
instance.  This use of the word “conceptual” aligns more with the literature on 
conceptual change, which studies how naive content knowledge transforms into 
expert content knowledge. Conceptual knowledge resources can therefore be used to 
model both expressed conceptual reasoning and expressed formal mathematical 
reasoning.   

Expanding on research on manifold frameworks, work has been done to show 
how students draw on different pieces of their knowledge, switching between 
different lines of reasoning quickly over short periods of time (e.g. Barth-Cohen, 
2012; Bing & Redish, 2012; Sherin, Krakowski, & Lee, 2012), to identify the 
existence of other conceptual resources in addition to p-prims – e.g. symbolic forms 
(Sherin, 2001) – and to develop theoretical models of how reasoning emerges from 
assembly and coordination of these resources (diSessa & Sherin, 1998; diSessa, 1993; 
Wagner, 2006). 
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In manifold models, instruction proceeds from two underlying assumptions: 1) 
incorrect reasoning does not always stem from stable, alternative concepts and 2) 
there exist productive resources in an individual’s cognitive ecology that can be 
drawn on for productive reasoning.  From these assumptions, the strategy is not to 
confront and replace concepts but to help students draw on pieces of their own 
knowledge that will lead to productive reasoning (D. E. Brown, 1994; Clement, 
Brown, & Zietsman, 1989; Elby, 2001; Hammer, 2000).  For example, Brown (1994) 
draws on “bridging analogies” for helping students to see that a book on a table 
experiences a normal force.  He finds that students have a strong intuition that 
pushing their hand down on a spring means that the spring also pushes up against 
their hand.  Through a series of analogies, students are shown the relevance of this 
intuition for understanding the situation of a book on a table.  Rather than confronting 
and replacing incorrect force concepts, Brown seeks out existing student ideas that 
will lead to canonical physics interpretations.  In a manifold framework, this process 
can be described as activating productive conceptual resources for reasoning about 
forces (Hammer, 2000). 

In these manifold models of cognition, developing conceptual expertise means 
adopting stable patterns of activation in a wide variety of contexts.  One would expect 
that expert physicists would reason from a coherent model of Newton’s laws in a 
variety of situations.  In manifold models, this development of a stable pattern of 
reasoning corresponds to the development of stable patterns of conceptual resource 
activation, rather than the highly-context sensitive activation of different p-prims for 
understanding forces seen in novice reasoning (diSessa & Sherin, 1998; Wagner, 
2006).  The manifold perspective challenges perspectives that exclude variability in 
an individual’s reasoning but does not challenge the goal of stability in developing 
expertise. 

 

One Notable Type of Conceptual Resource: Symbolic Forms 
In general, the underlying philosophy of the multifaceted nature of an 

individual’s knowledge is more important than identifying the specific conceptual 
resources that underlie an expressed reasoning.  For this reason, in the data analysis, I 
will focus more on understanding the variability in an individual’s expressed 
reasoning than on identifying all of the specific conceptual resources in play.  For 
instance, I am more interested in identifying a student’s reasoning either as “plug-
and-chug” calculations or as intuitive or physical conceptual reasoning than in 
specifying what conceptual resources are activated in executing this reasoning.   

However, one particular type of conceptual resource is central to this study of 
how students blend conceptual and formal mathematical reasoning: symbolic forms 
(Sherin, 2001).  Symbolic forms are conceptual resources that contain a conceptual 
schema, an intuitive idea expressible in words, and a symbol template, the form and 
structure of a mathematical equation.  This particular conceptual resource is 
important, because it reflects one particular way of blending conceptual and formal 
mathematical reasoning.  In analyzing the data presented in this thesis, I will strongly 
attend to symbolic forms use or symbolic forms-based reasoning. 
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Considering symbolic forms as conceptual resources means that the absence 
of symbolic forms-based reasoning in a particular moment does not necessarily imply 
that that individual does not possess the relevant symbolic forms.  Rather, in a 
particular moment, individuals may activate different sets of resources related to 
mathematics: resources for algorithmic manipulations or resources such as symbolic 
forms for blending conceptual reasoning with equations, to name two possible sets.  
Instead of seeking to identify which students do and which students do not “know” 
symbolic forms, I seek to understand why, in some situations, students do not draw 
on the knowledge of symbolic forms they possess.  

 

EPISTEMOLOGICAL STANCES & EPISTEMOLOGICAL 
RESOURCES 

Relevant Aspects of Expressed Epistemological Stances 
Analogous to expressed reasoning, students also provide evidence of their in-

the-moment views on what it means to learn and what kinds of reasoning are 
appropriate in a situation.  I refer to this phenomenon as their epistemological stances 
(Hammer & Elby, 2002).  Just as I take an individual’s conceptual reasoning to be 
one in-the-moment facet of that individual’s multifaceted knowledge, expressed 
epistemological stances are similarly one facet of that individual’s multifaceted 
epistemology. 

These epistemological stances can be identified through explicit statements.  
For example, Hammer (1994) documented students making explicit comments on 
how they make sense of equations.  Tony said “...everything we, [the teacher] gave 
us, were the kinds of things we already knew but had never actually formalized, if 
that makes any sense...and that’s what should happen, and it’s just a matter of putting 
common sense into equations” (Hammer, 1994, p. 170).  This statement indicates an 
epistemological stance that the formal mathematical equations reflect common sense.  
Roger, on the other hand, says that the only way he could teach the formula v = v0 + 
at to another student is to work through the derivation.  Hammer asks whether 
common sense applies to the formulas in Roger’s physics course, to which Roger 
replies, “In the most simplest way” (Hammer, 1994, p. 171).  This, and other 
evidence, supports Hammer’s interpretation that Roger sees a limited connection 
between common sense and physics equations.  For Roger, it seems that the equations 
are not as obviously expressing common sense as they are for Tony.  These explicit 
statements towards the connection between common sense and equations indicate the 
epistemological stances that Roger and Tony are taking towards equations in that 
moment. 

Roger and Tony reflect some of the dimensions of epistemology in which I 
am interested.  Specifically, aligned with my focus on conceptual reasoning and 
formal mathematical reasoning, I attend to epistemological stances related to what 
kinds of reasoning are appropriate in learning and understanding physics – 
specifically, I investigate the roles of conceptual reasoning and formal mathematical 
reasoning in an individual’s epistemological stances.  This is related to Hammer’s 
epistemological dimensions of “formulas vs. concepts” and “pieces vs. coherence” 
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(Hammer, 1994).  This is also related to the additional dimensions surveyed in the 
MPEX: “reality link” and “math link.”   

 

Manifold Epistemological Resources vs. Unitary Epistemological Beliefs 
Similar to debates about the nature of conceptual knowledge, more recent 

theories of individuals’ epistemologies have proposed epistemologies as consisting of 
manifold epistemological resources rather than unitary epistemological beliefs 
(Hammer et al., 2005; Hammer & Elby, 2002).  Although many studies have found 
consistency in individuals’ epistemologies (King & Kitchener, 1994; Perry, 1970; 
Schommer, 1990) and have modeled epistemological development as movement 
through stable stages (Carey & Smith, 1993; King & Kitchener, 1994; Smith et al., 
2000), other studies have shown variability in what epistemological stances 
individuals can take (Bing & Redish, 2009; Gupta & Elby, 2011; Hammer, 1994; 
Louca, Elby, Hammer, & Kagey, 2004; Rosenberg, Hammer, & Phelan, 2006).  
These quick shifts cannot be explained by unitary epistemological beliefs.  For 
example, Gupta and Elby (2011) present a student, Jim, who starts off expressing an 
epistemological stance that mathematics does not always cohere with his everyday 
thinking and that when mathematics and everyday intuition disagree, he would trust 
the mathematics.  However, after working through a resolution for seeing an equation 
as coherent with his everyday intuitions, where there was initial disagreement, he 
expresses a different epistemological stance – one that values the coherence between 
the mathematical and everyday thinking.  A unitary model of epistemological beliefs 
cannot describe this quick shift between these two different epistemological stances.   
 

Connecting Conceptual and Epistemological Resources: Epistemological 
Framing 

Other studies have shown that particular epistemological stances are 
connected to student learning and/or reasoning in science (Gupta & Elby, 2011; 
Lising & Elby, 2005; Perkins et al., 2005; Rosenberg et al., 2006; Songer & Linn, 
1991; Windschitl & Andre, 1998) and math (Mason, 2003; Muis, 2004; Schoenfeld, 
1985; Schommer, Crouse, & Rhodes, 1992).  Therefore, developing students’ 
epistemologies also likely supports conceptual learning.  In a common sense way, it 
makes sense that if an individual sees a certain kind of reasoning or approach as 
appropriate for a particular situation, then they’re likely to take on reasoning or 
approaches coherent with these views.   

The process of epistemological framing (Hammer et al., 2005) models this 
connection at the level of conceptual and epistemological resources.  The theory of 
epistemological framing posits that, in a situation, a coherent set of conceptual and 
epistemological resources are assembled and activated in response to the question: 
“what kinds of knowledge or reasoning is appropriate here?”  The coherence between 
the conceptual and epistemological resources activated explains the coherence 
between an individual’s in-the-moment reasoning and epistemological stance.  For 
example, Hammer et al. (2005) describe two students working on the following 
problem in physics class: if you are standing on a scale in an elevator moving at a 
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constant speed, which forces would change magnitude if the elevator started 
accelerating downwards?  Tracy starts by recording all the known quantities, 
apparently expecting to have to do a calculation.  Sandy, on the other hand, questions 
this underlying premise, asking “do we even need to do all that calculation?”  Sandy 
counters with a physical interpretation to the problem: the elevator pulls away from 
the person and so the person would have to catch up to it.  The differences in Tracy’s 
and Sandy’s approaches relate to the differences in what kind of reasoning they 
believe the problem requires.  In this way, we can understand Sandy’s reasoning, for 
example, not just as a coordination of conceptual resources related to understanding 
forces and accelerating bodies, but also involving epistemological resources related to 
about what kinds of knowledge and approaches are appropriate here.   

In a model of individuals’ knowledge consisting of manifold cognitive 
resources - and therefore being multifaceted - the corresponding expressed reasoning 
and epistemological stances must also represent only one possible facet of the 
expressed lines of reasoning and epistemological stances that are available.  Some 
work has shown that shifting between these different facets can be accomplished 
through shifts in either the conceptual or epistemological resources that are activated 
(Bing & Redish, 2012; Gupta & Elby, 2011; Louca et al., 2004; Rosenberg et al., 
2006).  As Gupta and Elby showed with Jim, a shift in Jim’s reasoning with an 
equation corresponded to a shift in Jim’s epistemological stance.  At the level of the 
epistemological framing of specific cognitive resources, in order to maintain 
coherence between the conceptual and epistemological resources in play, a shift in the 
activated conceptual resources to ones connecting formal mathematical reasoning and 
conceptual reasoning must correspond to a similar shift to activate epistemological 
resources valuing coherence between formal mathematics and everyday intuition.  

Conversely, Rosenberg et al. (2006) showed that epistemological shifts could 
lead to conceptual shifts.  Sixth graders, creating a model for the rock cycle, start by 
trying to recall information learned in class.  The teacher briefly intervenes, saying 
she wants students to start from their own ideas, rather than trying to recall ones from 
class.  In what follows, the students enter a different mode of reasoning, using their 
everyday ideas to generate a story of how rocks transform over time.  By simply 
shifting students’ in-the-moment epistemological stances about what kinds of 
knowledge are productive in the rock cycle activity, a corresponding shift occurs in 
students’ reasoning, reasoning that may not have otherwise been apparent.  In this 
case, a shift in the active epistemological resources to ones supporting “storytelling” 
corresponds to a shift in the activated conceptual resources for generating parts of that 
story. 

Jim in Gupta and Elby’s study reveals important types of conceptual and 
epistemological resources that are relevant to the study of how conceptual and formal 
mathematical reasoning are blended together.  As described previously, especially 
relevant to the analysis in this dissertation is the identification of conceptual 
reasoning and formal mathematical reasoning, as well as the identification of how the 
two are blended together or remain distinct.  Along with the conceptual resources 
activated, epistemological framing requires coherence between these conceptual 
resources and the active epistemological resources.   
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THE RICHNESS OF INDIVIDUALS’ REASONING 
Briefly, I want to say a few words about relevant features of knowledge 

beyond conceptual and epistemological resources.  My attention to these two specific 
aspects of knowledge and the related phenomena is not meant to imply that those are 
the only two aspects that matter in studying reasoning and learning.  Other factors 
such as motivation (Pintrich, Marx, & Boyle, 1993), identity (Boaler & Greeno, 
2000), and metacognition (Schoenfeld, 1987), to name three, have been shown to 
have an effect on the substance of individuals’ reasoning as well.  My focus on the 
connection between an individuals’ reasoning and their epistemological stances is not 
meant to downplay or deny the importance of other factors.  It is simply a pragmatic 
decision to focus on one particularly apparent aspect of the data.  

One important theoretical and methodological issue is that this study focuses 
on how expressed reasoning corresponds to one particular facet of an individuals’ 
knowledge rather than on how that expressed reasoning develops out of an interaction 
between individuals, physical artifacts, and other contextual features of the activity 
system (Carraher, Carraher, & Schliemann, 1985; Hutchins, 1995; Lave, 1988).  In 
this matter, I align with Cobb (1994) in seeing these two types of perspectives as 
complimentary rather than dichotomous.  In my theoretical framework, I 
acknowledge that the expressed reasoning in a situation develops out of a system of 
activity in which an individual is only one component.   

In this dissertation, I foreground the cognitive resources and background the 
mechanics of how the activation of these resources is resultant from an interaction 
with people, artifacts, contexts, etc.  One reason is that this dissertation is 
theoretically concerned with uncovering particular facets of students’ reasoning 
related to blending conceptual and formal mathematical reasoning – specifically: 

 
1) What does reasoning that blends conceptual and formal mathematical 

reasoning look like, and to what conceptual resources does this 
reasoning correspond? 

2) Does the absence of such blended reasoning necessarily correspond to 
a knowledge deficit? 

3) How is the activation of these conceptual resources connected to the 
activation of particular epistemological resources? 

 
Although studying the situated nature of the activation of these conceptual resources 
is a valuable goal, I do not attend deeply to these issues here, in order to make this 
dissertation tractable.  The identification of these resources and the conceptual and 
epistemological dynamics in which they are involved is a first step to understanding 
blended conceptual and formal mathematical reasoning.   
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Chapter 3: How Students Blend Conceptual and Formal 
Mathematical Reasoning in Solving Physics Problems1 

 

INTRODUCTION 
The science education literature on quantitative problem solving emphasizes 

the importance of incorporating conceptual reasoning in two phases of problem 
solving: (1) initial qualitative analysis of the problem situation to determine the 
relevant mathematical equations and (2) interpretation of the final mathematical 
answer, to check for physical meaning and plausibility (P. Heller et al., 1992; Redish 
& Smith, 2008; Reif, 2008). Without disputing the importance of these phases of 
problem solving, we note that almost no research has focused on the “mathematical 
processing” stage where the equations are used to obtain a solution.  In this paper, we 
investigate different ways that students can process equations while problem solving. 
We argue that a feature of problem solving expertise — and a feasible instructional 
target in physics, chemistry, and engineering courses — is blended processing, the 
opportunistic blending of formal mathematical and conceptual reasoning (Fauconnier 
& Turner, 2003; Sherin, 2001) during the mathematical processing stage.  In other 
words, we argue that expert problem solving involves exploiting opportunities to use 
conceptual reasoning in order to facilitate the manipulation of equations themselves. 

To make our case, we first review how physics education researchers have 
conceptualized and taught quantitative problem solving. We then discuss research 
suggesting the importance of blending conceptual reasoning with symbolic 
manipulations in quantitative problem solving, and we propose symbolic forms 
(Sherin, 2001) as cognitive resources that facilitate such blended processing. Then we 
use contrasting case studies of two students solving a physics problem, to illustrate 
what we mean by blended processing. Alex solves the problem by representing the 
physical situation with a diagram, identifying the relevant physics equations, using 
those equations to compute a numerical answer, and reflecting upon that answer — in 
accord with problem-solving procedures taught in physics classrooms (e.g. Giancoli, 
2008; Young & Freedman, 2003) and advocated in education research (P. Heller et 
al., 1992; Huffman, 1997; Reif, 2008; Van Heuvelen, 1991b). Pat, by contrast, blends 
symbolic equations with conceptual reasoning about physical processes to find a 
“shortcut” solution. After analyzing Alex’s and Pat’s responses in detail, we show 
that some other introductory physics students in our data corpus also do the type of 
blended processing done by Pat.  In documenting what such blended processing can 
look like for undergraduate students in an introductory physics course, we make the 
case that (1) the opportunistic use of blended processing is part of quantitative 
problem-solving expertise; (2) a theoretical construct called symbolic forms (Sherin, 
2001) contributes to a good cognitive account of Pat’s (and the Pat-like students’) 
blended processing; and (3) such blended processing is a feasible instructional target 
in science and engineering courses. 
                                                
1 This chapter is published in Science Education (Kuo, Hull, Gupta, & Elby, 2013). 
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LITERATURE REVIEW: CONCEPTUALIZATIONS OF EXPERT 
PROBLEM SOLVING 

In this section, we present a common conceptualization of expertise in 
quantitative physics problem solving, as well as challenges to a particular aspect of 
that conceptualization. We limit our discussion to quantitative problem solving, 
because our argument specifically concerns the processing of equations in problem 
solving.   
 

Research on Expert Problem Solving and Resulting Instructional Strategies 
Emphasize an Initial Conceptual Reasoning Phase 

As a central feature of their professional practice, scientists apply domain-
specific knowledge to solve quantitative problems (Redish & Smith, 2008; Reif & 
Heller, 1982; Reif, 2008). Partly for this reason, developing problem-solving 
expertise in students has become a central concern of science education researchers 
and practitioners (Hsu et al., 2004; Maloney, 1994, 2011).  

Early research on physics problem solving suggests a difference between 
experts and novices. Experts tend to start with a conceptual analysis of the physical 
scenario, which then leads into the mathematics. By contrast, novices tend to start by 
selecting and manipulating equations that include relevant known and unknown 
quantities (Larkin et al., 1980; Simon & Simon, 1978). Specifically, on standard 
textbook physics problems, experts cue into relevant physics principles whereas 
novices cue into surface features and their related equations (Chi et al., 1981). 
Building on these findings, subsequent research has explored the benefits of helping 
students analyze the problem situation conceptually (Dufresne et al., 1992; Larkin & 
Reif, 1979) and has incorporated initial conceptual thinking into models of effective 
quantitative problem solving (J. I. Heller & Reif, 1984; Reif & Heller, 1982).  

This research on expert-novice differences has also influenced researchers’ 
formulation of multi-step problem-solving procedures intended for students to learn 
and apply (P. Heller et al., 1992; Huffman, 1997; Reif, 2008; Van Heuvelen, 1991a, 
1991b). These procedures generally include versions of the following steps: (1) 
perform an initial conceptual analysis using relevant physics principles; (2) use this 
qualitative analysis to generate the relevant mathematical equations; (3) use equations 
to obtain a mathematical solution in a “mathematical processing” step; and (4) 
interpret that mathematical solution in terms of the physical scenario. These 
procedures incorporate the expert-novice findings by encouraging students to reason 
conceptually before jumping into mathematical manipulations.  
 In these strategies, the steps are meant to mirror behaviors exhibited by 
experts while also remaining accessible enough to be instructional targets. The 
explicit teaching and enforcement (through grading policies) of these problem-
solving procedures has increased the quality and frequency of physical 
representations used in problem solving, as well as the correctness of students’ 
answers, in comparison to traditional instruction (P. Heller et al., 1992; Huffman, 
1997; Van Heuvelen, 1991b). 
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Studies of Quantitative Problem Solving Have Not Focused on How 
Equations Are Processed to Reach Solutions 

The studies described above illustrate a common feature of research on 
students’ quantitative problem solving: to the extent these studies focus on equations, 
they focus on how students select equations rather than on how students use those 
equations after their selection. While this focus has produced important findings and 
implications for instruction (for example, emphasizing initial conceptual reasoning 
for selecting relevant equations), it has also limited attention to how students process 
mathematical equations to obtain numerical or symbolic solutions. 

In some research, the equations are treated (either explicitly or implicitly) as 
computational tools, devices to find unknown values from known values through 
symbolic and numeric manipulation. This is true of the problem-solving procedures 
described above (P. Heller et al., 1992; Huffman, 1997; Van Heuvelen, 1991b) and of 
studies about how successful problem solvers use mathematics (e.g. Dhillon, 1998; 
Taasoobshirazi & Glynn, 2009).  

Other more recent studies have not attended to any aspect of how equations 
are processed. Walsh, Howard & Bowe (2007) focused mainly on how students 
selected relevant equations rather than on how those equations are subsequently used. 
Some studies have deemphasized the use of math completely and focused only on 
students’ qualitative analysis, both in instructional interventions (e.g. Mualem & 
Eylon, 2010) and in finding predictors of problem-solving expertise (e.g. Shin, 
Jonassen, & McGee, 2003).   

The first author (Kuo) did a search through Science Education, Journal of 
Research in Science Teaching, Research in Science Education, International Journal 
of Science Education, American Journal of Physics, The Journal of Engineering 
Education, Cognition & Instruction, and Journal of the Learning Sciences from 
January 2000 to March 2012 and Physical Review Special Topics – Physics 
Education Research from July 2005 (its inception) to March 2012. He looked for 
articles focusing explicitly on problem solving in which the analysis attended to the 
possibility of processing equations in multiple ways.  First, the titles of all articles 
were scanned, and abstracts of articles with titles containing terms such as “problem 
solving” or “equations” were read.   If the abstract described investigations of 
components of problem-solving expertise, the article itself was read.  This search 
found no studies that focused upon the mathematical processing step in quantitative 
problem solving or described alternatives to using equations as computational tools. 
 

Other Studies Suggest the Importance of Blending Conceptual Reasoning 
with Symbolic Manipulations 

We have shown that research on quantitative problem solving has not attended 
to different ways that mathematical equations can be used to obtain numerical or 
symbolic solutions. This paper presents two different ways that such equations may 
be used: (i) as computational tools, manipulated to solve for unknown quantities, or 
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(ii) blended with conceptual meaning to produce solutions (or progress toward 
solutions). But why is this difference significant? 

Other pockets of research suggest that using equations without looking to their 
conceptual meaning during the processing can, in certain situations, reflect a lack of 
expertise. In mathematics education research, for example, Wertheimer (1959) asked 
students to solve problems of the following type: (815+815+815+815+815)/5 = ?. 
Students who solved the problem by computing the sum in the numerator and then 
dividing by 5 missed a possible shortcut around explicit computation: using the 
underlying conceptual meanings of addition and division to realize that the solution is 
815, without doing any computations. Students who missed the shortcut had 
demonstrated proficiency with the mathematical procedures, but not understanding of 
the underlying conceptual meaning.  Additionally, Arcavi (1994) suggested the 
importance of symbol sense: an ability to reason conceptually about symbols. This 
symbol sense includes the ability to interpret the conceptual meaning behind symbolic 
relationships, generate expressions from intuitive and conceptual understanding, and 
decide when and how best to exploit one’s conceptual understanding of symbols. 

Redish and Smith (2008), writing about expert problem solving in science and 
engineering, also challenged the view that symbolic manipulation should be a priori 
divorced from conceptual reasoning, saying “…because of the fact that the equations 
are physical rather than purely mathematical, the processing can be affected by 
physical interpretations” (Redish & Smith, 2008, p. 302).  Just as Wertheimer showed 
that students’ conceptual understanding of mathematical operations influenced how 
they carry out calculations in an arithmetic problem, Redish and Smith suggest that 
students’ interpretations of equations in terms of the physical scenario can influence 
how they use the equations in solving physics/engineering problems. 

Again, we do not dispute the instructional value of prior research on problem 
solving procedures that emphasize conceptual reasoning at the start and the end of 
problem solving. As noted above, an instructional emphasis on such procedures has 
helped students to produce more and better representations and to produce correct 
solutions more frequently. However, Wertheimer, Arcavi, and Redish and Smith 
suggest the importance of focusing on how students process equations in their 
quantitative problem solving, a focus not present in the quantitative problem solving 
literature.  Specifically, these researchers argue that blending conceptual reasoning 
with mathematical formalism in the processing of equations — what we refer to as 
blended processing — may be productive and reflect greater expertise in some 
situations than using an equation simply as a computational tool.  In the next section, 
we discuss the use of symbolic forms, which we argue is one specific way that 
blended processing can occur in physics problem solving. 
 

Symbolic Forms: A Blend of Conceptual Reasoning and Mathematical 
Formalism 

In arguing that problem solving does not necessarily proceed from direct 
application of canonical physics principles, Sherin (2001) proposed the existence of 
knowledge structures called symbolic forms, which link mathematical equations to 
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intuitive conceptual ideas.  Specifically, in a symbolic form, a symbol template is 
blended with a conceptual schema.   

A symbol template represents the general structure of a mathematical 
expression without specifying the values or variables. For example,  =  is the 
symbol template for Newton’s 2nd law (F = ma), while the symbol template for the 
first law of thermodynamics, ∆E = Q + W, is  =  + . Each symbol template is 
not unique to a single equation. For instance, the symbol template  +  +  can 
describe both the expression x0 + v0t + 1/2 at2 and the expression P0 + 1/2ρv2 + ρgh. 
 A conceptual schema is an intuitive idea or meaning that can be (but does not 
have to be) represented in a mathematical equation or expression. By “intuitive” 
ideas, we mean ideas that are informal and drawn from everyday (non-academic) 
knowledge - ideas that make quick and immediate sense and that do not seem to 
require further explanation. One example of such a conceptual schema is the idea that 
a whole consists of many parts. For example, an automobile can be seen as an 
assembled whole of many parts such as the engine, the transmission, and the chassis; 
a wedding guest list can be conceptualized as consisting of the close relatives, the 
close friends, business contacts, and others; an essay might be viewed as the 
compilation of the introduction, the main body of argument, and the conclusion. 
Similarly, a physics student’s conceptual understanding of the total mechanical 
energy of a system may be grounded in the idea that it is comprised of many different 
types of energy: kinetic, gravitational potential, spring potential, and so on.  
 Another conceptual schema, applicable to reasoning about a game of tug-of-
war or about a marriage between a spendthrift and a miser, is the idea of opposing 
influences. In physics, this conceptual schema may apply to a student’s conceptual 
understanding of a falling object, where air resistance opposes the influence of 
gravity (Sherin, 2001).  
 As these examples illustrate, a conceptual schema in Sherin’s framework is an 
intuitive idea used in everyday, nonscientific reasoning, not a formal scientific 
concept.  A student’s understanding of a formal scientific concept (such as 
mechanical energy) can draw upon these intuitive conceptual schemata (such as 
whole consists of many parts); but the conceptual schema also plays a role in 
students’ reasoning about other subjects, such as wedding guest lists.  
 A symbolic form is a cognitive element that blends a symbol template with a 
conceptual schema, such that the equation is interpreted as expressing meaning 
corresponding to the conceptual schema. For example, the parts-of-a-whole symbolic 
form blends the symbol template “  =  +  +  + ...” with the conceptual 
schema of a whole consisting of many parts. The box on the left side of the equation 
takes on the meaning of “whole” and the boxes on the right side take on the meaning 
of “parts.”  A student who uses the parts-of-a-whole symbolic form to interpret the 
equation E = ½mv2 + mgh +½kx2 would say that the overall (whole) energy of the 
system consists of the sum of three separate parts (kinetic, gravitational potential, and 
spring potential). So, when a symbolic form is used, the reasoning is neither purely 
formal mathematical nor purely conceptual; it is blended into a unified way of 
thinking that leverages both intuitive conceptual reasoning and mathematical 
formalism. By contrast, a writer thinking about her essay might think of the parts of 
her essay (Introduction, etc.) using the conceptual schema corresponding to parts-of-
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a-whole, but is unlikely to think of adding those parts in an equation. Only when a 
conceptual schema is blended with an equation’s symbol template is a symbolic form 
present in the person’s reasoning.        
 Sherin (2001) observed students productively using symbolic forms in two 
ways.  One was to produce novel equations from an intuitive conceptual 
understanding of a physical situation.  For example, figuring out how much rain 
would hit them in a rainstorm, a pair of students wrote the equation [total rain] = 
[#raindrops/s] + C.  Their explanation of this equation reflected the use of parts-of-a-
whole. Specifically, they said the total rain would come from two sources: the amount 
falling on top of the person, indicated by [#raindrops/s], and the amount striking the 
front of the person as they walk forward, indicated by C.  Other research has also 
supported the explanatory power of symbolic forms in models of how students 
translate physical understandings into mathematical equations (Hestenes, 2010; Izsák, 
2004; Tuminaro & Redish, 2007). 
 The other way in which Sherin’s subjects used symbolic forms was to 
interpret mathematical equations in terms of a physical scenario, using functional 
relations expressed by the equation.  For example, after deriving the terminal velocity 
of a falling object, v = mg/k, several students noticed that the mass, m, was in the 
numerator. Students interpreted this as meaning that a heavier object reaches a greater 
terminal velocity.  Sherin modeled these students as using the prop+ (positive 
proportionality) symbolic form — a blend of the symbol template […x… / …....] 
with the conceptual schema that one quantity increases as another one increases— to 
read out a physical dependence from the mathematical equation. Later, Sherin (2006) 
hypothesized that prop+ was tied to physical notions of effort and agency, what we 
see as “cause-and-effect.” Other researchers have also used symbolic forms to model 
how students translate from mathematical solutions into physical understanding 
(Hestenes, 2010; Tuminaro & Redish, 2007; VanLehn & van de Sande, 2009). 
 These two ways in which Sherin (2001) saw students use symbolic forms 
correspond roughly to the two “steps” involving conceptual reasoning, as described 
by the problem solving literature:  (i) translating conceptual understanding of a 
physical scenario into mathematical equation(s) at the start of problem solving and 
(ii) giving a physical interpretation of a mathematical solution at the end2. We have 
seen no studies that look at how symbolic forms-based reasoning — or blended 
conceptual and formal mathematical reasoning more generally — might enter into the 
“mathematical processing” step in quantitative problem-solving.  
 

Building on the Literature to Explore the Mathematical Processing Step 
We contribute to the literature on quantitative problem solving in three ways.  

First, we focus on different ways in which mathematical equations can be used to 

                                                
2 We do not mean to imply, however, that completing these steps necessarily or even commonly 
involves symbolic forms-based reasoning. Using an informal conceptual schema to invent an equation 
differs from common instantiations of the “conceptual reasoning” step, in which students generally use 
formal concepts to select equations.  And giving a physical interpretation of a mathematical answer can 
involve attaching physical significance to a number rather than attaching meaning to a functional 
relation between variables. 
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reach a solution. This is a relatively unexplored topic, as discussed above.  We find 
that equations can be used as tools for symbolic or numerical manipulations or as 
tools in blended processing.  As we argue, the opportunistic use of such blended 
processing can reflect greater expertise than symbolic or numerical computation 
(Arcavi, 1994; Redish & Smith, 2008; Wertheimer, 1959). 

Second, we argue that symbolic forms help to explain the patterns we 
document below in students’ problem solving and are therefore productive analytical 
tools for researchers trying to understand the nature of blended processing.  

Third, we argue that symbolic forms are also plausible targets for instruction 
in introductory physics, partly because they rely on intuitive rather than formal (or 
discipline-specific) reasoning. Students can therefore productively use symbolic 
forms while they are still learning difficult physics concepts. 
 

METHODS AND DATA COLLECTION 

Overview and Research Questions 
We began with a broad, ill-defined question, “how do students make sense (or 

not) of the mathematics they use in solving physics problems?”, accompanied by our 
own intuitions about how blended processing might play a role (as discussed below).  
This initial question, along with our intuitions, led to the design of an interview 
protocol.  Looking at early interview data, we felt that students’ responses to the first 
two prompts (described below) fell into two broad categories: ones that blended 
intuitive reasoning with the formal mathematical equations in a particular way and 
ones that took an algorithmic approach to using the equations.  This sharpened our 
focus to specific research questions around how and when students blend intuitive 
and formal mathematical ideas: (1) On the Two Balls Problem (described below), 
how can we characterize the differences between a solution that uses blended 
processing and a solution that does not, and (2) How can we describe the formal and 
informal knowledge that students bring to bear when using blended processing to 
address this problem?   We use Alex’s and Pat’s responses to explore these research 
questions.     
 

Interview Context 
 Our data set consists of videotaped interviews with 13 students enrolled in a 
first-semester, calculus-based, introductory physics course at a large, public 
university in the United States. The course, geared toward engineering majors, covers 
mechanics. These students were interviewed between fall 2008 and spring 2011, and 
our recruitment did not target any particular demographic. The interviews lasted 
about one hour. 
 The two subjects on whom we focused our analysis, “Alex” and “Pat” 
(pseudonyms), were interviewed one and a half months into the course in fall 2008. 
By that time, the course had covered kinematics, including objects falling under the 
influence of gravity, which is the topic of the interview prompts discussed below. We 
chose Alex and Pat for fine-grained analysis because they were among the first 
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students we interviewed and because the strong differences between their responses 
motivated us to seek an explanation for those differences.  
 

Interview Protocols 
 We designed the semi-structured interviews to probe engineering majors’ 
approaches to using equations while solving quantitative physics problems. 
Specifically, we wanted to explore what formal mathematical and conceptual tools 
they bring to bear and which epistemological stances they take toward the knowledge 
they use.  Moreover, we designed some prompts specifically to probe whether and 
how students use blended processing when the opportunity arises. To that end, we 
had students think aloud while solving specific problems. We also asked them to 
explain the meaning of both familiar and unfamiliar equations and to discuss more 
generally how they know when they “understand” an equation. The complete protocol 
is online (http://hdl.handle.net/1903/12947). Our analysis in this paper focuses on the 
first two prompts in the interviews. 
 

Prompt 1:  Explain the velocity equation 
The interviewer shows the student the equation v = v0 + at and asks, Here’s an 
equation you’ve probably seen in physics class. How would you explain this 
equation to a friend from class? 

 
Prompt 2:  Two Balls Problem 
(a) Suppose you are standing with two tennis balls on the balcony of a fourth 
floor apartment. You throw one ball down with an initial speed of 2 meters 
per second; at the same moment, you just let go of the other ball, i.e., just let it 
fall. I would like you to think aloud while figuring out what is the difference in 
the speed of the two balls after 5 seconds – is it less than, more than, or equal 
to 2 meters per second? (Acceleration due to gravity is 10 m/s2.) [If the 
student brings it up, the interviewer says to neglect air resistance]3 
(b) [Only if student solved part (a) by doing numerical calculations] Could 
you have solved that without explicitly calculating the final values? 

 
In designing the Two Balls Problem, we anticipated that some students would 

find something like the following shortcut: according to the velocity equation, v = v0 
+ at, since both balls gain the same amount of speed over 5 seconds (with the gain 
given by the mathematical term at), the final difference in speeds equals the initial 
difference in speeds, in this case 2 meters per second. Note that the shortcut uses 
blended processing, interpreting the equation conceptually as “the final velocity is the 
initial velocity plus the change in velocity.” We wanted to see if students would 
notice this shortcut solution or something like it, either on their own or in response to 

                                                
3 Through doing the interviews, we realized that for any reasonable fourth floor balcony, the two balls 
would hit the ground before 5 seconds.  However, this did not present a significant problem as few 
students mentioned this issue in their solution, and the ones that did proceeded to solve the problem as 
if the balls would not hit the ground. 
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the follow-up prompt about whether the problem could have been solved without 
numerical calculations.  
 Although this problem is not as complex or difficult as some textbook 
introductory physics problems, it is still a problem that we would want students to be 
able to solve; reform-oriented physics classes often ask questions such as this (e.g. 
Redish & Hammer, 2009).  Moreover, we believe that this problem’s conceptual 
shortcut afforded a way to investigate differences in how students process 
mathematical equations in problem solving; we suspected that blended processing 
would contribute to finding the shortcut.  Although blended processing is not 
explicitly sought in most textbook physics problems, the opportunistic use of such 
reasoning when it is possible is an aspect of problem-solving expertise, as argued 
above. In asking the Two Balls Problem, we hoped to elicit data on whether and how 
students perform blended processing. 
 

Analysis Phase 1: Alex and Pat 
We began with fine-grained, qualitative analysis of Alex’s and Pat’s 

approaches to the Two Balls Problem and their explanations of the velocity equation, 
v = v0 + at. Our goal was to characterize how the two subjects were conceptualizing 
the equation and its role in problem solving. 

 
Phase 1a: Two Balls Problem (prompt 2) 

To start, we looked at video and corresponding transcript of the two subjects’ 
responses to the Two Balls Problem (prompt 2). In trying to characterize how they 
were thinking about and using the velocity equation, we analyzed the solutions they 
were speaking and writing while thinking aloud. However, other markers of their 
thinking, such as word choice, pauses, and speech rhythm also informed our 
interpretations. Although these markers are discussed by the discourse and framing 
analysis literature, (Gee, 1999; Tannen, 1993), we do not claim to be doing discourse 
or framing analysis.  
 After formulating possible characterizations, we performed a line-by-line 
analysis through this particular section of the transcript (response to prompt 2) for 
confirmatory and/or disconfirmatory evidence. In this way we refined and narrowed 
down the plausible characterizations of how Alex and Pat were thinking about the 
equation (Miles & Huberman, 1994).  
 
Phase 1b: the velocity equation (prompt 1) 

With Alex and Pat, we had reached tentative consensus in phase 1a about how 
they were thinking about and using the velocity equation in solving the Two Balls 
Problem (though with Pat, we lacked evidence to decide between two subtly different 
interpretations). We then analyzed their responses to prompt 1, which asks how they 
would explain the velocity equation to a friend, in order to look for confirmatory or 
disconfirmatory evidence for our phase 1a interpretation. Using the same analytical 
tools as in phase 1a, we tried to characterize how they were thinking about the 
equation in the context of explaining it. We then compared our characterizations to 
what we had found in phase 1a. As discussed below, the alignment was strong. By 
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providing detailed analysis below, and also the complete transcript (at 
http://hdl.handle.net/1903/12947), we give readers the opportunity to check if we 
matched up our characterizations in phase 1a and 1b when it was not warranted. 
 

Analysis Phase 2: Looking at Other Students 
Although the literature has not documented Pat-like blended processing of 

equations, our experiences as physics instructors and our subsequent interviews led us 
to think his reasoning might not be idiosyncratic. Furthermore, while the presence of 
blended processing distinguishes Pat’s reasoning from Alex’s, other students might 
not fall so cleanly on one side of this distinction or the other.  

To explore these issues, we analyzed the responses of the 11 other students we 
interviewed (besides Alex and Pat). Specifically, the first and second author 
independently coded whether each student (1) used blended processing to find a 
shortcut solution to the Two Balls Problem, either initially or in response to our 
follow-up prompt asking if the problem could be solved without plugging in numbers; 
and (2) gave an explanation of the velocity equation that combined the symbol 
template with a conceptual schema — i.e., a symbolic forms-based explanation. The 
two independent coders initially agreed on 9 of 11 codes for code 1 and on all 11 
codes for code 2.  
 Because the number of students in this study is small, we are not aiming to 
make statistically significant claims about patterns of reasoning.  We use these data 
instead to bolster our arguments that blended processing is a useful analytical lens for 
understanding students’ reasoning and a feasible instructional target.   
 

RESULTS OF ANALYSIS PHASE 1a: THE TWO BALLS PROBLEM 

How Alex Used the Velocity Equation While Solving the Two Balls Problem 
Alex solved the problem with a numerical calculation 

Alex started by drawing a diagram of the two balls and labeling their speeds 
(figure 3.1). After deciding to use the velocity equation to solve this problem, Alex 
paused and remarked that she did not have a value for a for the equation, v = v0 + at. 
She realized that a should be 9.8 and wrote this value in her diagram.  The 
interviewer interjected and said that she could use 10 if she wanted, and Alex 
responded that using 10 is probably easier. She then explicitly solved for the 
velocities of the thrown and dropped balls after five seconds and wrote down the 
difference. Figure 3.1 shows all of her work4. 

 

                                                
4 We note that Alex incorrectly labels the acceleration of the dropped ball with units of m/s instead of 
m/s2.  However, we do not focus on this mistake because it does not propagate into her manipulation 
of the equations, which is the focus of our analysis. 
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Figure 3.1: Alex’s written work on the Two Balls Problem

 
 

 After working out the speeds of the two balls to be 50 m/s and 52 m/s, Alex 
explained her thought process: 

A31 Alex: …Ok, so after I plug this into the velocity equation, I use the 
acceleration and the initial velocity that’s given, multiply the 
acceleration by the time that we’re looking at, five seconds, and then 
once I know the velocities after five seconds of each of them, I subtract 
one from the other and get two. So the question asks “is it more than, 
less than, or equal to two?” so I would say equal to two. 

(“A31” refers to the 31st conversational turn in the interview with Alex.)  
 In this segment, Alex followed a set of steps similar to the ones advocated in 
research-based problem-solving strategies: draw a picture of the situation (which can 
include labeling known values), choose the equation relevant to the physical situation, 
and calculate the desired unknowns to answer the question. Alex executed this 
procedure smoothly, with the only pause coming when she considered the value of 
the acceleration. We tentatively conclude that, during this segment, Alex used the 
velocity equation as a tool for numerical computation.
 
Alex exhibited hints of conceptual reasoning but not stably integrated with the 
velocity equation 
 After Alex gave her solution to the Two Balls Problem, the interviewer asked 
if someone could have answered the question without explicitly solving for the 
velocities of both balls. We designed this follow-up prompt to get at whether students 
(i) might have implicitly used blended processing in a way that their think-aloud and 
written solution did not reveal, or (ii) might get cued into blended processing by this 
prompt.  

Alex’s first answer was yes, but when asked to elaborate, she seemed unsure:
 

A35 Alex: Well, I’d have to think about it, since you’re dropping one and 
throwing one.  If you’re, I mean I guess if you think you’re throwing one 
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2 m/s and the other has 0 velocity since you’re just dropping it, its only 
accelerating due to gravity, you can just say that since you know one is 
going at 2 m/s, it’s going to get there 2 m/s faster, so 5 seconds faster, it 
would get there 2 seconds, er, it’s going 2 m/s faster, I guess. 

A36  Interviewer: OK. So, they would say that you threw one, so this was 
getting 2 m/s faster.  So what happens 5 seconds later? 

A37  Alex: Uh, it’s going, uh, I don’t know. (laughs) 
 
As the interviewer followed up, Alex continued to sound less and less sure about her 
answer. Finally, she changed her mind: 

A51 Interviewer: So you’re saying that they need not have actually plugged 
in the numbers?  Is that what I’m hearing? 

A52 Alex: No, I think you’d have to plug in the numbers because, uh, I mean 
you just would to be sure.  I guess you, I don’t think you can just guess 
about it. 

 
 In line A35, Alex attempted to show how the Two Balls Problem can be 
answered without an explicit calculation. One interpretation of this exchange is that 
she never came up with a firm conceptual explanation for how to solve the problem 
without calculations, as evidenced by her mixing up the units (“...so 5 seconds faster, 
it would get there 2 seconds, err, it’s going 2 meters per second faster...”). A different 
interpretation is that she was trying to express the following conceptual argument: 
since both balls are accelerating due to gravity only, both balls will gain the same 
amount of speed, so the thrown ball will be traveling “2 meters per second faster” 
(line A35). Either way, she backed off this line of reasoning in lines A37 and A51, 
possibly because she felt on the spot trying to answer the interviewer’s questions 
(evidenced by her greater hesitancy than when she presented her original solution). 
Our point is that, either way, any conceptual reasoning in line A35 was not stably 
integrated with Alex’s mathematical, symbolic reasoning. Evidence for this lack of 
stable integration comes from (i) the lack of explicit mention of the equation or 
implicit reliance on its structure in line A35, and (ii) her view in line A51 of the 
calculation as a way to “be sure” of non-calculation-based reasoning, which is more 
of a “guess” than something reliably connected to the calculation in some way. 
 In summary, the procedural way in which Alex solved the problem, along 
with the lack of a stable connection between the equation and conceptual reasoning 
evidenced by her follow-up comments, points us toward the conclusion that Alex, in 
this context, was viewing the velocity equation as a computational tool for calculating 
a final velocity given an initial velocity, an acceleration, and a time. We will put this 
initial interpretation to the test below when we analyze how Alex explained the 
velocity equation. But first, to emphasize the contrast between Alex and Pat, we 
present Pat’s solution to the Two Balls Problem, which he solved without calculating 
the final velocity of either ball.  
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How Pat Used the Velocity Equation While Solving the Two Balls Problem 
Pat solved the problem without plugging in numbers 

Like Alex, Pat also turned to the velocity equation. However, he used it very 
differently from the way Alex did: 

P41 Pat: …Well, the first thing I would think of is the equations. The 
velocity, I suppose, is the same equation as that other one [the velocity 
equation he had just explained in prompt 1], and I’m trying to think of 
calculus as well and what the differences do. So the acceleration is a 
constant and that means that velocity is linearly related to time and 
they’re both at the same, so the first difference is the same. I think it’s 
equal to two meters per second.  

 
Later, when asked by the interviewer how he got this answer, Pat elaborated 
on his solution a little more: 

 
P45 Pat: So the first differences are the same. 
P46 Interviewer: Mhm. 
P47 Pat: And if the first differences are the same then the initial difference 

between the two speeds should not change. 

When asked, Pat explained that the term “first differences” comes from his high 
school algebra class, where sets of data points would be analyzed by taking “delta y 
over delta x,” which is called the “first difference.”  So, “first difference” connects at 
least roughly to the notion of slope. 
 A few moments later, Pat stated that “there’s a couple of methods of 
attacking” the problem if he gets stuck. Pat then further discussed different ways to 
solve the Two Balls Problem: 

P61 Pat: So if I started from thinking about the equations and I’m not quite 
sure whether the velocities are changing at the same rate, then like 
sometimes I’ll use several [solution methods] and see if they’re 
consistent.  Then I could switch to thinking about the derivatives of the 
velocity and I’ll think, ok, so the initial conditions are off by 2 and then 
the velocities are changing at the same rate so that should mean they stay 
at 2… 

 
 Pat did not follow a set of steps similar Alex’s.  Instead, his solution is a 
shortcut around an explicit calculation: since the velocities of the two balls change at 
the same rate, the difference between those two velocities stays the same. Notably, 
the velocity equation (v = v0 + at) plays a role in his shortcut, but his reasoning is not 
purely symbolic. Pat started his solution (line P41) by referring to the velocity 
equation, but he used it to point out that “velocity is linearly related to time” which 
led him to say that the “first difference” is the same. Since “first difference” is similar 
to the idea of slope, this aligns with his reasoning in line P61, where he offered a 
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similar argument in terms of derivatives and explicitly stated that the velocities are 
changing at the same rate. 
 We use these case studies of Alex’s and Pat’s reasoning to make two points.  
First, although both Alex and Pat reasoned productively and correctly solved the Two 
Balls Problem, Pat’s style of reasoning is not currently described in the problem 
solving literature. Illustrating this productive reasoning can help expand our 
understanding of how students approach similar problems.  

Second, we view Pat’s reasoning as aligning better with expert problem 
solving than Alex’s more procedural approach does. Pat saw multiple solution paths, 
which he related to one another, while Alex saw just one. Pat flexibly used the 
available information, which is a component of what Hatano & Inagaki (1986) call 
“adaptive expertise,” while Alex’s approach appeared more step-by-step. Also, Pat 
connected conceptual meaning to mathematical formalism: the idea that if two things 
change at the same rate, then the difference between them stays the same. As 
Wertheimer (1959), Arcavi (1994), and Redish & Smith (2008) argue, such blended 
processing indicates a deeper, more expert understanding than simply using the 
formalism. Other researchers also emphasize the deeply connected nature of expert 
knowledge (Chi et al., 1981, 1982; Reif & Heller, 1982; Reif, 2008), though they do 
not explicitly discuss connections between informal conceptual knowledge and 
mathematical formalism. Linking conceptual reasoning to mathematical formalism as 
Pat does — using blended processing of the velocity equation — is arguably an 
example of forging or exploiting such connections. These connections can support 
quick and robust solutions through the flexible coordination of multiple strands of 
reasoning, as Pat illustrates. 
 Although we have hypothesized that Pat was reasoning by connecting a 
mathematical equation to an intuitive conceptual schema (i.e., “if two things change 
by the same amount, the difference between them stays the same”), we see at least 
one plausible alternative account.  It is possible that Pat’s reasoning was driven by a 
formal rule of mathematical operations and objects, such as “if the derivative/first 
difference of two quantities is equal, then the difference between them doesn’t 
change.” Our phase 1b analysis of Pat’s explanation of the velocity equation will help 
distinguish between these possibilities, in the end favoring our initial interpretation 
that Pat was blending conceptual and symbolic reasoning. 

 

RESULTS OF ANALYSIS PHASE 1b: EXPLAINING THE 
VELOCITY EQUATION 

So far, we have tentatively concluded that in the context of the Two Balls 
Problem, Alex viewed the equation as a computational tool while Pat was more 
flexible, reasoning with the equation to find a conceptual shortcut. To find 
confirmatory or disconfirmatory evidence, we now look to Alex’s and Pat’s responses 
to prompt 1, which asked how they would explain the velocity equation to a friend. 
We show how the absence of symbolic forms-based reasoning in Alex’s explanation 
and the presence of such reasoning in Pat’s explanation help us understand the 
differences in their approaches to the Two Balls Problem. 
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Alex Explains the Velocity Equation as a Computational Tool 
 Alex initially seemed puzzled by this question but eventually answered: 

A10 Alex:  Umm, Ok, well, umm, I guess, first of all, well, it’s the equation 
for velocity.  Umm, well, I would, I would tell them that it’s uh, I mean, 
it’s the integral of acceleration, the derivative of {furrows brow} 
position, right?   So, that’s how they could figure it out, I don’t know.  I 
don’t really {laughs}, I’m not too sure what else I would say about it.  
You can find the velocity.  Like, I guess it’s interesting because you can 
find the velocity at any time if you have the initial velocity, the 
acceleration, and time… 

Alex’s explanation here has two main parts. First, the velocity equation is defined 
through its relation to other kinematic equations; it is the integral of acceleration and 
the derivative of the position equation. Second, the equation can be used as a 
computational tool: to calculate the velocity at some time if you know the other 
values in the equation.  

The interviewer then asked if that is what she would have said on an exam. 
She said “no” and elaborated: 

A14 Alex: Um, well, it depends on what it was asking, ’cause I feel like your 
question’s kind of vague, but, I mean, I would probably just say ‘it’s the 
velocity equation’ {nods and laughs}. I mean, if it was a more specific 
question, I could probably like, elaborate, I guess. 

 Finally, Alex was asked to explain the equation to a 12-year old who knows math 
but does not really know physics. 
 

A16 Alex: Well, these two sums will tell you how fast something is going.   
If you know how fast it’s going when it first starts and after it first starts 
moving and you know its speed when it first starts moving, and you 
know a certain point in time.  You’re looking at a certain point in time at 
which the object is moving, and you know how fast it’s changing its 
speed, you can find how fast it’s moving at that time, or you can find out 
the acceleration from it if you know how fast it’s going at that time. 

 
 Unlike her response to a friend from class or on a test, Alex now explicitly 
described the mathematical variables in terms of physical ideas:  “if you know how 
fast it’s going when it first starts [v0]...and you know a certain point in time [t]... and 
you know how fast it’s changing its speed [a]…you can find out... how fast it’s 
moving at that time [v].”   

Yet, even in light of this conceptual interpretation of the variables, there is 
evidence that Alex’s explanation of the equation as a whole is still as a computational 
tool, as in line A10: if you know any three variables, you can solve for the fourth.  In 
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line A16, Alex explained that you can solve for v if you know v0, a, and t.  
Alternatively, she stated, you can solve for a if you know v.  This interpretation is 
coherent with how she actually used the velocity equation to compute the final 
velocities in the Two Balls Problem. 

Although Alex attached physical meaning to the individual variables in the 
velocity equation, Alex’s explanation does not include a symbolic forms-based 
interpretation of the velocity equation as a whole. There is no evidence of an intuitive 
conceptual schema deeply associated with the symbol template reflecting the 
structure of the velocity equation (  =  + Δ). The following analysis of Pat’s 
explanation of the equation will provide a contrasting case to clarify what evidence 
we use to make claims about the presence of a symbolic form in a student’s 
reasoning.   
 

Pat Connected the Equation to a Physical Process 
When asked to explain the equation to a friend from class, Pat started by 

looking at the units and meaning of the variables: 
 

P2 Pat: Well, I think the first thing you’d need to go over would be the 
definitions of each variable and what each one means, and I guess to get 
the intuition part, I’m not quite sure if I would start with dimensional 
analysis or try to explain each term before that. Because I mean if you 
look at it from the unit side, it’s clear that acceleration times time is a 
velocity, but it might be easier if you think about, you start from an 
initial velocity and then the acceleration for a certain period of time 
increases that or decreases that velocity.  

 
Pat started with the definitions of each variable, as Alex described in line A16;  
however, he then provided some preliminary evidence of interpreting the equation in 
terms of a symbolic form we now introduce, called Base + Change (Sherin, 2001, 
p.514).  In Base + Change, the symbol template  =  + Δ is linked to the intuitive 
conceptual schema that the final amount is the initial amount plus the change in that 
amount. For example, a careful consumer might have this symbolic form active in her 
reasoning while balancing her checkbook. 
 In line P2, Pat provided glimmers of evidence that he was relying upon a Base 
+ Change interpretation of the equation as a whole rather than just interpreting the 
individual variables.  First, he signaled a shift away from discussing the meaning of 
the individual variables when he referred to getting to “the intuition part.” Then, by 
doing dimensional analysis of the term at, he indicated that he is starting to think of at 
not only as a product of two different quantities, but as a single term with the same 
units as v0, which hints at reasoning at the level of the symbol template  =  + Δ. 
Finally, he transitioned from talking about the individual terms in the equation into an 
overall “story” of a physical process that the equation represents: “...you start from an 
initial velocity and then the acceleration for a certain period of time increases or 
decreases that velocity” (emphasis ours). Part of the evidence for this transition is a 
shift in Pat’s narrative perspective. Up until this point, Pat had been speaking from 
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the perspective of a person working with the equation: how “you” or “I” would use or 
explain the equation.  At the transition, the “you” shifted to an object or person that 
starts with an initial velocity and then undergoes a change in that velocity. This shift 
in perspective suggests a shift in meaning, from his previous ideas about the 
definition of variables and dimensional analysis to something else.   

This “something else” for Pat relied upon the conceptual schema associated 
with the Base + Change symbolic form: the final amount (in this case, final velocity) 
is the initial amount (initial velocity) plus the change to that initial amount (due to 
acceleration).” Pat’s reliance on this conceptual schema would be solid evidence of 
symbolic forms-based reasoning except that it is not yet absolutely clear whether Pat 
was connecting this conceptual schema to the symbol template of the equation.      
 After Pat discussed how v0 or a can take on positive and negative values, the 
interviewer asked Pat what he meant by “the intuition part” in line P2: 

 
P9 Interviewer: So right when you started you said something about “well, 

then from the intuitive side.” 
P10 Pat: Yeah, the problem is dimensions are just numbers really, or units, 

and it doesn’t really explain what’s going on in the motion. 
… 
P15 Interviewer: Ok, so how would you explain it intuitively? 
P16 Pat: I would say that an acceleration is the change in velocity, so you 

start from the velocity you have in the beginning and you find out how 
the acceleration affects that velocity. Then that would be the significance 
of each term. 

 
 The first sentence in line P16 reiterates the “story” in line P2.  It is the second 
sentence, “[t]hen that would be the significance of each term,” that provides solid 
evidence for the presence of the Base + Change symbolic form in Pat’s reasoning.  
Whereas before we could not be sure the idea of “final equals initial plus change” was 
connected to the symbol template, here we interpret Pat’s explanation as saying that 
“the velocity you have in the beginning” and “how the acceleration affects that 
velocity” correspond to the terms v0 and at, respectively. This corresponds to a Base 
+ Change symbolic form interpretation, where v0 is the base velocity and at is the 
change to that base velocity.   
 This explanation contrasts with Alex’s. She attached conceptual meaning only 
to the individual variables in the equation.  Here, Pat interpreted the whole equation 
as representing a process of starting with a base amount and changing that base by 
some value to obtain the final amount. 
 This analysis supports and refines our analysis from phase 1a, where we 
interpreted Pat’s reasoning as blending conceptual reasoning with formal 
mathematics.  In phase 1a, we highlighted an alternative possibility: that Pat’s 
reasoning was driven by a formal rule rather than an intuitive schema rooted in a 
conceptual understanding of the physical process. Here, however, we see that Pat 
viewed the velocity equation as expressing an intuitive conceptual schema connected 
to his conceptual understanding of the physical process of speeding up, and 
specifically that his reasoning is rooted in the Base + Change symbolic form. Pat’s 
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initial solution to the Two Balls Problem, as discussed above, came from thinking of 
the formal equation (lines P41 and P61) and relies on the conceptual reasoning that 
since the initial difference in velocities is 2 meters per second, and because both balls 
undergo the same change in velocity, the final difference in velocities is still 2 meters 
per second. Although it is unclear whether he was applying Base + Change to the 
individual velocities of each ball or directly to the difference in those velocities, he 
was connecting the equation — its general structure and its linearity — to the 
intuitive schema of “final equals initial plus (linear) change.” Pat’s explicit 
explanation of the velocity equation with Base + Change provides confirmatory 
evidence of blended processing in his solution to the Two Balls Problem.5  
 

Summary of Differences Between Pat’s and Alex’s Views of the Velocity 
Equation 

Looking across the first two prompts in the interviews (“explain the velocity 
equation” and “solve the Two Balls Problem”), we see a key difference in how Alex 
and Pat connected their conceptual understanding of a physical situation to an 
equation. Alex’s connection was at the level of individual variables, while Pat 
additionally saw the equation as-a-whole expressing an intuitive conceptual idea 
about the physical process: the velocity you start with plus the velocity you gain (or 
lose) due to acceleration over a certain period of time is the velocity you end up with. 
We have also argued that this difference between Alex’s and Pat’s conceptualizations 
of the equation offers explanatory power for many of the differences in their 
responses to those two prompts, including Alex’s explicit calculation and Pat’s 
blended processing. 
 We are not claiming that Alex does not “have” the Base + Change symbolic 
form, or symbolic forms in general, in her repertoire of cognitive resources. Indeed, 
she showed evidence of blending symbolic and conceptual reasoning later in the 
interview. We are only claiming that, for whatever reasons, the Base + Change 
symbolic form was not tied to the velocity equation in Alex’s responses to the first 
two prompts.  

Additionally, our point is not only the specific form of Pat’s blended 
processing, but also that Pat productively blended conceptual reasoning with 
mathematical formalism at all to inform his use of equations during problem solving. 
Throughout the interview, Pat blended conceptual and formal mathematical reasoning 
in ways that we sometimes, but not always, identify as reflecting the use of a 
symbolic form. 
 

                                                
5 It is possible that Pat’s symbolic forms-based interpretation of the velocity equation was not active in 
his reasoning when he solved the Two Balls Problem.  Indeed, several of our interviewees did not 
reason consistently across the two prompts. However, the coherence of Pat’s reasoning across the two 
prompts suggests, though does not prove, that he was interpreting the velocity in the same way in both 
segments of the interview. 
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RESULTS OF ANALYSIS PHASE 2: LOOKING AT OTHER 
STUDENTS 

To see if Pat represented an idiosyncratic case and if the presence or absence 
of blending conceptual and formal mathematical reasoning is a useful distinction 
more broadly, we coded the remaining 11 interviews (leaving out Alex and Pat).  
Specifically, we coded whether each student (1) used blended processing to find a 
shortcut solution to the Two Balls Problem, either initially or in response to our 
follow-up prompt asking if the problem could be solved without plugging in numbers; 
and (2) gave an explanation of the velocity equation that combined the symbol 
template with a conceptual schema — i.e., a symbolic forms-based explanation.   
 

Other Examples of Blended Processing 
Through this coding, we showed that Pat’s blended reasoning is not 

completely idiosyncratic. Six of the eleven other students showed evidence of either a 
symbolic forms-based explanation of the velocity equation or a blended processing 
shortcut on the Two Balls Problem.  Since we find few examples of such reasoning in 
the literature, we now present examples from those six students.  First, we present 
two examples of blended processing on the Two Balls Problem, starting with Meg: 
 

[After Meg answers the Two Balls Problem simply using the velocity 
equation to compute the solution through symbol manipulation, the 
interviewer asks her if she was surprised by that answer.] 
Meg: I expected it to be two, because I just I remember something, you know, 
that if the acceleration will be the same, gravitational acceleration is the same, 
so what's, in my mind I just reason out that, you know, if one has more of the 
speed than the other, because the change is the same.  So then it's still going to 
be, the difference is still going to be the same.  If you're changing both by the 
same amount, then in the end one is going to have the same amount more [that 
it does initially] than the other. 
 

Here, Meg used the idea that because the balls are both “changing [speed]...by the 
same amount,” the “difference [in speeds] is still going to be the same” as it was 
initially. 
 Next, we present Sam’s reasoning: 

 
Sam: There's no force acting on them after they have gone, they, one just has 
initial speed, so we know that, you know, the acceleration, um, you know, 
multiplied by, you know, they're both in there for, both um subjected to 
gravity [laughs] for five seconds, so they will both have the, you know, same 
accelera-, they're exposed to the same acceleration for the same amount of 
time, which would give, you know, an additional velocity, um, of the same.  
Um, however, you know, we could have this equation, you know.  v0, well 
one, we have an initial velocity of two, and one, we have an initial velocity of 
zero, so we know that one already is going to be experiencing, you know, 
faster, er well it will be going faster for two seconds, just before we even start. 
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Even though at the end Sam stated that one ball will be “going faster for two 
seconds,” his previous utterances suggest that he meant that the thrown ball will be 
traveling two meters per second faster at five seconds. His argument, though perhaps 
harder to follow than Meg’s, is substantively similar: Because both balls are “exposed 
to the same acceleration for the same amount of time,” they both get “an additional 
velocity” that is “the same.”  Therefore, since for “one [ball], we have an initial 
velocity of two, and [for the other ball], we have an initial velocity of zero,” the 
difference in speeds remains two.  Supporting this blended-processing interpretation 
of Sam’s explanation is his follow-up remark after plugging through the equations:  
 

Sam: You know, even before doing any math, like I said before, we already 
know that this is going to be, well it's going to be, not faster, but a quantity of 
two meters per second more regardless of what the acceleration is or time. 

 
So, in both Meg’s and Sam’s reasoning, we see similarities to the blended processing 
described in Pat’s solution: since both change by the same amount, the final 
difference equals the initial difference.   
 Next, we present two students’ explanations of the velocity equation that we 
view as using the Base + Change symbolic form.  We start with Meg:  

 
 [Meg uses the example of a falling object to explain the velocity equation.] 

Meg: So the final velocity, the velocity that it hits the ground with is related to 
the initial velocity because the object has an initial velocity and if you think 
about it, if the object is moving and it's constantly changing velocity…You 
can start off with the initial velocity and then you multiply the change in 
velocity with time, how much time it took and that should theoretically give 
you how much the velocity has changed, correct?  So if you, so then if you 
have the initial velocity and you have how much the velocity changed, um, 
and you add those two together that should, in theory, give you the final 
velocity. 

 
Stan: …Acceleration is a rate of change in speed and t is the time. at, like the 
whole thing, is what you changed in a period, so I'll say that v initial is the 
speed that you already had, plus the speed that you changed is the speed that 
you have right now. 
 

In these two representative cases, the students interpreted the at term in the equation 
as the change in the initial velocity, which when added to the initial velocity gives the 
final velocity – which is typical of how the Base + Change symbolic form is applied 
to the velocity equation (Sherin, 2001, p.514) 
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Is Blended Processing a More Broadly Applicable Distinction? 
On the Two Balls Problem, three students used blended processing, seven did 

not, and one was ambiguous.  In explaining the velocity equation: six students used 
symbolic forms-based reasoning and five did not6.   

As mentioned above, each of two researchers independently produced 22 
codes (two codes each for 11 students). They agreed on 20 of the codes.  One of these 
disagreements was quickly resolved through discussion. The other disagreement, on 
one student’s response to the Two Balls Problem, was deemed “ambiguous,” because 
the evidence could be used to both support and refute the presence of blended 
processing. This agreement between independent coders and the small number of 
uncodable responses (one out of 22) suggest that the presence/absence of blended 
conceptual and formal mathematical reasoning is a meaningful distinction for other 
students in our study and plausibly, for larger populations as well. 

 

DISCUSSION: REVISITING WHAT COUNTS AS PROBLEM-
SOLVING EXPERTISE 

We now argue that Pat’s (and other students’) productive use of blended 
processing gives us reason to amend the common view of what constitutes good 
problem solving in physics, and hence, of what strategies instructors should nurture in 
their students.  

 

Most Research-based Problem-Solving Strategies Do Not Include Blended 
Processing 

As discussed in the literature review, research on expert problem solving and 
instructional problem-solving procedures for fostering such expertise have focused on 
the finding that novices jump right into manipulating equations without a physical 
understanding of the problem. Without disputing the importance of research building 
on this finding, we note that the problem-solving procedures studied and advocated 
by researchers and instructors do not consider different ways that equations can be 
used to solve a problem. These procedures typically conceive of the mathematical 
processing step as manipulating symbols until you obtain an unknown (Giancoli, 
2008; P. Heller et al., 1992; Huffman, 1997; Van Heuvelen, 1991a, 1991b; Young & 
Freedman, 2003). However, blending symbolic manipulations with conceptual 
reasoning when possible is a part of problem-solving expertise, because such 

                                                
6 Although our sample size was not large enough to do a correlational study, readers may be interested 
to know how many students, like Pat, both answered the Two Balls Problem with blended processing 
and explained the velocity equation with symbolic forms-based reasoning; and likewise, how many 
students answered both questions as Alex did.  Of the 10 other unambiguously coded students, three 
students solved the Two Balls Problem with blended processing.  All three of these students also gave 
a symbolic forms-based explanation of the velocity equation to a friend.  Of the seven students who did 
not solve the Two Balls Problem through blended processing, five did not give a symbolic forms-based 
explanation of the velocity equation, while two did. Future work might sample larger populations to 
generalize a connection between a Base + Change symbolic forms-based explanation of the velocity 
equation and blended processing on the Two Balls Problem.   
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reasoning is adaptive and flexible and because it leads to quicker, more generalizable 
solutions.   
 Our contribution to this line of research is to illustrate in some detail this 
alternative way of using equations in problem solving. We contrasted students who 
did and did not incorporate conceptual reasoning into their mathematical processing. 
Through these qualitative case studies, we made the case that blended processing was 
demonstrably productive for the students who used it in solving the Two Balls 
Problem: they reached the solution quickly, without having to do extensive 
calculations.  

Moreover, for the physics education research community, which has 
emphasized the importance of conceptual understanding (Elby et al., 2007; Hestenes 
et al., 1992; McDermott, 1991), the blended processing in students’ solutions to the 
Two Balls Problem highlights an additional way in which conceptual reasoning can 
enter quantitative problem solving: between deciding which equations to use and 
evaluating the final answer.   For these reasons, we urge both researchers and 
instructors to revisit the standard problem-solving procedures discussed above. 
Perhaps, instead of encouraging students (implicitly or explicitly) to treat the 
processing of equations as symbol manipulation, we should help students learn to 
spot and exploit opportunities where blended processing can help them find shortcuts 
and gain a deeper understanding of the physical meaning of their solutions.   

 

Two Examples of Symbolic Forms as an Instructional Target 
Our analysis also helps us refine our vague instructional suggestion to “teach 

students to blend conceptual and symbolic reasoning” into something more concrete. 
Symbolic forms-based reasoning, we argue, is a productive and feasible target of 
instruction, and techniques for helping students engage in such reasoning exist. Some 
researchers (such as Redish and Hammer (2009)) discuss instructional strategies 
intended to help students see the conceptual ideas in equations, yet they provide no 
specific examples. To build on this literature, we provide two concrete examples from 
our teaching. 
 The first example comes from a large lecture, undergraduate, introductory 
physics course. The instructors (the third author, Gupta, and another colleague7) use a 
modified treatment of a classic question in order to emphasize the symbolic forms-
based reasoning implicit in the usual explanation.  The question is this: A ranger aims 
a tranquilizer gun directly at a monkey, who is hanging from a branch. At the moment 
the gun is fired, the monkey drops from the branch. Will the tranquilizer dart hit the 
monkey?  
 The answer is that the dart hits the monkey, even though the monkey drops.  
Here is the usual reasoning.  First, imagine the same scenario but with no 
gravitational force: The dart travels in a straight line and hits the motionless monkey.  
Now, consider how “turning on” gravitational force modifies this scenario. While the 
dart travels to the monkey, the monkey falls a certain distance; but during this time, 
the dart also falls by the same distance below that straight line — below where it 

                                                
7 This instructional modification is courtesy of David Hammer, the other instructor for the course. 



 

 48 
 

would have been if there was no gravitational force.  Usually, instructors use this 
scenario to illustrate the independence of the horizontal and vertical components of 
motion; the vertical distance the monkey falls equals the vertical distance the dart 
“falls” below where it would have been in the absence of gravity, because the dart’s 
horizontal motion does not affect the vertical displacement to its motion caused by 
the gravitational force.   
 Building on this conceptual insight, the instructor highlights the Base + 
Change symbolic form that is implicit in this reasoning. Specifically, the instructor 
emphasizes that the height of either the monkey or the dart at time T (when the dart 
reaches the monkey) can be written as the equation in Fig. 3.2.  The instructor 
discusses how this equation “says” that the final height equals the base height (in the 
absence of gravitational force) minus the change in height due to gravitational force.  
Since the base heights are the same for the monkey and dart (i.e., the dart would hit 
the monkey in the absence of gravitational force), and because the height of each 
object changes by the same amount due to the gravitational force, –(1/2)gT2, the final 
heights are the same for each.  So, the dart hits the monkey.  In this way, the 
instructor illustrates the Base + Change symbolic form and shows how it affords a 
calculation-free shortcut highlighting the connection to the underlying physical 
processes in this scenario.   
 

 
Figure 3.2: The equation describing the height of the dart and of the monkey. 

 
 Our second instructional example comes from the algebra-based introductory 
physics course described by Redish & Hammer (2009).  In the discussion sections of 
this course, students engage in small-group collaborative learning using “tutorials,” 
which are guided-inquiry worksheets (Elby et al., 2007). The Momentum Tutorial 
leads students to figure out the formula for “oomph,” which turns out to be the 
physics concept of momentum, using their intuitive ideas of motion. First, students 
consider a rock and pebble thrown at the same speed.  The tutorial asks, “Which one 
has more oomph?” It goes on to ask if the rock is twice as massive as the pebble, 
“intuitively, how does the rock’s oomph compare to the pebble’s oomph?” Students 
generally have no trouble formulating the idea that the more massive the rock is 
compared to the pebble, the greater its “oomph” as compared to the pebble’s, 
sometimes expressing their ideas qualitatively, sometimes in more mathematical 
terms (e.g., “proportional”). 
 Next, the tutorial asks students to consider two identical bowling balls rolling 
at different speeds.  If the faster ball is exactly 7 times as fast as the slower one, 
“intuitively, how does the faster ball’s oomph compare to the slower ball’s oomph?” 
Again, most students find it obvious that the faster ball has more oomph and that 7 
times faster probably corresponds to 7 times as much oomph.   
 Finally, this section of the tutorial asks,  
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The physics concept corresponding to oomph is momentum. Building 
on your above answers, figure out a formula for momentum (oomph) 
in terms of mass and velocity.  Explain how the formula expresses 
your intuitions from... above.   
 

We view this tutorial as helping students construct and/or use the Prop+ (positive 
proportionality) symbolic form (Sherin, 2001, p. 533), which combines the “direct 
proportionality” symbol template with the intuitive conceptual schema of one 
quantity increasing if another one does through a cause-and-effect relationship. 
 These instructional examples echo prior research suggesting that symbolic 
forms-based reasoning is something that can be scaffolded in instruction. For 
instance, Izsák (2004) documented eighth graders using Base + Change to construct a 
mathematical equation after interacting in a rich learning environment for several 
hours. Almost all of Sherin’s undergraduate subjects displayed evidence of using 
symbolic forms (Sherin, 2001, 2006). Tuminaro and Redish (2007), studying students 
in a physics course for undergraduate life science and non-science majors, 
documented the use of symbolic forms-based reasoning during problem solving. For 
these reasons, we believe that some students’ failure to blend conceptual and 
symbolic reasoning during mathematical processing reflects not a lack of ability, but 
a lack of scaffolding. As discussed above, the standard problem-solving procedures 
taught in textbooks and endorsed by researchers fail to support such scaffolding.8 
Indeed, such procedures may hinder students’ development and use of symbolic 
forms, by implicitly encouraging students to view equations merely as tools for 
computation and symbol manipulation. 
 Nonetheless, we see a potential downside in recommending that symbolic 
forms become an instructional target. As an anonymous reviewer noted, constraining 
students to expert behavior may not be the road to developing expertise.  We do not 
want the use of symbolic forms to become simply another step in problem-solving 
strategies, instantiated by making students explain the “symbolic form-based 
meaning” of each equation they use in a problem, because one consequence could be 
that symbolic forms become required elements of problem solving at the expense of 
being a tools that help students make sense of equations.  We queasily 
imagine students flipping through “symbolic forms sheets” along with the standard 
formula sheets sometimes allowed in exams.  

                                                
8 While research has shown that students exhibit symbolic forms-based reasoning in ways consistent 
with existing problem solving schemes, such schemes do not explicitly support symbolic forms-based 
reasoning.  In translating a physical scenario into equations, students are encouraged to use formal 
physics concepts to select from equations they already know, not to use intuitive schema to invent or 
interpret equations. While productive, this kind of translation sidesteps the blending of conceptual and 
formal mathematical reasoning.  And in checking their mathematical answers, students are encouraged 
to check if a numerical answer is physically plausible, which taps into intuitive knowledge but not into 
intuitive conceptual schemata. To be fair, however, students are also sometimes encouraged to check 
the functional relations in their final symbolic expression for plausibility, which can definitely involve 
the use of symbolic forms corresponding to direct and inverse proportionality. We advocate engaging 
students in this kind of answer checking more often. 
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We want students to use symbolic forms not as a required "step" but as an 
organic part of authentic sense-making in which they seek coherence between 
intuitive ideas and formal representations.  For example, the momentum tutorial 
discussed above does not meet our goals if its scaffolding practically forces students 
to arrive at the correct expression for momentum, p=mv.  We would rather see some 
students generate incorrect equations, such as p = m + v or p = mv2, both of which 
capture the idea that increasing an object’s mass or speed increases its momentum. 
The presence of these incorrect guesses provides an opportunity for productive small-
group discussions about which mathematical expressions best capture the students’ 
intuitive ideas about “oomph.” This kind of authentic sense-making provides students 
the opportunity to use symbolic forms as a tool in seeking understanding, not as part 
of a rote procedure.  
 

Beyond Base + Change and Symbolic Forms: Blending Intuitive Ideas and 
Formal Representations 

Because Base +Change played a central role in our analysis of Pat’s reasoning 
and in one of our instructional examples above, a reader could conclude that we 
advocate Base + Change, in particular, as an element of problem-solving expertise 
and as an instructional target.  Admittedly, one limitation of this research is that it 
investigates a small number of students’ use of one particular symbolic form. We 
want to emphasize, however, that our argument is not specific to the Base + Change 
symbolic form. We believe that symbolic forms more generally—blends of 
conceptual schemata and algebraic symbol templates—can contribute to quantitative 
problem solving expertise. Sherin (2001) documented about 20 symbolic forms 
relevant to physics, including Base + Change, Parts-of-a-Whole, and Prop+.  
Although the Two Balls problem happened to afford blended processing using Base 
+ Change, we expect that other problems afford blended processing using other 
symbolic forms.  Future, research may investigate whether and how larger 
populations of students productively use these other symbolic forms in blended 
processing. 

More broadly, just as Base + Change is an example of a broader category 
called symbolic forms, reasoning that employs symbolic forms is an example of a 
broader class of reasoning that combines formal representations (for example, in 
science: equations, graphs, free body diagrams, Lewis structures, etc.) with informal 
knowledge derived from everyday experiences, in order to give additional, intuitive 
meaning to the formal representations.  

For example, in interpreting the force diagram in Figure 3.3, a student can 
blend her formal knowledge of force diagrams with the conceptual schema of two 
influences that precisely cancel so that there is no net outcome—the conceptual 
schema for the Canceling symbolic form (Sherin, 2001) — to quickly determine that 
the net force on the object is zero. That intuitive conceptual schema (i) allows the 
student to take a shortcut around the formal rule of summing separately over the 
horizontal and vertical forces (Fx, net = ∑Fx, Fy, net = ∑Fy), and (ii) contributes to an 
intuitive explanation of why the net force is zero, in terms of pairs of canceling forces. 
These examples illustrate our broader point that blending informal, everyday 
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knowledge with knowledge of formal representations is part of problem-solving 
expertise and is a feasible instructional target.    

 
 

 
Figure 3.3:  Free body diagram showing forces on an object.  In interpreting the diagram a student 

could draw on the intuitive idea that two opposing influences could precisely cancel so 
that there is no net outcome to arrive at the conclusion that the net force on the object is 
zero. 

 

CONCLUSION 
 A gap exists in the literature: research on quantitative problem solving has 
focused on how experts and novices select equations but not on how they use the 
selected equations to solve problems.  This paper attempts to address this gap with an 
illustrative case study showing how two students process the same physics equation 
differently.   
 Analyzing how Alex and Pat explained and used a standard kinematic 
equation, v = v0 + at, we attributed part of the difference in their reasoning patterns to 
the use or lack of use of a knowledge element called a symbolic form.  A symbolic 
form is a blend of symbolic and conceptual knowledge, a “marriage” of a symbol 
template to an intuitive conceptual schema. Pat’s use of a symbolic form enabled him 
to give an intuitive explanation of the velocity equation and to quickly find a non-
computational shortcut to the Two Balls Problem. Alex’s explanation and problem 
solving, although productive and correct, were more procedural, and her processing 
of the velocity equation was more computational. So, as we argued, Pat’s solution to 
the Two Balls Problem shows more expertise. However, it is Alex’s solution that 
aligns more closely with the standard problem-solving procedures advocated by 
researchers and taught to students. We have used this result, along with our sample 
instructional techniques, to argue that blending conceptual and symbolic reasoning 
can be a desirable and feasible instructional target. 
 Given our arguments, a researcher might take away the message that we 
advocate replacing the “mathematical processing” step in a problem solving 
procedure with a “symbolic forms-based reasoning” step. This is not what we are 
suggesting. Not all quantitative physics questions have a non-computational shortcut 
as the Two Balls Problem does. However, as we argued, a valuable piece of Pat’s 
solution to the Two Balls Problem is the adaptive expertise displayed by his 
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evaluation of multiple solution paths. Good problem solving involves making 
decisions, not just following a set procedure (Reif, 2008). Aligning with this 
argument, we support a model of expert problem solving that does not always require 
either symbol manipulation or symbolic forms-based reasoning. Instead, good 
problem solvers have these and other tools in their toolbox, and they select which 
tools to use based on the details of the problem (Reif & Heller, 1982; Reif, 2008; 
Schoenfeld, 1985, 1992). 
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Chapter 4: Connecting Epistemology to Symbolic Forms 
Use 

 

INTRODUCTION 
In a previous study, introductory physics students were asked in interview 

settings how they would explain a familiar physics equation for velocity, v = v0 + at, 
to a friend from their class (Kuo, Hull, Gupta, & Elby, 2013).  Alex explained the 
equation as a computational tool: if you know v0, a, and t, then you can calculate v.  
Pat, on the other hand, read a conceptual meaning from the structure of the equation: 
v0 is the starting velocity, at is the change in velocity from the start, and adding the 
two gives the final velocity v.   
 Alex and Pat similarly differed on how they solved a problem with that same 
equation.  After explaining the equation, they were presented with the Two Balls 
Problem: 
 

Suppose you are standing with two tennis balls on the balcony of a fourth 
floor apartment.  You throw one ball down with an initial speed of 2 meters 
per second; at the same moment, you just let go of the other ball, i.e., just let it 
fall.  What is the difference in the speeds of the two balls after 5 seconds – is 
it less than, more than, or equal to 2 meters per second? 

 
Alex approaches this problem with explicit computations, calculating the speeds of 
the balls after 5 seconds to be 50 and 52 meters per second and then subtracting one 
from the other to find that the difference remains two meters per second.  By contrast, 
Pat’s solution leverages an intuitive conceptual idea connected to the velocity 
equation.  From the equation, he determines that the velocities of the balls change at 
the same rate.  Through the intuitive idea “if two things change by the same amount, 
then the difference between them stays the same,” Pat concludes that the final 
difference in speeds is still 2 meters per second. 
 In this previous work, the Base + Change symbolic form (Sherin, 2001) is 
modeled as playing a central role in Pat’s reasoning with the velocity equation.  A 
symbolic form is a cognitive element that blends the structure of an equation with an 
intuitive meaning.  For example, in Base + Change, the conceptual schema “the final 
amount is the initial amount plus the change in that amount” is mapped onto the 
structure of the equation, represented by the symbol template  =  + Δ.  Reasoning 
about terms in the equation corresponding to “final amount,” “initial amount,” and 
“change” (as Pat does) provides evidence of the Base + Change symbolic form 
playing a role in that reasoning.  Reasoning with these symbolic forms can lead to 
quick, heuristic problem solving approaches through blended processing (Kuo et al., 
2013), combining conceptual meaning with formal mathematics to circumvent 
explicit computations.  Because of this, symbolic forms-based reasoning is argued to 
be a form of problem-solving expertise.  
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 In interviews, 6 of 13 students in this study did not use Base + Change in 
either explaining the velocity equation or solving the Two Balls Problem.  In aiming 
to understand and foster problem-solving expertise, one important question to answer 
is “why do these students not demonstrate this type of reasoning?”   

The problem solving literature has shown many examples of novices 
demonstrating different quantitative problem-solving approaches than experts (Chi et 
al., 1981, 1982; Larkin et al., 1980; Simon & Simon, 1978; Taasoobshirazi & Glynn, 
2009; Walsh et al., 2007).  When individuals fail to display such problem-solving 
expertise, this is often attributed to a deficit in the content or structure of their 
knowledge (Chi et al., 1982; P. Heller et al., 1992; Larkin et al., 1980; Reif et al., 
1976).  Applying this to Alex’s and Pat’s reasoning with the velocity equation, the 
absence of symbolic forms in Alex’s reasoning could illustrate a lack of knowledge 
about symbolic forms.  This type of interpretation commonly leads to instructional 
interventions that involve explicitly teaching students the skills or problem-solving 
procedures they ostensibly lack (P. Heller et al., 1992; Huffman, 1997; Larkin & Reif, 
1979; Leonard et al., 1996; Mualem & Eylon, 2010; Van Heuvelen, 1991b).  In the 
case of Alex, this approach would suggest the need for explicit instruction on how to 
interpret particular equations with symbolic forms such as Base + Change and how to 
use that interpretation in physics problem solving. 

However, it also seems reasonable to believe that the 6 students who did not 
initially use Base + Change – and who were enrolled in an undergraduate physics 
course for engineering majors – have learned about and used symbolic forms such as 
Base + Change in working with algebraic equations like the money equation.  
Symbolic forms are typically tied to algebraic equations of the types I expect students 
to have seen frequently throughout their schooling careers in math and science.  For 
example, in learning about linear equations, I expect symbolic forms such as Base + 
Change to be either explicitly or implicitly relevant.  Additionally, there is evidence 
that 8th graders (Izsák, 2000) as well as undergraduate physics majors (Sherin, 2001; 
Kuo et al., 2013) use Base + Change and other symbolic forms.   

Furthermore, one interviewed student, Devon, provides an explicit 
counterexample to a deficit-based explanation.  Devon, who is not counted in the 
original interview set, initially does not use Base + Change to interpret the velocity 
equation but does when later given a (non-physics) equation for how much money 
one has after working for a certain period of time, m = m0 + rd (where m is the 
ending amount of money, m0 is the starting amount of money, r is the salary rate, and 
d is the number of working days).  Between asking Devon about the velocity equation 
and “money” equation, the interviewer provides no instruction about symbolic forms; 
simply asking the money equation was enough to activate Base + Change in Devon’s 
reasoning.  So, if students such as Devon do not lack knowledge of symbolic forms, 
why do they not always bring that knowledge to bear in understanding physics 
equations? 

In this chapter, I argue that, in addition to knowledge deficits, one possible 
explanation for the absence of symbolic forms-based reasoning when applicable is 
that such reasoning is not viewed as relevant or appropriate.  I make the case that 
epistemological stances towards learning physics and understanding physics 
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equations (i.e. in-the-moment views on what it means to learn and understand 
physics) are connected to whether students draw on symbolic forms-based reasoning.   
 First, using a set of interviews conducted to investigate how introductory 
physics students understand physics equations, I code individual interviews for both 
students’ symbolic forms-based reasoning and expressed epistemological stances 
reflecting how they view understanding and learning physics and physics equations in 
those moments.   I argue that students who tend to use symbolic forms in the 
interviews also tend to express epistemological stances that value coherence between 
two different types of reasoning, either (1) between formal physics and everyday 
intuition or (2) between equations and intuitive or conceptual meaning.  Although 
student epistemology has been connected to reasoning in many different ways, I aim 
to show that, in particular, symbolic forms use is tied to expressed coherence 
epistemological stances in these interviews.   
 Next, I will apply this connection between symbolic forms use and 
epistemological stances to understand Devon’s different responses to the physics and 
non-physics prompts (such as the “money” prompt).  To investigate these different 
patterns of responses, I present a case study of Devon’s interview, arguing that 
Devon’s reasoning shifts between two modes, consisting of different reasoning with 
and epistemological stances towards equations.  This provides an alternative to a 
knowledge deficit explanation of Devon’s initial reasoning, which would model the 
initial absence of symbolic forms-based reasoning as resulting from a lack of 
knowledge about Base + Change.  Rather, I model Devon’s initial lack of symbolic 
forms-based reasoning as aligning with his epistemological stance towards physics 
equations, and his subsequent shift to symbolic forms use as aligning with a shift in 
that epistemological stance. 
 

LITERATURE REVIEW  

Research Supporting a Connection Between Student Reasoning and 
Epistemologies  
 Student reasoning or problem-solving approaches and students’ 
epistemologies, or their views on what it means to learn and understand, are 
connected.  For example, a student who views physics equations as distinct from 
qualitative physics concepts is less likely to use those physics concepts while 
reasoning with equations, even if they show expertise in such qualitative reasoning in 
other contexts (Lising & Elby, 2005).  This is not to say that the amount of or 
structure of students’ conceptual knowledge in physics does not affect their problem-
solving approaches.  Rather, it is to say that models of student thinking that only 
consider conceptual knowledge can explain additional reasoning phenomena by 
incorporating a connection between reasoning and epistemologies. 
 
Two methods: case study analysis and large-N survey 

The connection between student reasoning and epistemology has been 
investigated using two approaches.  One approach is to construct case studies of 
individual or group reasoning (Bing & Redish, 2009; Gupta & Elby, 2011; Hammer, 
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1994; Lising & Elby, 2005; Rosenberg et al., 2006; Schoenfeld, 1988). For example, 
Lising and Elby (2005) showed that, across a series of classroom episodes and 
interviews, Jan demonstrated facility with resolving inconsistencies within either her 
formal reasoning or intuitive reasoning in order to argue that her tendency to not 
resolve inconsistencies across the two cannot be attributed to deficiencies in formal 
knowledge or intuitive knowledge or to deficiencies in resolving inconsistencies.  
Rather, they infer the existence of an epistemological stance separating formal and 
intuitive reasoning in physics that precludes resolutions that incorporate both.  The 
approach of analyzing problem-solving episodes of student reasoning can provide 
plausible alternatives to knowledge deficit-based explanations as the cause of novice 
reasoning and behavior.  Using this approach, Lising and Elby (2005) and others 
(Gupta & Elby, 2011; Hammer, 1994) have made the case that absence of particular 
kinds of reasoning in physics problem solving can reflect epistemological stances that 
do not support those particular reasoning approaches, rather than knowledge deficits.   

A complementary approach, the large-N survey study, aims to show that 
particular epistemologies are correlated with higher post test scores after some 
intervention – a course, a curriculum, or an experimental learning treatment (Mason, 
2003; Perkins et al., 2005; Schommer et al., 1992; Schommer, 1990; Songer & Linn, 
1991; Windschitl & Andre, 1998).  For example, Schommer et al. (1992) show the 
effect of epistemological beliefs in a short learning intervention.  First, using a Likert-
scale epistemological survey, subjects’ epistemologies are measured along particular 
dimensions.  Then, subjects are given short reading passages on statistics, followed 
by a multiple-choice survey designed to measure how much they learned.  Schommer 
et al. show that, although prior knowledge is a predictor of success on the statistics 
post-test, so too is (what they label as) an epistemological belief in simple knowledge 
(i.e. “knowledge consists of disconnected, unambiguous facts”).  They infer that 
students whose survey responses are consistent with simple knowledge perform worse 
on the post-test, because they approached learning the statistics passage as 
accumulating simple facts rather than connecting the ideas together to form a 
coherent set of knowledge.  Common to these types of studies, statistical analysis is 
used to argue that novice reasoning (in this case, naïve approaches to learning, 
measured by correctness on a content post-test) is correlated with certain 
epistemologies.   

 
Two types of inferences made in connecting student reasoning to student 
epistemologies 

Both of these methodologies, case study analysis and large-N survey work, 
have contributed to knowledge about the connection between student reasoning and 
student epistemologies by, at times, making particular inferences from the data.  Here, 
for each of the two methodologies above, I point out an inference that is commonly 
made.  

One inference commonly made by case study analysis is to infer student 
epistemologies from student reasoning (Bing & Redish, 2009; Hammer, 1994; Lising 
& Elby, 2005; Rosenberg et al., 2006; Schoenfeld, 1988).  In seeking to understand 
patterns in student reasoning or problem-solving approaches, researchers infer the 
underlying epistemologies that plausibly support those approaches, not necessarily 
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requiring explicit confirmation.  For example, if a student consistently uses physics 
equations for algebraic manipulations, that reasoning is used as evidence to infer an 
underlying epistemology that physics consists of facts and formulae rather than 
concepts (Hammer, 1994).  In another example, Schoenfeld (1988) observed that high 
school geometry students could quickly solve mathematical proofs but then spend the 
majority of their time writing out the proof in a canonical, two-column format.  
Schoenfeld inferred that these students view correctness in mathematical proofs as 
depending on the formal notation as much as on the mathematical substance, even 
though students never make any explicit statements regarding that inferred view.   

This is not to say that these studies necessarily exclude explicit evidence of 
students’ epistemologies.  However, these more explicit statements reflecting 
expressed epistemological stances are not treated as necessary evidence for claims 
about students’ epistemologies.  Instead, they are seen as additional evidence, 
supporting the inferred epistemologies already derived from student reasoning data.  
For example, Hammer (1994) explicitly asks Roger whether common sense applies to 
his physics course and to equations in physics.  However, Roger’s response is taken 
not as a crucial, independent piece of evidence of his epistemology, but rather as one 
triangulating piece of evidence, along with Roger’s reasoning with physics equations, 
for understanding the nature of Roger’s epistemology and its impact on his reasoning 
in physics.   

One benefit of the case study approach is its ability to investigate student 
reasoning and problem-solving approaches.  Looking only at post-test scores and final 
grades are not sufficient for determining the reasoning and approaches taken to 
achieve those scores and grades.  A student who develops expertise in rote, 
algorithmic calculations and a student who seeks to connect those calculations to the 
conceptual meaning behind them may both be successful in solving problems 
correctly.   

By contrast, large-N survey studies often seek to empirically establish, rather 
than assume, a correlation between reasoning and epistemology (Mason, 2003; 
Schommer et al., 1992; Schommer, 1990; Songer & Linn, 1991; Windschitl & Andre, 
1998).  In service of this goal, the inference sometimes made by these large-N survey 
studies is to use the final products of student reasoning to infer the process of student 
reasoning, the very inference the case studies seek to avoid.  Schommer et al. (1992) 
used correct answers on the statistics post-test survey and responses on the 
epistemological survey to infer a plausible mechanism of how an epistemological 
belief in simple knowledge influences student reasoning: viewing knowledge as 
simple could lead to study strategies that emphasize memorizing disconnected facts, 
rather than learning to interrelate these facts into a coherent web of knowledge.  
However, the data collected cannot directly support hypotheses about how students 
approached learning from the text passages; it only measures their success in applying 
that knowledge as demonstrated on the post-test.  The authors themselves state that 
research investigating student learning approaches on the reading passage is required 
to verify this plausible mechanism for connecting student reasoning to student 
epistemologies.   
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The Nature of the Connection Between Student Reasoning and 
Epistemologies: Unitary Vs. Manifold Cognitive Structures 
An example: “unitary” vs. “manifold” interpretations of large-N epistemological 
surveys 

One important issue in the large-N survey studies described previously is how 
students’ responses on epistemological surveys are interpreted.  One analytical 
approach treats students’ responses on epistemological surveys as evidence of 
consistently held epistemological beliefs (Schommer, 1990; Songer & Linn, 1991). 
For example, Songer and Linn (1991) label students who tend to give survey 
responses aligned with a particular epistemology as stably having that epistemology.  
Hammer and Elby (2002) see a pattern in the literature of claiming students possess 
stable and consistent epistemological theories or beliefs that develop in stages, which 
they describe as modeling epistemology with unitary cognitive elements.  By unitary, 
they mean that “each belief corresponds to a unit of cognitive structure, which an 
individual either does or does not possess” (Hammer & Elby, 2002, p. 169).  They, on 
the other hand, argue that students’ epistemologies consist of manifold 
epistemological resources that are contextually activated.  In this manifold view, 
individuals’ epistemologies are multifaceted, and individuals can take many possible 
epistemological stances depending on the situational context. 

This theoretical difference in how epistemology is modeled leads to practical 
differences in how inconsistent survey results are interpreted and acted on.  Where 
these unitary views might recommend discarding survey items that yield inconsistent 
responses as bad probes of students’ stable and consistent epistemological beliefs, a 
manifold view seeks to understand how the different questions might cue different 
facets of students’ epistemologies (Yerdelen-Damar, Elby, & Eryilmaz, 2012).   

The manifold perspective is more aligned with my purpose in studying 
Devon: I aim to understand why Devon would respond differently on the physics and 
non-physics prompts, rather than to simply discard the interview prompts as “bad 
questions.”  In the next section, I describe how this debate between unitary and 
manifold views of cognition extends to the modeling of student reasoning.  
 
Manifold views of conceptual knowledge 

This idea of manifold models of students’ epistemologies is situated in a 
broader argument between models of cognition that treat student reasoning as unitary 
and stable and models of reasoning as more manifold and dynamic (diSessa, 
Gillespie, & Esterly, 2004; diSessa & Sherin, 1998; diSessa, 1993; Hammer et al., 
2005; Hammer, 2000; Ioannides & Vosniadou, 2002; Sherin et al., 2012). For 
example, in response to studies attributing incorrect student reasoning to naïve, but 
stable, theories of force and motion, diSessa (1993) argued that student reasoning 
about force and motion is multifaceted.  He modeled student reasoning about 
conceptual physics problems as involving, in part, phenomenological primitives (or p-
prims) – intuitive notions abstracted from experiences in the world. In contrast to a 
consistent theory of force and motion being applied across multiple situations, 
different p-prims can be activated in different moments, leading to different reasoning 
in and conclusions about the same underlying physical scenario. For example, in 
considering how a pull on a yo-yo string will cause it to move, an individual’s 
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reasoning could initially stem from the p-prim of force as a mover, predicting that the 
yo-yo will move in the direction of the pull.  However, in other moments, that same 
individual might think of force as a spinner and predict that the yo-yo will spin away 
from the original pull.  

Of course, in canonical physical theories, a force can cause either linear and 
rotational motion.  The case that diSessa makes is that novice reasoning here does not 
follow from one stable and consistent theory of force and motion.  Instead, an 
individual’s knowledge can consist of manifold cognitive elements (here, different p-
prims related to force and motion), and their reasoning is driven by the activation of a 
subset of these cognitive resources.  Importantly, each of these p-prims can be either 
productive or unproductive in different situations, and each one can lead to different 
predictions about the motion of an object.  Studying these different pieces of 
knowledge and the contexts in which they are activated can help us understand the 
variation in an individual’s reasoning around the topic of force, variation that a 
unitary theory of motion does not adequately explain.  In the same way that Hammer 
and Elby argue that an individual’s epistemology is multifaceted, so then is that 
individual’s conceptual knowledge. 
 
Epistemological framing: a manifold model of the connection between student 
reasoning and epistemology 

Both case-study analysis and large-N survey work has established the 
connection between student reasoning and epistemologies.  Epistemological framing 
(Hammer et al., 2005) models this connection while maintaining the multifaceted 
nature of conceptual knowledge and epistemologies.   

To illustrate this point, consider the following question: “which vehicle feels 
more force in a head-on collision between a large truck and a small car?”  One 
possible answer to this question involves formal physics knowledge, such as 
Newton’s 3rd law.  Another possible answer draws on physical intuition and 
experiences, such as imagining what you would feel if you were in the truck versus if 
you were in the car.  How one answers the question depends on “what kinds of 
knowledge or approaches are appropriate here?”  Epistemological framing is the 
drawing on a coherent set of conceptual and epistemological resources in response to 
a situation or problem (Hammer et al., 2005). 

For example, one epistemological framing of this question draws on 
conceptual resources related to Newton’s 3rd law and epistemological resources 
supporting formal, classroom knowledge as appropriate; another epistemological 
framing of this question draws on conceptual resources related to physical experience 
and epistemological resources supporting informal, everyday reasoning as 
appropriate.  Although these two epistemological framings of the problem are very 
different, they are both self-consistent and locally coherent (i.e. the type of conceptual 
resources drawn on are consistent with the types of knowledge supported by the 
active epistemological resources).  Moreover, we might expect that some individuals 
– introductory physics students, for example – could take either approach to 
answering this problem.  In this way, an individual possesses manifold ways of 
approaching this problem, and one espoused line of reasoning does not preclude 
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knowledge of the other.  Said differently, the absence of one kind of reasoning in a 
situation or problem does not necessarily imply a knowledge deficit.   
 
Usefulness of epistemological framing in studying dynamic shifts 

A benefit of manifold models (e.g. epistemological framing) over unitary 
models of cognition is that manifold models provide tools for investigating in-the-
moment shifts in an individual’s reasoning.  In the unitary conceptual change 
literature, individuals are depicted as reasoning in ways consistent with a stable and 
consistent conceptual network.  Reasoning is not multifaceted in the way that diSessa 
described novice reasoning about forces.  Conceptual change is a non-trivial process, 
involving the introduction of cognitive conflict through the presentation of new 
concepts and evaluation of their usefulness over currently held concepts for 
describing and understanding phenomena (Hewson & Hewson, 1984; Posner et al., 
1982).   

On the other hand, epistemological framing leads to interpretations of student 
reasoning and epistemology as multifaceted.  This means that the epistemological 
frame activated in response to a situation is only one of many possible frames, and 
that there is the possibility to shift between frames, even during a short reasoning 
episode.  Rosenberg, Hammer, and Phelan (2006) showed how a group of students 
can shift from one locally coherent epistemological frame to another. They present a 
group of 8th grade students, who were asked by their teacher to come up with a 
model of how the three types of rocks they had learned about could be connected in a 
rock cycle. This group of students begins the activity by seeking out a relevant 
worksheet, accumulating facts, and ordering them to chronologically. This is modeled 
as reflecting a “cut-and-paste” epistemological framing.  The teacher then intervenes, 
urging the students to start “from their own ideas” rather than from the worksheets. 
This intervention shifts how students frame the activity to “storytelling,” activating a 
different set of mutually coherent conceptual and epistemological resources for 
creating a story from their own ideas.  So, the teacher’s intervention caused an 
epistemological shift in how students understand “what kinds of knowledge or 
approaches are appropriate here.”  In other words, the shifting of students’ activated 
epistemological resources for understanding this activity as “storytelling” (and the 
demand of coherence between the active epistemological and conceptual resources) 
also shifts the activation of conceptual resources to ones for generating a plausible 
story, revealing that the lack of an initial “story” for the rock cycle was not due to a 
conceptual knowledge deficit. 

Conversely, Gupta and Elby (2011) give an example of how a shift in the 
conceptual resources in play subsequently shifts which epistemological resources are 
active. In an interview, Jim articulated the epistemological stance that physics 
equations are disconnected from everyday common sense and that equations are more 
trustworthy than that common sense. In working on a problem that asked him to 
compare the pressure at two depths underwater, Jim’s activated epistemological 
resources supported formal mathematical knowledge over conceptual reasoning.  But 
in a moment where Jim finds his everyday ideas about pressure as useful for 
understanding the pressure equation, the epistemological resources, at least 
momentarily, shift to ones valuing that connection between intuitive reasoning and 
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the formal physics equations.  The result is Jim saying that it “makes more sense” and 
it feels “more comfortable” now that he sees this alignment between intuitive and 
formal mathematical reasoning. 

Overall, these case studies show that epistemological framing can shift from 
one internally coherent set of conceptual and epistemological resources to another.  A 
shift in either the conceptual or epistemological resources activation must lead to an 
accompanying shift in the other, to maintain coherence between the two. 

 

DATA COLLECTION AND METHODOLOGY 

Research Questions 
 This study started with a broad, ill-defined research question: how do students 
make sense (or not make sense) of the mathematics they use in solving physics 
problems? Following our intuitions, the research team designed a series of interview 
prompts that asked students to engage in two different kinds of tasks: (1) explaining 
and reasoning with physics equations and (2) explaining how they approach learning 
physics equations and physics more broadly in their courses.  Previous work 
sharpened our understanding of how symbolic forms-based reasoning was used on 
these prompts (Kuo et al., 2013).  In watching the interview videos, we also noticed 
that students who tended to use symbolic forms also tended to express 
epistemological stances that valued coherence, between either (1) formal ideas in 
physics and everyday reasoning or (2) physics equations and physics concepts.  This 
led to the development of a specific research question, investigated in the phase 1 
analysis: Across the interviews, do students who tend to use symbolic forms in 
reasoning with physics equations also tend to express coherence epistemological 
stances towards learning physics and physics equations? (And also, do students who 
tend not to use symbolic forms-based reasoning also tend to express epistemological 
stances seeing formal physics as disconnected from conceptual reasoning or everyday 
intuition?)  To study this question, I coded the interviews for both symbolic forms use 
and expressed coherence or disconnected epistemological stances. 
 After an initial set of interviews revealed that some students do not use 
symbolic forms-based reasoning to explain equations in the interview, the research 
team designed a set of isomorphic non-physics questions (discussed in detail later) 
which we expected would cue symbolic forms-based reasoning.  For one student, 
Devon, separate coding of the physics and non-physics prompts revealed that he 
tended to use symbolic forms-based reasoning more on the non-physics prompts.  
This led to a research question, investigated in the phase 2 analysis: Why does Devon 
tend to use symbolic forms-based reasoning more often with non-physics equations 
than physics equations in his interview?  To investigate this question, I perform a 
more in-depth case study of Devon’s responses to the two types of prompts in his 
interview.   
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Data Collection 
 Thirteen students who were enrolled in or had completed a first-semester, 
introductory physics course were interviewed.  These semi-structured interviews 
consisted of prompts to get at both how students reasoned about and with physics 
equations (e.g. “explain the velocity equation” and the Two Balls Problem discussed 
in the introduction) and also at their epistemological stances towards learning and 
understanding equations in physics and math.  Although there was a set of these 
preplanned prompts, the interviewer was free to make in-the-moment decisions about 
what questions to pursue based on emergent topics in the interview (Ginsberg, 1997).  
The interviewer was free to change the order of the prompts, omit prompts, and 
modify prompts.  Additionally, the interviewer was free to ask follow-up questions, 
revoicing student ideas and selectively zooming in on and probing deeper into 
particularly interesting topics (Lee, Russ, & Sherin, 2012).  In this way, the 
interviewer was not beholden to a set structure but was free to investigate interesting 
points and explore in-the-moment hypotheses.  Consequently, not all interviewees 
received the same prompts or experienced them in the same order. 
 

Phase 1 Analysis 
 In the phase 1 analysis, I code the interviews for both symbolic forms use and 
espoused epistemological stances.  If there is a connection between the two, then the 
coding will reveal a pattern: that interviews that tend to contain symbolic forms-based 
reasoning also tend to contain coherence epistemological stances (and that interviews 
that tend not to contain symbolic forms-based reasoning tend to contain disconnected 
epistemological stances).  Although the connection between student reasoning and 
epistemologies have been established, there has been no work that studies this 
connection at the grain size of particular cognitive elements (in this case, symbolic 
forms). 
 
Avoiding two common inferences in connecting student reasoning to epistemology 

In the phase 1 analysis, my purpose is to argue that epistemological stances 
that value coherence between physics and everyday life or between equations and 
intuitive or conceptual meaning are connected to symbolic forms use.  To make this 
argument, this study aligns, in part, with the purpose of the large-N survey studies: I 
do not a priori assume a connection between epistemologies and symbolic forms-
based reasoning.  Rather, two independent types of evidence are collected: (1) data on 
whether a student uses symbolic forms in reasoning with equations in physics and (2) 
data on the expressed epistemological stances towards equations in physics, to test 
empirically whether the two are connected. 

At the same time, I align with the case studies approach in how reasoning with 
equations in physics is studied.  Although Alex’s and Pat’s reasoning with the 
velocity equation differed, they both gave valid explanations and solutions on the 
Two Balls Problem.  Because correct use of either symbolic forms or algorithmic 
manipulations will lead to the same (correct) final answer, simply measuring their 
success on such prompts would be insufficient.  For this reason, student reasoning 
with equations is investigated in this study by examining students’ approaches 
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through video analysis of the interviews, to see if symbolic forms-based reasoning is 
present. 
 In sum, for these purposes, I aim to avoid the two inferences made in similar 
studies: inferring underlying epistemologies from student reasoning or inferring how 
a student reasoned on a problem through their success or failure on that problem.  
Although some more recent studies are also explicitly careful to avoid these 
inferences (e.g. Gupta & Elby, 2011), this study adds to these by using a novel coding 
scheme to expand the analysis beyond a single interview in order to investigate 
possible patterns across different interviews.   
 
Interview segments to code for symbolic forms and epistemological stances 

In order to investigate whether symbolic forms is connected to particular 
epistemological stances valuing coherence, these interviews are coded for  

 
(1) whether symbolic forms-based reasoning is used on the prompts that ask 
students to reason with or explain particular physics equations and  
(2) whether coherence or disconnected epistemological stances are expressed 
on the explicit epistemological prompts about learning and understanding 
physics and physics equations.   
 

The interview is broken up into different segments, along the points where the 
interviewer introduces a new prompt or topic.  These segments are then coded 
according to the symbolic forms or epistemology coding schemes, described in the 
following sections.  Then, for each interview, I compare the percentage of “symbolic 
forms segments” that received a “used symbolic forms” code, as well as the 
percentage of “epistemology segments” that received a “coherence epistemology” 
code.  Here, I list abridged versions of interviews prompts that make up the “symbolic 
forms segments” and “epistemology segments:” 
 

Symbolic Forms Coding Segments 
• Explain the velocity equation: “Here’s an equation you have probably 

seen in physics class, v = v0 + at.  How would you explain this 
equation to a friend from class?” 

• Two Balls Problem: Suppose you are standing with two tennis balls on 
the balcony of a 4th floor apartment.  You throw one ball down with an 
initial speed of 2 m/s; at the same moment, you just let go of the other 
ball.  Is the difference in the speeds of the two balls after 5 seconds 
less than, more than, or equal to 2 m/s? 

• Explain the pressure equation: “Here’s an equation you are probably 
unfamiliar with, P = Pat top + ρgh (variables defined in the problem).  
How would you explain that equation to yourself? 

• 5/7 Meter Problem: Is the pressure at h = 5 meters underwater greater 
than, less than, or equal to the pressure at h =7 meters underwater? 

• Mars Lake Problem: Gravity on Mars is weaker than gravity on Earth 
(i.e. g is less on Mars).  How does the pressure at a certain depth in a 
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lake on Mars compare to the pressure at the same depth in a lake on 
Earth? 

• Explain Coulomb’s Law: The force between two electric charges, q1 
and q2, that are separated by a distance r is , where k is a 
constant.  How would you explain this equation to a friend in your 
physics class? 

 
Epistemology Coding Segments 
• “How do you know when you understand a physics equation?” 
• “How do you approach learning equations in physics?” 
• “What is difficult about understanding the math in your physics 

course?” 
• “If you had a photographic memory for equations, would that improve 

your performance in your class?” 
• “Diana” Prompt: “Imagine there is a student, Diana, who is not taking 

the course for credit.  She wants to understand physics more deeply.  
She’s not interested in learning to solve the quantitative problems, but 
she’s willing to study outside of class to learn the concepts better.  
What role, if any, should equations play in her studying?” 

• “How do you approach solving problems in physics?   
• “What do you do when you get stuck in problem solving?” 

 
In the analysis, I am not using an interviewee’s reasoning on these prompts to 

suggest how they might behave or respond in other situations.  Since the interview is 
an atypical, interactional event between interviewer and interviewee with particular 
materials in a particular environment, the reasoning and epistemological stances that 
emerge in the interview cannot be said to unaffected by the interview context 
(diSessa, 2007; Russ, Lee, & Sherin, 2012), and it is entirely possible that 
interviewees may exhibit totally different behavior in other situations.   

Rather, I am looking for broad patterns in symbolic forms use and expressed 
epistemological stances within the interview.  For this reason, my claims are 
ultimately about a connection between symbolic forms use and espoused 
epistemological stances, rather than claiming that the particular reasoning with 
equations and epistemological statements reflect how students would respond to 
similar prompts in other contexts. 

Another issue is the lack of standardization across interviews.  Because of the 
freedom the interviewer has to modify and adapt the interview protocol, no two 
interviews look exactly the same in terms of which prompts are posed, the order in 
which prompts are posed, and the amounts of time spent on each prompt.  I do not 
claim that these differences have no effect on the outcomes of the interview.  Rather, 
given an interviewee’s statements in the interview, likely influenced by the particular 
configuration of interview prompts, I am looking for patterns between symbolic 
forms use and epistemological stances within that interview. 
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A coding scheme for symbolic forms 
 On prompts asking students to explain an equation or to solve a quantitative 
problem, I code students’ responses for the presence or absence of symbolic forms-
based reasoning, as illustrated for these same prompts in previous work (Kuo et al, 
2013).  I use the original list of symbolic forms as a guide to identify symbolic forms-
based reasoning (Sherin, 2001, pp. 532-537).  From this list, I code for symbolic 
forms from three clusters: the competing terms cluster, the proportionality cluster, 
and the terms as amounts cluster (which includes Base + Change).  The symbolic 
forms ignored by the coding, such as Dependence or Scaling, were either widely used 
and considered too basic or were not applicable to our prompts.  

Here, I describe the symbolic forms most relevant to the interview prompts 
and most prevalent in the coding: 
 

• Base + Change: The symbol template  =  + Δ is connected to the 
conceptual schema “the final amount is the initial amount plus the change 
in that amount.”  Applied to the equation v = v0 + at, for example, v0 takes 
on a meaning of a starting velocity and at takes on a meaning of a change 
in velocity added onto that starting value. 

• Parts-of-a-Whole: The symbol template  =  +  +  + … is 
connected to the conceptual schema that “the whole is made up of several 
parts.”  For example, in the mechanical energy equation E = ½mv2 + mgh 
+ ½kx2, the total energy is the sum of three different kinds of energy: 
kinetic, gravitational potential, and spring potential energy.   

• Prop+: Essentially meaning direct proportionality, the symbol template 
[… X …/ …] is connected to the conceptual schema that as X increases, 
the total value also increases.  For example, for the underwater pressure 
term ρgh, as h (the depth under the surface of the water) increases, then 
this pressure term increases. 

• Opposition: The symbol template  -  is connected to a conceptual 
schema of two influences opposing each other.  For example, the net force 
on a space shuttle as it’s launching into orbit, Fnet = Frocket – GmM/r2, can 
be interpreted as the force of the rocket opposing the Earth’s gravity.   

 
These symbolic forms interview segments are coded as “used symbolic 

forms” if there is evidence of the structure of an equation being tied to a conceptual 
schema, through an explicit description of the equation or a blended processing 
solution, as described in the introduction.  Description or use of an equation as a 
computation tool or only relating conceptual meaning to the individual variables (e.g. 
identifying m as the mass of an object) is coded as “did not use symbolic forms.”  At 
times there was weak evidence hinting that the interviewee could be using symbolic 
forms in their reasoning with equations.  I take a strict approach to coding these 
segments based on Sherin’s taxonomy of symbolic forms, so this weak evidence of 
symbolic forms use is coded as “did not use symbolic forms.” 

Some segments could not be coded according to this coding scheme, because 
of the absence of reasoning with equations.  The interviewee may not have articulated 
their reasoning on the problem or may have taken a purely conceptual approach to the 
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problem, avoiding mathematical equations or other formalism.  Since I am interested 
in how students use equations, these segments are not counted in our final coding. 
The non-physics prompts that some interviewees were asked are excluded from the 
coding results, because, in phase 1, I am interested in how students use canonical 
physics equations.  What remains are the coded segments: prompts where 
interviewees explained, used, or reasoned with physics equations.   

Each interview prompt asking students to explain, use, or reason with physics 
equations counts as one “interview segment.”  The same prompt may have been asked 
in several different ways, to see if changes to the original problem could influence 
symbolic forms use by slightly altering the prompt.  For example, Alex was asked to 
(1) explain the velocity equation to a friend from class, (2) explain the velocity 
equation to a 12-year old, and (3) explain the velocity equation on an exam.  In the 
coding, these questions all relate to the same prompt (“explain the velocity equation”) 
and are collapsed into one segment, such that if an interviewee uses symbolic forms-
based reasoning on one of the three parts, this segment is coded as “used symbolic 
forms.”  The reason for this is because the follow-up prompts are only given if the 
initial form of the question does not elicit symbolic forms use.  Additionally, I am 
interested in whether students use symbolic forms at all on these prompts, not in how 
many follow-up questions it took before students used symbolic forms-based 
reasoning.  This collapsing of codes is used to keep the total number of codes for 
students who don’t use symbolic forms from being artificially increased, artificially 
lowering their symbolic forms use percentage.  Also, throughout all of the interviews, 
it was discovered that some prompts are better for eliciting symbolic forms reasoning 
than others.  In the results, I exclude prompts on which no interviewees used 
symbolic forms-based reasoning.   

 
A coding scheme for coherence and disconnected epistemological stances 

In order to code for student epistemologies in the interview, I draw on work 
done on surveying student epistemologies in physics.  Specifically, I draw on the 
Colorado Learning Attitudes about Science Survey (CLASS) (Adams et al., 2006). 

The CLASS is a survey designed to probe a range of student attitudes towards 
learning physics, including epistemologies.  Furthermore, the CLASS uses 
empirically validated categories.  For the interview coding scheme, a team of 
researchers analyzed the categories of the CLASS and selected those believed to be 
relevant to symbolic forms use.  In general, symbolic forms are supported by valuing 
coherence between two types of reasoning: connecting formal physics equations with 
either (1) everyday intuition or (2) conceptual meaning in physics.  Below I describe 
the four CLASS categories used as indicators of a coherence epistemological stance 
and why those categories are believed to be relevant to symbolic forms use, along 
with statements that are coded into these categories.  Following this, I describe the 
CLASS categories that are not included in the coding scheme along with what kinds 
of statements cannot be coded by this scheme.   

The “epistemology segments” in the interview are broken up according to 
when the topic changes.  For example, the interviewer may ask a prompt such as 
“how do you know when you understand an equation?”  Follow-up questions to a 
student’s response that produce an elaboration on the current topic – such as “what 
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did you mean by X?” – do not signal a topic change and are counted as a continuation 
of the current interview segment.  However, questions that potentially probe a 
different aspect of students’ epistemologies – such as changing the topic to “what is 
difficult about the math in your physics class?” – do signal a topic change and the 
start of a new “epistemology segment.” 

For the coding, students’ statements in the interview were used as evidence 
for how they might answer the CLASS survey items.  These survey items were used 
as guides for coding students as expressing either a coherence or a disconnected 
epistemological stance in the epistemology segments.  Although I describe these 
CLASS categories separately, items from all four categories are used 
indistinguishably in order to code along the one broad epistemological dimension 
relevant for this study: coherence versus disconnected.  Also, since the specific 
categories and items aren’t distinguished in the final coding, I do not attempt to be 
exhaustive in identifying the relevant CLASS items for coding a segment.  Often, 
many CLASS items can be used to code a segment, ultimately leading to the same 
code.  In cases where segments might be coded as coherence according to some 
items, and disconnected according to others, this segment is coded as “ambiguous” 
and is omitted from the final coding.  In the results, only definitive evidence of 
coherence or disconnected epistemological stances, as defined by this coding scheme, 
are counted. 

 
Four CLASS categories for coding coherence and disconnected epistemological 
stances 
 Here, I list the CLASS survey items from the four categories used in the 
interview coding scheme. 
 

Real World Connection 
R1) Learning physics changes my ideas about how the world works. 
R2) Reasoning skills used to understand physics can be helpful to me in my 

everyday life. 
R3) The subject of physics has little relation to what I experience in the real 

world. 
 
Overall, these items probe the relation that students see between physics and 
everyday life.  Although seeing coherence between physics and everyday reasoning 
might not necessarily involve symbolic forms reasoning, symbolic forms use is one 
way we can see this connection being instantiated.  More broadly, this category also 
represents the seeking of connections between physics knowledge and everyday ideas 
and experiences.  
 Evidence of a coherence epistemological stance includes statements that 
emphasize connecting the formal ideas in physics with everyday examples, like using 
the example of a baseball player hitting a ball with a bat to understand Newton’s 
laws.  Evidence of a disconnected epistemological stance would include statements 
that physics is distinct from real life.  However, no student in the interviews makes 
this type of explicit statement. 
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Sense Making/Effort 
S1) I’m not satisfied until I understand why something works the way it does. 
S2) In physics, it is important for me to make sense out of formulas before I 

can use them correctly. 
S3) Spending a lot of time understanding where formulas come from is a 

waste of time. 
S4) There are times I solve a physics problem more than one way to help my 

understanding. 
S5) When I solve a physics problem, I explicitly think about which physics 

ideas apply to the problem. 
S6) In doing a physics problem, if my calculation gives a result very different 

from what I’d expect, I’d trust the calculation rather than going back 
through the problem. 

S7) When studying physics, I relate the important information to what I 
already know rather than just memorizing the way it is presented. 

 
Items S1 through S4 have to do with seeking out the reasons why physics 

equations work.   Symbolic forms are one type of tool students use to make sense of 
equations in this way.  Statements related to wanting to understand the proof or 
derivation of an equation or wanting to know “where an equation comes from” and 
why it works would be coded as indicating a coherence epistemological stance.  

Items S5 through S7 emphasize connections between quantitative problem 
solving and conceptual ideas, as well as connections between formal physics 
knowledge and “what I already know.”  Seeking out and finding these connections 
are naturally aligned with symbolic forms, as they are used to interpret formal 
equations from physics class in conceptual and intuitive ways.  If a student mentions 
thinking physically about a problem situation, thinks about relevant physics concepts 
(such as conservation of momentum) when dealing with an equation, mentions a 
relevant conceptual analysis at the start of problem solving, or checks a mathematical 
answer against qualitative expectations, that would be coded as indicating coherence. 
 

Conceptual Connections & Applied Conceptual Understanding 
C1) Knowledge in physics consists of many disconnected topics. 
C2) A significant problem in learning physics is being able to memorize all 

the information I need to know. 
C3) If I don’t remember a particular equation needed to solve a problem on an 

exam, there’s nothing much I can do (legally!) to come up with it. 
C4) If I get stuck on a physics problem, there is no chance I’ll figure it out on 

my own. 
C5) If I want to apply a method used for solving one physics problem to 

another problem, the problems must involve very similar situations. 
C6) When I solve a physics problem, I locate an equation that uses the 

variables given in the problem and plug in the values. 
C7) I do not expect physics equations to help my understanding of the ideas; 

they are just for doing calculations. 
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C8) After I study a topic in physics and feel that I understand it, I have 
difficulty solving problems on the same topic. 

   
 Although conceptual connections and applied conceptual understanding are 
two separate categories on the CLASS, 4 of the 9 items that make up these two 
categories are included in both.  For that reason, it was practically useful to consider 
both categories together in the coding.  One of the 9 items overlaps with and was 
already discussed in the sense making/effort category.  Because I care only about the 
items and not the CLASS categories for our purpose, I describe only the remaining 8 
items here.   

The first five items (C1 through C5) all roughly have to do with the idea that 
physics consists of a large set of disconnected ideas that require memorization.  In 
problem solving, this view implies that if you don’t know the right equation or 
approach, then you won’t be able to figure it out, and in order for a known approach 
to work, it has to be from a similar type of problem.  Interviewees may indicate a 
disconnected epistemological stance by stating that “there’s just so much to know” or 
that studying involves only memorizing the equations or other ideas.  Alternatively, 
interviewees may disagree with one or more of the first five items and espouse a 
coherence epistemological stance, saying that you can derive all the various equations 
from a small set of basic relations or that topics are coherent and well-structured.   

Another theme in this CLASS category is a “plug-and-chug” approach to 
problem solving, especially in items C6 and C7.  While many PER-based, problem-
solving approaches emphasize an initial conceptual analysis and tying that analysis to 
physics equations (P. Heller et al., 1992; Huffman, 1997; Leonard et al., 1996), a 
plug-and-chug approach might rely on equations as simply tools for turning one set of 
values into other values through algorithmic computation.  Agreeing with a plug-and-
chug approach to using equations is evidence of a disconnected epistemological 
stance, because a more computational approach to using equations does not 
necessarily involve coherence with conceptual or intuitive ideas.  Specific evidence 
for this coding might be an interviewee stating that understanding an equation is 
equivalent to being able to use it in problem solving or stating that the difficult parts 
of problem solving are knowing which equations to use or how to use them.  
Furthermore, one might state that equations are for detailed calculations rather than 
for supporting conceptual understanding and that, in using an equation, the hard part 
is the algebraic manipulations. 

In contrast, interviewees who would disagree with these statements, 
evidencing a coherence epistemological stance, might say that equations are not just 
computational tools, but also express a conceptual meaning.  They may also say that 
equations are a compact way to express meaning that might otherwise be contained in 
words or diagrams, perhaps even giving examples of the kind of conceptual meaning 
conveyed (e.g. F = ma expresses the common sense dependence that if the force 
doubles, then the acceleration should double).   

 
CLASS categories and epistemology interview segments not included in the coding 

There are four categories not included in the coding.  The first is personal 
interest.  This category consists of items probing whether the student enjoys physics 
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and whether they relate the physics they learn to everyday life (which is redundant 
with the real world connection category).  Since I don’t expect interest in physics to 
necessarily be tied to coherence or disconnected epistemological stances, I don’t 
include it in the coding. 
 The second is problem solving general.  The items in this category that are not 
also included in categories discussed so far only have to do with self-efficacy (e.g. “I 
can usually figure out a way to solve physics problems.”), which is also not 
necessarily related to coherence or overlaps in substance with other categories that 
are included.  Therefore, this category is excluded to avoid redundancy and simplify 
the coding scheme.  All of the items in the third category, problem solving 
confidence, overlap with problem solving general.   

The final category not included in our coding scheme is problem solving 
sophistication, which only contains items that are also contained in another category. 

In coding the epistemology segments, only statements about how the 
interviewee approaches learning physics, understands physics equations, and solves 
physics problems are included.  Test-taking strategies or other classroom strategies 
distinct from interviewees’ in-the-moment epistemological stances of what 
knowledge in physics is and how to learn it are not included (e.g. a segment where an 
interviewee describes a test-taking strategy of writing down equations and attempting 
to plug-and-chug to try and get partial credit even though they describe this strategy 
as conflicting with a deep understanding of equations as representing conceptual 
relationships would be coded as coherence.).  Other segments cannot be coded, 
because the segments do not contain sufficient evidence to make a judgment for how 
a student would respond on the CLASS survey.  Finally, some of the prompts ask 
students how they view equations in their math classes, in contrast to physics.  These 
segments are omitted from the results, because the research question in the phase 1 
analysis applies specifically to physics equations and epistemological stances towards 
physics. 
 

Phase 2 Analysis  
During the data collection process, non-physics interview prompts were 

designed to test the plausibility of knowledge deficit explanations over epistemology-
based explanations of the initial absence of symbolic forms-based reasoning in the 
interviews.  These non-physics prompts were designed to include equations 
isomorphic to the velocity equation, and therefore also embodying Base + Change, 
but situated in more everyday kinds of reasoning, related to money in a bank account 
or the speed of a car.  An example of one prompt about money is given here: 

 
• Explain the money equation (with symbols): You start out with $m0, and you 

make $r per day.  How many dollars ($m) would you have at the end of d 
working days?  Could you express the number of dollars ($m) in an equation? 

 
In these modified interviews, these non-physics prompts were asked only if an 
interviewee did not use symbolic forms-based reasoning on the initial prompts related 
to velocity: “explain the velocity equation” and the Two Balls Problem.  If the 
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interviewees then did use Base + Change to explain a “money equation” or a “speed 
equation,” that would provide evidence that they do possess knowledge about and 
facility in using the Base + Change symbolic form, precluding a pure knowledge 
deficit explanation of the initial absence of symbolic forms-based reasoning.  As 
alluded to earlier, in the case of Devon, this is exactly what happens. 
 In Devon’s coding in the previous analysis, only prompts dealing with physics 
equations and epistemological stances towards physics were included: symbolic 
forms are used on 50% of the possible segments (1 out of 2) and an espoused 
coherence epistemology is given in 20% of the possible segments (1 out of 5).  
However, in truth, Devon’s interview also included prompts requiring reasoning with 
non-physics equations as well as epistemological prompts probing his epistemology 
of learning and understanding equations outside of physics.  On these previously 
ignored prompts, Devon uses symbolic forms 80% of the time (4/5 segments) and 
expressed a coherence epistemological stance 100% of the time (2/2 segments)9.  
Devon’s reasoning with and epistemological stances towards equations in and outside 
of physics is remarkably different.   
 Including these non-physics segments raises the question: How can Devon’s 
shifts between the absence and presence of symbolic forms use on the physics and 
non-physics prompts be understood?  In phase 2, through a case study of Devon’s 
interview, I argue that Devon’s reasoning within the interview shifts between two 
distinct modes, consisting of different reasoning with and epistemological stances 
towards equations.  These two different modes and the shifts between them suggest 
he usefulness of epistemological framing, which demands local coherence between 
expressed reasoning and expressed epistemological stances, in understanding 
Devon’s reasoning in the interview.   
 The phase 2 analysis consists of a case study of Devon’s responses to both 
physics and non-physics interview prompts.  A finer-grained look at the details of the 
interview may reveal how, what in unitary models might be interpreted as 
inconsistency, can be understood as shifts between different epistemological frames.  
The goals of this case study are two-fold: (1) to argue that Devon’s initial lack of 
symbolic forms-based reasoning does not indicate a lack of symbolic forms 
knowledge and (2) to illustrate how Devon’s changing reasoning throughout the 
interview can be understood through shifts between coherent sets of conceptual and 
epistemological resources.  This suggests that the results of phase 1 should be 
interpreted through a manifold rather than unitary framework of cognition. 
 
Interview setting and prompts 
 At the time of the interview, Devon is one month into a second semester, 
calculus-based physics course for engineering majors, having taken the first semester 
course in the previous semester.  The first semester of this course covers mechanics 

                                                
9 The coding of Devon’s epistemological stances expressed on non-physics prompts is done by naively 
applying the CLASS categories to learning math and equations more broadly.  Although problematic, 
this coding provides a coarse comparison between Devon’s expressed epistemological stances towards 
learning equations in and out of physics, which motivates more in-depth qualitative analysis in phase 
2. 
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and the second semester covers topics such as oscillations, thermodynamics, 
electrostatics, and circuits.   
 After an initial set of interviews, the predesigned prompts were augmented 
with non-physics symbolic forms prompts based on two criteria: 1) the new prompts 
were to be similar to the two velocity prompts: “explain the velocity equation” and 
the Two Balls Problem, and 2) the new prompts were expected to elicit symbolic 
forms use from students who do not initially use symbolic forms on the velocity 
prompts.  These new, non-physics prompts would be asked if initial reasoning on the 
velocity prompts did not include symbolic forms-based reasoning.  Two sets of such 
prompts were designed: 
 

Money Prompts 
• Explain the money equation (with numbers): Say you have $50 to start 

with.  Working in a bookstore, you can make $40 per day.  If you work 
a regular work week (Monday through Friday), then how much money 
would you have at the end of the week?   

• Explain the money equation (with symbols): You start out with $m0, 
and you make $r per day.  How many dollars ($m) would you have at 
the end of d working days?  Could you express the number of dollars 
($m) in an equation?  [After the interviewee answers] How would you 
explain this to a 12-year old? 

• Two Accounts Problem: You have a friend, Lisa.  To start with, you 
have $50, but Lisa starts with $0.  Both of you work at the same 
bookstore and make $40 per day.  At the end of the work week (M-F), 
how much more would you have compared to your friend? 

 
Speed Prompts 
• Explain the speed equation: Say a car was moving with a constant 

speed, s0 mph, before it started speeding up onto a highway at the rate 
of r mph each second.  After t seconds, what is the speed of the car?  
[After the interviewee answers] How would you explain this to a 12-
year old? 

• Two Cars Problem: One car is moving at the constant speed of 5 mph 
and another at a constant speed of 7 mph.  At the same moment, both 
cars start speeding up at the rate of 10 mph each second.  After 5 
seconds, what is the difference in the speeds of the two cars? 

 
The two types of problems, “explain the [X] equation” and the Two [X] 

Problem, are designed to be similar across the three relevant problem contexts: 
velocity, money, and speed.  All three problem contexts deal with mathematically 
isomorphic equations that take the form [final amount] = [initial amount] + [rate of 
change][time] and can be understood through Base + Change.  The “explain the [X] 
equation” prompts ask interviewees to explain the equation and the Two [X] Problems 
contain the following isomorphic structure: “[Item 1] and [item 2] start at different 
amounts and increase at the same rate for the same amount of time.  After that 
amount of time, what is the difference in amount between [item 1] and [item 2]?”  
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This is the relevant structure that has been shown to afford a blended processing 
shortcut on the Two Balls Problem. 
 Some differences exist for the purpose of eliciting symbolic forms use.  The 
money and speed prompts are designed to be more everyday situations than 
considering velocity, a physics concept.  Specifically for the velocity equation, 
studies have shown that isomorphic equations around more everyday content can cue 
both Change as rate-times-time (Sherin, 2001) and epistemological stances 
supporting the making sense of mathematics (Hammer, 1994).  Also, the “explain the 
money equation” and “explain the speed equation” prompts require the construction 
of an equation rather than just the interpretation of a given equation, drawing on 
research showing that active production can help reveal deep structure (Schwartz & 
Martin, 2004).  Finally, the “explain the money equation” prompt has a numerical and 
symbolic version.  We expected that concrete values rather than symbolic variables 
might help in eliciting intuitive understanding of the equation. 
 If the money prompts are successful at eliciting symbolic forms use, the speed 
prompts aimed to bring this symbolic forms-based reasoning back closer to the initial 
velocity problem context.  Although speed and velocity are very similar content 
topics, we expected that the speed of a car would be closer to everyday kinds of 
reasoning than the velocity equation, an equation from physics class.   
 
Case study analysis of Devon’s reasoning 

Just as in the phase 1 analysis, in phase 2 I consider the symbolic forms 
segments and epistemology segments separately.  I start by contrasting Devon’s 
reasoning on the velocity and money prompts.  Devon’s different epistemological 
stances towards physics and math are consistent with how he reasons on those two 
prompts, respectively.  I then argue that shifts in Devon’s epistemological stances 
contribute to his shifting reasoning within the speed prompts. 
 In arguing that the shift in Devon’s reasoning with equations can be 
explained, in part, by shifts in epistemological stances, there arise many plausible 
alternative explanations for Devon’s shifting reasoning that don’t require attention to 
epistemological stances.  Throughout the analysis, I will pose these alternatives and 
argue that, for some parts of the interview, they alone cannot explain Devon’s 
reasoning.  Showing that these non-epistemological alternative explanations cannot 
completely explain the shifts in Devon’s reasoning supports the explanatory power in 
attending to Devon’s shifting epistemological stances in the interview. 
 

PHASE 1 RESULTS 

Examples of Coding Scheme Application 
 Previous work (Kuo et al., 2013) has presented and coded Alex’s and Pat’s 
work on two prompts, “explain the velocity equation” and the Two Balls Problem.  
Here, I use Alex’s and Pat’s responses on additional prompts from the interviews to 
provide examples of symbolic forms and epistemology segments and of how the 
coding schemes are applied. 
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Symbolic forms segment: explain the pressure equation 
As summarized in the introduction, Alex’s responses to the “explain the 

velocity equation” and the Two Balls Problem interview segments did not incorporate 
symbolic forms-based reasoning, whereas Pat’s did include symbolic forms-based 
reasoning.   Here, I present the coding of Alex’s and Pat’s reasoning on an additional 
symbolic forms interview segment, “explain the pressure equation.” 
 

Explain the pressure equation 
Here’s an equation you perhaps haven’t yet learned.  It’s a formula for the 
pressure at a given depth under the surface of a lake, ocean, or whatever: P = 
Pat top  + ρgh, where Pat top  is the pressure at the surface of the water, ρ is the 
density of water, and h is the distance below the surface.  How would you 
explain that equation to yourself? 

 
 Alex initially treats the equation as a computational tool, similar to how she 
does with the velocity equation.  Later on, she describes the equation as a tool that 
can be used for plotting a graph.  These two explanations treat the equation as an 
algorithmic formalism for computing either values or points on a graph, rather than 
connected to an intuitive meaning through symbolic forms.  Later, Alex points out a 
particular similarity in structure between the velocity equation and the pressure 
equation: 
 

126 A: The structure where, that, if you have an initial value that’s not, that’s 
only dependent on itself plus a set of other values that are being multiplied 
together, I guess in this case, and those two variables are changing, they’re 
usually changing, which gives you a value that’s at any given, a different time 
or a different height or depth, can change the whole equation. But then that 
first one, it’s still going to stay the same, it’s still going to be constant. So, I 
guess it’s an equation that’s mostly dependent on the second, these two, these 
two sets of variables at the end. 
 

Here, Alex provides no evidence that she is treating the second term as a single 
quantity with a conceptual meaning.  Instead, she talks about the ρgh term in the 
equations as a collection of symbols: “a set of other values that are being multiplied 
together.”  Overall, this segment is coded as “did not use symbolic forms.” 
 In Pat’s reasoning on this prompt, he makes a different kind of connection 
between the pressure equation and “more familiar ones:”  
 

112  I: So you mentioned something about that this, you know you try to 
understand it.  It looks analogous to some of the equations you’ve seen before.  
Uh, could you tell a little more about that?  Which equations it is? 
113  P:  Well pretty much any of the kinematic equations that start with an 
initial condition, well a lot of equations start with an initial condition.  So I 
think of Pat top, and I see the other one and think of change and, the other one, 
like in my mind I’m kind of thinking about the area that this equation is 
describing, so you have a point underwater, and you have a single line 
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shooting up to it, and I guess that’s probably where I fall short on the 
equation, because when I think of pressures, I think of areas and there’s not 
really any area involved. 
114  I:  Ok. 
115  P:  But it reminds me of potential energy problems or any problem 
where you have a certain condition and then something else happens to it, say 
a force or energy transfer or something else and you, that’s expressed as a 
change and an initial and final condition. 
116  I:  Ok, so you’re seeing the Pat top as, as the initial condition and then 
the ρgh as the change. 
117  P:  Yes. 
 

Pat’s reasoning here is coded as using the Base + Change symbolic form.  Like Alex, 
he draws a comparison to other ideas from physics he knows, but rather than 
computational or graphical similarities, he points out a similarity in the conceptual 
interpretation.  Much like his interpretation of the velocity equation, Pat connects this 
equation to a conceptual process: you start with a certain condition and “something 
happens to it” that causes a change.  In the equation this is expressed as a change, an 
initial condition, and a final condition, through the three terms in the equation. 
 
Epistemology segment: how do you know when you understand an equation? 

After the problems using the pressure equation, the interviewer asks Alex 
when she knows she understands an equation.  Alex replies: 

 
122  A: I mean, I still don’t even, I mean, I can know this. V equals initial 
velocity plus acceleration, time, like, I can know that equation, but sometimes 
it’s hard, even when you think you know an equation, sometimes it’s hard to 
know when to use it or how to use it or, um, what it really means. 
... 
128      A: Um, because just sometimes when you’re doing a physics problem, 
uh, you know something can seem really complicated, but really it would be 
really simple and you wouldn’t know, you would, there’s just so much to 
know, I guess, that you might not think to realize that maybe I can use this 
basic kinematic equation rather than some really complicated equation. And 
it’s just knowing when to use which equation, I guess.  That can make it hard 
sometimes. 
 

 Alex points out a difference between knowing the form of the equation and 
knowing when to use the equation.  For example, you can know the velocity equation, 
but you might have trouble knowing when you can use it.  She emphasizes that it 
could be simple, but that “there’s just so much to know.”  This aligns with a sense 
that physics involves a lot of disconnected ideas or that there are a lot of ideas to 
memorize. 
 This segment is coded as indicating a disconnected epistemological stance, 
because of the emphasis that there are so many ideas to know, agreeing with items C1 
(Knowledge in physics consists of many disconnected topics) and C2 (A significant 
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problem in learning physics is being able to memorize all the information I need to 
know).  Also, her description of knowing how to use each equation relies on knowing 
when to use an equation in problem solving rather than knowing the conceptual 
meaning behind that equation, agreeing with item C7 (I do not expect physics 
equations to help my understanding of the ideas; they are just for doing calculations). 

In response to this same question, Pat, on the other hand, emphasizes 
understanding what the equation means in relation to the real world:  
 

203  P: I know I really understand an equation when I can tell where each 
of the values, where each of the terms is coming from.  I mean, the first thing 
you need to know is what each of the values represents in a real world 
application of the motion or phenomenon that it’s describing, but I usually 
know when I really understand an equation when I understand what each term 
means and can conceptualize in my head where all of the values are, what 
each term is doing I suppose.  In the sense of, say you have a function or a 
variety of values over a graph or something like that.  Let’s say like, if this 
value is higher, what does that mean for the motion and what does it, err, what 
does that mean for the, what you’re given?  And what does it mean for what 
you get?  And how do they interact with each other?  So if I have all of those 
interactions going together in my head, say for the F equals M A problems. 
204  I: Ok. 
205  P: Then I would know that, it makes sense to me that, uh acceleration 
would be proportional to the force and inversely proportional to the mass just 
from my own experiences, and I would understand what each of those values 
meant in relation to the others and why they are in the positions they’re in. 

 
To understand a physics equation, Pat thinks about a “real world application of the 
motion or phenomenon,” which disagrees with item R3 (The subject of physics has 
little relation to what I experience in the real world.).  He does so in order to 
understand the terms and values in the equation, agreeing with S2 (In physics, it is 
important for me to make sense out of formulas before I can use them correctly.).  Pat 
gives the example of the equation F = ma, with which he considers proportional 
relationships between the three terms.  For him, these mathematical relationships 
make sense in relation to what he knows from his own experiences, agreeing with S7 
(When studying physics, I relate the important information to what I already know 
rather than just memorizing the way it is presented.).  Pat seeks to understand the 
underlying meaning and structure of this equation with respect to his own 
experiences, so this segment is coded as indicating a coherence epistemological 
stance. 
 
Epistemology segment: what’s difficult about math in your physics course? 
 The interviewer asks what’s difficult about math in physics class?  Alex 
replied: 
 

133  A: Um…I’m not, I don’t think I really have trouble understanding the 
math.  It’s usually just, I mean, I can understand the basic equation and you 
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know, like algebra-wise what’s going on, you know, like how they’re moving 
everything around or whatever they’re doing, but it’s usually just that, it’s, it’s 
easy to see the teacher do it and watch him use all the equations, and like, you 
know, whatever order he uses them in, but then when you have to do it on 
your own, it’s sometimes harder to, you know, remember, because there’s just 
so many different types of problems.  So you might think you understand it, 
but then you actually try to do it, like, in a different type of problem, and it 
might not work [laughs]. 

 
Alex’s answer emphasizes the notion that there are different types of problems, and 
that you have to learn a particular methods to solve each type, agreeing with item C5 
(If I want to apply a method used for solving one physics problem to another 
problem, the problems must involve very similar situations).  This, along with a sense 
that it is difficult to remember how to solve each type of problem, is evidence that 
Alex, in this moment, is not treating physics as connected: coming from a small set of 
fundamental relations that can be used to solve many problems that seem different. 
Rather, physics is fragmented, and therefore it is hard to remember all the constituent 
parts, agreeing with items C1 (Knowledge in physics consists of many disconnected 
topics) and C2 (A significant problem in learning physics is being able to memorize 
all the information I need to know).  This ultimately leads to a disconnected 
epistemology code for this segment. 
 The interviewer asks Pat what he finds difficult about the math used in his 
physics course.  In his response, Pat explains the interconnectedness of physics and 
calculus: 
 

277  P: Well I’ve already, I’m a freshman and when I was in high school, 
we had non-calculus based physics, but taking calculus then as well, meshing 
the two is very intuitive, since, I don’t know for sure, but I assume that 
Newton’s contributions to both fields weren’t an accident, and they’re very 
interconnected. 
… 
280  I: Can you tell me what are you thinking about the connection?  You 
said that the two fields are connected? 
281  P: Yeah, in that physical phenomena doesn’t really follow linear 
equations very often. When they do, you’re lucky, but even if it does, there 
are, you think about rates a lot and integration is also very helpful when you 
have a rate and you’d like to get a position, so tools like that have obvious 
applications like the first things you learn, or at least I learned in calculus 
when talking about derivatives and integrals were position, velocity, and 
acceleration graphs and seeing how they relate, how the graphs relate to each 
other, and how the equations relate to each other, the idea of the area under 
the curve or tangential slope. 
282  I: Ok. 
283  P: Just, that’s the most, I think people use that example so often, 
because it’s very intuitive and because you do have a little bit of background 
in that, in that when you’re explaining it obviously velocity is the change in 
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distance over time and acceleration is the change of velocity over time, so 
relating that concept of slope is pretty easy.  The integral is a little bit more of 
a pain, but it also starts to make a little more sense like when you do it over 
time, well suppose, I guess there’s an inverse operation to that as well. 
284  I: Mhm. 
285  P: So the connection between calculus and physics is very clear to me. 
 

Rather than just memorizing facts from calculus and physics, Pat here is describing 
how he relates the ideas of position, velocity, and acceleration to the graphs and 
equations to make sense of the material.  This indicates that he sees these pieces of 
knowledge as connected, disagreeing with C1 (Knowledge in physics consists of 
many disconnected topics).  It also indicates that in learning calculus and physics, Pat 
sees the connections between the two, agreeing with S7 (When studying physics, I 
relate the important information to what I already know rather than just memorizing 
the way it is presented.). Through this, Pat’s statements are coded as indicating a 
coherence epistemological stance.   
 

Results of the Coding 
Illustrating the coding scheme by summarizing Alex and Pat 
 To illustrate how the interview coding is aggregated, the results of Alex’s and 
Pat’s interviews are summarized in tables 4.1 and 4.2 respectively.  Alex used 
symbolic forms on 0 out of 5 of the coded symbolic forms segments and espoused a 
coherence epistemology stance on 0 out of 4 of the coded epistemology segments 
(omitting the ambiguous segment).  Pat used symbolic forms on 4 out of 5 of the 
coded symbolic forms segments and espoused a coherence epistemological stance on 
3 out of 4 of the coded epistemology segments.  This qualitatively aligns with the 
prediction of the original research question: interviews that tend to include symbolic 
forms-based reasoning also tend to include expressed coherence epistemological 
stances.   
 

 
Table 4.1. Results of coding the symbolic forms and epistemology segments in Alex’s interview 
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Table 4.2. Results of coding the symbolic forms and epistemology segments in Pat’s interview 

 
Results of coding the 13 interviews 

The 13 interviews in our data set were coded using the coding scheme.  For 
each interview, I compared the fraction of symbolic forms segments where symbolic 
forms-based reasoning was used to the fraction of epistemology segments that 
provided evidence of a coherence epistemological stance.  The results, shown below 
in table 4.3, are also given as decimal values. 
 

 
Table 4.3: Fractions and decimal values of symbolic forms use and expressed coherence 

epistemological stances in the 13 interviews 
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Plausibility over Statistical Significance 

Note that this is small-N data in two respects: the small number of total 
interviews (13) and the small number of symbolic form or epistemology segments 
within an interview, ranging from 2 to 6.  Additionally, as discussed earlier, there is a 
lack of standardization across these interviews.  Because of these two issues, the goal 
is not to arrive at generalizable statistical claims.  Instead, I consider these results to 
be a rough, overall summary of each interview.   

Rather than providing strong statistical support, I treat the coding as 
qualitative summaries of the 13 interviews.  Looking at the coding results in this way 
suggests some broad trends.  Grouping interviews according to whether they a) tend 
to include symbolic forms use or not and b) tend to espouse a coherence or a 
disconnected epistemological stance, leads to results shown in table 4.4.  The 4 
interviews that are split evenly (fraction = 50%) in either symbolic forms use or 
epistemology coding are omitted from this table, because it’s unclear which way to 
group them.   

 

 
Table 4.4: Grouping interviews according to tendency to use symbolic forms and tendency towards 

coherence/disconnected epistemological stances. 
 

 
 6 out of 9 interviews in this table align with the initial prediction that symbolic 
forms use tends to co-occur with coherence epistemological stances (3 interviews), 
and absence of symbolic forms use tends to co-occur with disconnected 
epistemological stances (3 interviews).  Although we can perform some quantitative 
analyses on this table10, this is not the goal.  Rather, the coding of an interview 
broadly summarizes the results of a qualitative case study, focusing in particular on 
symbolic forms use and epistemological stances towards learning and understanding 
physics and equations in physics.  In this way, 6 interview case studies support a 
connection between tendencies for symbolic forms use and tendencies to express 
coherence epistemological stances. 
 
Qualitative investigation of why 3 interviews go against the prediction 

Looking at table 4.4, how can we understand the interviews that disagree with 
the initial prediction?  These 3 interviews, those of Fred, Sarah, and Scott, are also the 
only ones where the symbolic forms use and coherence epistemological stance 
percentages differ by more than 50%.   What are the implications for the proposed 
connection between epistemology and symbolic forms use?  One possibility is that 
this connection simply does not hold true for these interviews.   
                                                
10 Fisher’s exact test reveals that the probability of this distribution arising (from the constraints that 
out of 9 interviews total, 4 interviews tended to include symbolic forms-based reasoning and 5 tended 
to included “coherence” epistemology statements) given the null hypothesis is p=.32.   



 

 81 
 

Another possibility is that the coding scheme could be improved to better 
capture aspects of epistemologies that might plausibly contribute to symbolic forms 
use.  Looking at the specific interview responses supports this latter interpretation.  
The benefit of the interview data over an epistemological survey in this case is that 
this interview coding also allows for exploration and reinterpretation of the coding 
scheme’s definition of a coherence epistemology.  

For example, Sarah tended to use symbolic forms but also tended to espouse a 
disconnected epistemological stance.  One reason why this might make sense is if the 
coherence/disconnected categories of the coding scheme do not fit exactly with 
epistemological stances that support symbolic forms use.  For example, Sarah, in 
describing a disagreement between her intuition and a demonstration in her physics 
class, stated that she trusts physics equations over her intuition, which was coded as 
espousing a disconnected epistemological stance: 
 

I: Ok, your intuition will tell you that it would end up going that way, but 
what ended up happening is that it sort of went that way. 
S: Yeah, and that's what physics requires.  Like, your intuition can be wrong, 
yes, so you really can't use intuition.  You just have to really rely on your 
equations, and then, you just have to, I guess, know how they have to go. 
Like not from your experience or, yeah, that what I'm saying. 
 

It’s possible that this epistemological stance, coded as disconnected, does not dampen 
symbolic forms-based reasoning.  Although she is stating that she expects the results 
of physical intuition to at times disagree with calculation, this does not necessarily 
imply that Sarah does not seek a conceptual interpretation of the calculations or the 
equations that are used in those calculations.  It is possible that one can take a stance 
that everyday intuition is unreliable for making predictions while simultaneously 
seeing conceptual ways of understanding the more reliable formal calculations.  
 On the other hand, Fred tended not to use symbolic forms but did espouse a 
coherence epistemological stance.  One way this could align with the prediction in the 
original research question is if he seeks coherence between the math and the concepts 
in ways other than symbolic forms use.  For example, while problem solving Fred 
evaluates his final numerical solutions to see if they make sense: 
 

F: Well, um, if, when I get the final answer on the exam, I always think 
about the number I get and think if it's logical or not.  Like, for example if 
I'm solving a problem with a gun shooting a bullet, and for the speed of the 
bullet I get like 5 m/s, that's not logical.  It should be like a couple of 
hundred, maybe even a thousand. 
I: Right. 
F: And if I get a really, number I know is not correct, I'll go back and see 
what I did wrong. 

 
Although Fred is interpreting his numerical solution with his common sense ideas of 
how the world works, he is connecting numerical values, rather than the structure of 
equations, to conceptual meaning.  Symbolic forms-based reasoning with equations is 



 

 82 
 

a separate type of mathematical sense-making from checking numerical solutions 
against common sense.  It is possible that individuals espousing coherence 
epistemological stances seek connections between formal mathematics and intuitive 
reasoning in ways other than through symbolic forms use.   
 These examples point to the fact that the CLASS categories and the coding 
scheme for coherence/disconnected epistemological stances might not match 1-to-1 
with symbolic forms use.  Symbolic forms use is one particular aspect of 
mathematical sense-making, whereas the CLASS categories are meant to capture 
broad information on students’ views towards learning physics.  Further work needs 
to be done to see if the coding scheme derived from the CLASS categories can be 
refined to better target epistemological stances that plausibly contribute to symbolic 
forms use. 
 

PHASE 2 RESULTS 
 The phase 1 analysis sought to establish a connection between symbolic forms 
use and particular epistemological stances.  But should this connection be understood 
as a reflection of a unitary and stable cognitive structure or as a locally coherent 
activation of a subset of manifold cognitive resources?  In the phase 2 analysis, I 
present a case study of how Devon shifts between two modes of reasoning with and 
epistemological stances towards equations in order to support the usefulness of the 
manifold perspective here.  
 

Contrasting Devon’s Reasoning on the Velocity and Money Prompts 
Devon’s interview starts with the same prompts as Alex’s and Pat’s 

interviews: “explain the velocity equation” and the Two Balls Problem.  On these 
prompts, Devon does not use symbolic forms.  After an 11 minute conversation about 
Devon’s experience in his courses, his personal history, and how he approaches 
learning in physics and math courses, the interviewer (Ayush Gupta) asks him the 
money prompts: “explain the money equation (with numbers),” “explain the money 
equation (with symbols),” and the Two Accounts Problem.  On these money 
problems, Devon does display symbolic forms-based reasoning.  Here, I present 
Devon’s reasoning on these prompts in more detail. 

 
Devon explains the velocity equation as a computational tool 

The interview starts with Ayush asking Devon to explain the velocity equation 
to a friend from class.  Devon starts by checking to make sure the units of the terms 
are all the same.  This type of dimensional analysis is a procedure common to physics 
courses.  From there, Ayush asks Devon how he would explain this equation to a 12-
year old middle school student.  Devon replies: 
 

[00:04:39] 
D: I don’t think little kids, middle school kids should know this stuff?   I 
mean, I know I didn't.   My first exposure wasn't until senior year of high 
school, so but if I had to, I’d probably put it in simpler terms.   Like, you 
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know velocity, it’s a vector, but, you know, probably younger kids, middle 
school kids are more familiar with the concept of speed and not needing the 
direction, not needing the magnitude, so if I just keep it in terms like that, you 
know, they get the final speed of an object, you know, you need to know the 
initial, you need to know the rate it accelerates, you need to know the time, 
probably simpler terms, if that makes sense. 

 
 His description of the equation, like Alex’s, focuses on its computational use 
(“…they get the final speed of an object, you know, you need to know the initial, you 
need to know the rate it accelerates, you need to know the time...”).   Devon has not 
provided evidence that he is using Base + Change or any other symbolic form in his 
reasoning here. 
 
Devon shies away from the Two Balls Problem 

Next, when Ayush asks Devon how he would solve the Two Balls Problem, 
he seems apprehensive, checking with Ayush about what exactly the problem is 
asking.  Ayush reassures Devon that he is only interested in how Devon thinks about 
this problem, not whether or not Devon can solve it correctly.  Devon eventually says 
that he wasn’t expecting to have to answer physics problems: 

 
[00:07:00] 
D: I feel so dumb, I feel like I didn’t get anything out of, to be honest, I just 
forgot, OK.   I forgot a lot of stuff over the winter holidays, because that’s the 
way my mindset works.  And I feel on the spot here, under pressure.  I didn’t 
expect to have to answer questions.   I thought it was "what did you think of 
the class?" 
A: Actually, that’s a good thing, what did you think of the class? 

 
At this point, Ayush changes the topic here to talk about Devon’s experiences 

in physics, talk about his personal history, and ask epistemological prompts about 
learning equations in math and physics.  Devon describes himself as a “math guy,” 
which Ayush leverages to introduce the following isomorphic, non-physics problems 
as “math problems.” 

In Devon’s reasoning on the two velocity prompts, there is no evidence of 
symbolic forms-based reasoning.  

 
Explain the money equation  
 On the “explain the money equations (with numbers)” prompt, Devon quickly 
and unproblematically generates the correct equation.  However, there is no evidence 
yet that the Base + Change symbolic form is involved.  Ayush quickly moves on to 
ask Devon the “explain the money equation (with symbols)” prompt.   

Devon immediately writes out the correct equation ($m = rd+$m0), and starts 
to talk about the similarities he sees between this equation and the velocity equation: 
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[00:20:45] 
D: Err, yeah, so, your final, how much money you make is equal to your 
salary per day times the number of days you work plus the initial, yeah... OK, 
I kind of see where you're going now, OK... 
A: Tell me a little bit about, tell me a little bit more about what you were 
saying about where I'm going. 
D: I think you're trying to relate this back to the other velocity equation 
somehow, I don't know.   I mean it's in that form, like your total, I mean your 
final dollars is just like your final velocity and your initial is just like your v0 
and then a would be your rate per day, your dollars per day, I guess and then 
t would be like however many days you work, so, yeah, I mean it's a variable 
of time so… 
A: So, you were seeing these two equations as kind of similar. 
D: Yeah. 

 
Here, Devon sees the connection between the money equation and the velocity 

equation as having the same sort of structure with the same variables (initial, rate, and 
time), but not yet seeing similarity as an underlying Base + Change meaning.  Ayush 
follows up by asking Devon how he would explain the equation to a 12 year old, and 
Devon responds with an answer that incorporates the Base + Change symbolic form: 

 
[00:22:10] 
D: I mean, I'd just I’d probably just read out the problem in its entirety and 
just say "so, now count how many days is between Monday and Friday, you 
know Monday, Tuesday, Wednesday, Thursday, Friday, and that's something 
they can do on their fingers, and so they'd say five.   So, if you work five 
days and you get so much money per each day, what do you do to calculate 
your total earnings for those five days?   And I think by twelve they would 
know, oh just multiply by how much you get per day, OK, and that's going to 
take care of this, the r times d, and then you know to get the total, they 
already know what you start off with so they would know to add it to that. 
A: Why add? 
D: Because you want to have the total, like for, you start off with a certain 
amount, and you want to know how much you have after the week, so your 
initial amount plus how much you earned that week is equal to the total 
amount of money that you have. 

 
Devon explains why rd represents the total earnings for a certain amount of 

time.  Upon further questioning, Devon explains that this quantity (“how much you 
earned that week”) is added to the initial amount to equal the total amount of money.  
This explanation reflects the use of Base + Change, since the conceptual schema of a 
change added onto a base value is tied to the form of the equation. 
 
A blended processing solution on the Two Accounts Problem 

Devon’s solution on the Two Accounts Problem, which is immediate, 
leverages the Base + Change symbolic form: 
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[00:23:46] 
D: You’d have $50 more.   You work the same number of days and you get 
the same amount, so the only difference is the starting, how much you start 
with, so if you had $50 and she had none, then you'd have $50 more than her.  
Because you both get the same amount throughout the week, you both earn 
the same amount through working.   
… 
[00:26:00] 
D: …Basically, for Lisa, you just say your final money is just equal to the 
rate per day times the number of days and just not add your initial to it. 

 
Devon’s solution here uses a conceptual schema applicable to all of the Two [X] 
Problems: “if two things change by the same amount, then the difference between 
them stays the same.”  At the end of his reasoning, he explicitly connects this 
conceptual schema to the form of the money equation.  This reasoning is supported 
by the Base + Change symbolic form, which brings attention to the conceptual 
entities base, change, and final in the equation (Kuo et al., 2013).   
 
Differences between the velocity and money prompts that support different modes of 
reasoning with equations 
 Devon’s use of Base + Change on the money prompts counters any unitary, 
deficit models of Devon’s initial reasoning with the velocity equation.  Although he 
doesn’t use Base + Change in using or explaining the velocity equation, he does so 
with the money equation, so it cannot be that Devon has a “symbolic forms 
knowledge deficit.”  So why does Devon draw on symbolic forms-based reasoning 
for one equation and not the other?  There are several differences in the content and 
substance of these two sets of prompts that may have contributed to the presence or 
absence of symbolic forms-based reasoning. 
 First, the content of the equations is different.  We expect that students have 
more experience reasoning about tangible quantities such as money than with velocity 
and acceleration of objects.  Research has shown that college physics students have 
difficulties in understanding velocity and acceleration, even after instruction 
(Trowbridge & McDermott, 1981).  Sherin (2001) hypothesized that students may 
have difficulty in interpreting acceleration as a rate, because it is a rate of change of 
another rate, velocity.  Although we see no evidence of this here, it is one example of 
a conceptual difficulty that students may have with the topic of velocity that is not 
present with the topic of money.  These conceptual difficulties may suppress 
interpreting terms like at as changes in velocity added onto the initial velocity. 

Second, the tasks ask students to engage with the equations differently.  The 
velocity equation prompt required explaining a familiar equation from physics to a 
student.  The money equation prompts were designed to require the construction of an 
equation from a given set of values.  Constructing the equation may have helped 
Devon see the underlying connection between the structure of the equation and an 
intuitive interpretation of that structure.  Perhaps prompting Devon to construct the 
velocity equation would have elicited Base + Change reasoning as well.  
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Without arguing against the possible influence of these two differences, I also 
aim to show how Devon’s epistemological stances towards understanding physics and 
math in this interview are plausibly connected with his different reasoning with 
equations on the velocity and money prompts.  In the next section, Devon’s 
epistemological stances towards equations in physics and math are compared. 

 

Devon’s Expressed Epistemological Stances Towards Math and Physics 
 Here, I seek to identify Devon’s epistemological stances towards 
understanding equations in physics and math.  The word stance emphasizes the fact 
that Devon’s epistemologies are not modeled as stable beliefs but rather in-the-
moment positions on knowing and understanding, resulting from the in-the-moment 
activation of a subset of Devon’s epistemological resources.  Broadly, Devon’s 
epistemological stance towards physics, as expressed in this interview, is that physics 
consists of a disconnected set of concepts and related equations, whereas he talks 
about math as coherent and well defined. 

Immediately after Devon voices his apprehension towards the Two Balls 
Problem, Ayush takes Devon’s suggestion and segues the conversation to talk about 
what Devon thought of the class.  Subsequently, Devon articulates an epistemological 
stance towards physics as consisting of idiosyncratic concepts: 
 

[00:08:08] 
D: … I can do all these math, like number theory, linear algebra, you know, 
differential equations, but when it comes to physics, there's just so many other 
concepts, like you need to know what happens if there's gravity’s involved, 
what happens if there's no gravity involved, and I just find it just too complex 
for my mind… 
 

Whereas one could view having or not having gravity as special cases in a general 
reasoning framework of kinematics and dynamics, Devon hints at seeing these as 
different lines of reasoning (“what happens if there’s gravity involved, what happens 
if there’s no gravity involved”).  Managing this large set of disconnected concepts 
introduces complexity and a sense of difficulty for Devon. 
 Devon goes on to talk about how he thinks about equations differently in math 
and physics: 
 
 [00:08:42] 

A: So, when you’re looking at equations in physics or equations in math, is 
there a difference in the way you look at them? 
D: Yes, there is.   In the equations in math, it's just so structured, you know, in 
my linear algebra class right now, we’re learning about matrices and how to 
find the reduced echelon form of a matrix, and it's just so structured.  There's 
just one fixed rule of how to solve it.   In physics, there’s just so many 
different cases, you know, like I remember in [my 1st semester introductory 
physics course] there were all those different kinematic equations.   You had 
to use one for one case and it's just... too much.   Yeah. 
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A: Is there a difference in the way you understand math equations versus 
physics equations? 
D: Yeah, I think so.   I understand math a lot easier, because you don't have to 
think of all these different situations.  There’s not gravity involved in one 
case, or whatever, you know. 
A: It's all the special cases that makes the physics much more difficult. 
D: Yes, and it’s in the math too, it’s just, you don’t need to know all these 
concepts like torque, and, you know, spring constants, and if friction is 
involved and, math is just, pure math is just so much easier.   I’m enjoying my 
number theory class right now where we're just learning proofs and 
diophantine equations and, you know, stuff like that, I enjoy that. 

 
Devon describes math as being more structured, and problems having one 

well-defined approach.  However, in solving a kinematics problem in physics, the 
different conceptual factors that can be present or absent from a problem lead to a 
number of different considerations.  For Devon, it’s the consideration of these special 
cases that are difficult in physics, which contrasts with his perception of the 
straightforwardness of math.   

This split in epistemological stances towards math and physics is also present 
when Devon describes his different approaches towards learning equations in math 
and physics.  Later on in the interview, after the 3 sets of isomorphic problems, 
Devon is asked when he feels he understands an equation in both physics and math: 
 

[00:36:02] 
A: When do you feel really comfortable with an equation, when do you feel 
that you really understand an equation? 
D: In physics or math? 
A: Tell me about both. 
D: Well, in physics, I feel comfortable when I memorize the thing, and I 
know all the units that are attached to it.  ‘Cuz as I said, I like, I’m a concrete 
sequential kind of guy in the math, so if I know, if I could see that the units 
make sense, then I know what I'm doing must be right, I don't, I just don’t 
like thinking of the concepts behind it, I don't like thinking of gravity, you 
know, Other people think because of this, because of gravity, it’s going to do 
such and such, I'm not, you know, I like just focusing on units and just if it 
makes sense, and I just memorize the equation, I mean, other people can 
derive the equations by, I don’t know, Newton’s second law or doing the free 
body diagrams and they can derive an equation or a certain kinematic-, but I 
don’t do that, I just think of what makes sense, unit wise, I guess. 

 
Coherent with his stance that what makes physics difficult is all the 

disconnected concepts, Devon’s approaches to learning physics equations explicitly 
avoids these concepts.  Instead of seeking to sort out all of the conceptual issues, 
Devon approaches learning physics equations through memorization.  Although he 
points out that other people might be able to derive equations through more 
fundamental principles and think about physics concepts – what Hammer would take 
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as evidence of weak coherence or weak concepts (Hammer, 1994) – Devon points out 
that his own approach is to memorize the final equation.  

Next, Devon describes how he approaches learning equations in math. 
 
A: And what about math?  When do you feel that you really understand an 
equation in math? 
D: Well, in math, well like, there's so many proofs, and it just makes sense in 
my mind, I don't know, like derivatives and integrals and Jacobian 
transformations.  It just all makes sense to me, because there’s a reason it 
works, and it's just one reason.  It's not like in physics really where there's so 
many different cases like I said before. In math, like if I understand the 
proofs of why it’s that way, and then I'm comfortable using that equation. 

 
 

Devon speaks about equations in math making sense and understanding why 
those equations make sense leads to comfort with using that equation.  Although it’s 
still unclear how or why math equations make sense to him, Devon contrasts his 
understanding of math to physics by saying that math seems more structured and that 
he feels he can make more sense of math.  Importantly, Devon seeks out an 
understanding of the underlying reasons why equations in math work or make sense, 
whereas he just memorizes physics equations to explicitly avoid dealing with the 
underlying physics concepts behind the equations. 

These different epistemological stances towards equations in physics and 
math align with his symbolic forms use on physics and money prompts.  Devon’s 
epistemological stance towards physics concepts as a set of disconnected ideas and 
rules likely suppresses symbolic forms use.  Because these concepts overly 
complicate physics for Devon, he does not seek the underlying meaning of equations.  
Since symbolic forms, such as Base + Change, represent one underlying conceptual 
meaning of equations, avoiding the underlying conceptual meaning of physics 
equations likely suppresses symbolic forms-based reasoning with those equations.  
On the other hand, Devon’s epistemological stance towards math is that it is well-
structured and “makes sense,” leading to learning approaches that seek the underlying 
reasons why equations make sense.  Seeking the underlying meaning of why 
equations make sense likely supports the use of symbolic forms, intuitive ways to 
understand the underlying structure of equations. 

Furthermore, there is explicit evidence that the velocity prompts are seen as 
“physics” in the interview and that the money prompts are seen as “math” in the 
interview.  The velocity equation is introduced as an equation that he might have seen 
in his physics course, and in deferring solving the Two Balls Problem, Devon says 
that he forgot a lot over the winter break, suggesting that he views the velocity 
prompts as relating to last semester’s physics course.  For the money prompts, the 
interviewer introduces them as “math” questions, building off Devon’s discussion on 
the distinction between math and physics.  At the end of the interview, Devon himself 
indicates that he viewed the Two Accounts Problem as a “math” problem.   

In the language of epistemological framing as the assembly of a set of 
coherent conceptual and epistemological resources, Devon epistemologically framed 
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the velocity prompts by drawing on conceptual resources supporting “plug-and-chug” 
and epistemological resources supporting physics as idiosyncratic and made 
complicated by the various concepts.  By contrast, he framed the money prompts by 
drawing on symbolic forms for reasoning with the equation and epistemological 
resources supporting math as “making sense.”  These two different modes of 
epistemological framing can help us understand the connections between Devon’s 
expressed epistemological stances in the interview towards physics and math with his 
reasoning with equations on the velocity and money prompts, respectively.   

Again, although I describe Devon’s epistemological stances towards 
“physics” and “math,” the manifold perspective I adopt here suggests that these 
stances towards the disciplines of physics and math do not necessarily represent 
stable epistemological beliefs about the two disciplines.  Based on the stability and 
consistency of Devon’s epistemological stance towards math in the interview, one 
might suspect that Devon, in general, tends to view math equations as making sense 
and seeks to understand the proofs behind why those equations work.  Although this 
tendency may be true, it is similarly possible that, in a particular situation, Devon 
may enact an epistemological stance supporting the memorization of an equation 
when dealing with particular difficult topics in math.   

Using this case study, connections can be drawn between Devon’s reasoning 
with the velocity and money equations and Devon’s epistemological stances towards 
physics and math, respectively.  Going further into the interview, I argue that this 
alignment can help explain finer-grained dynamics in Devon’s reasoning that are not 
apparent from the coarse coding of Devon’s reasoning and epistemological stances on 
the physics and non-physics prompts alone. 

 

Shifts in Reasoning with Symbolic Forms on the Speed Prompts 
 The third and final set of prompts relate to the speed of cars.  These prompts 
were designed to bring the problem content closer to velocity while still maintaining a 
sense of everyday reasoning.  
 
Devon explains the speed equation as a computational tool, at first 

Devon again makes an explicit connection to the past problems.  He 
constructs a similar equation (s=s0+rt) and points out that it’s similar to previous 
equations in the structure of [final value] = [initial value] + [rate of increase][time].  
To try to get Devon to articulate the intuitive meaning behind the equation, Ayush 
prompts Devon to explain the equation to an 8th grader: 

 
[00:27:47] 
D: Um... Well, I mean, it’s, it's a little tougher conceptually than doing 
money, because when you're, you can't really, I mean with money, it’s so 
much easier, ‘cause it's just like basic numbers. It's a physical amount, and 
here you’re dealing with all these concepts, like speed, you know, it's not 
like something you can hold, you know, so I guess I'd say, I’d actually 
assign numbers to these.  OK.  Probably that would be the best way to do 
it… 
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Devon generates hypothetical values to plug into the equation in order to explain it 
more easily.  In the end, he explains the equation as a computational tool, saying that 
he would also show the 8th grader how the units of the equation work out. 

Here, Devon himself identifies a difference between this prompt and the 
velocity and money prompts: speed is not a tangible object, like money is, making the 
explanation of the equation more difficult.  Granted, this comes in response to 
needing to explain to an 8th grader rather than in developing his own understanding of 
the equation.  But even still, that Devon is conscious of this difference here provides 
some evidence that this difference is salient in his own reasoning.  His explanation 
treats the equation as a computational tool and involves checking the units, two 
similar pieces to his explanation of the velocity equation.  

Ayush then continues this line of questioning, leading to a different 
explanation of the equation: 
 

[00:29:36] 
A: OK, so I'm wondering, OK, I’m the 8th grader now and I'm wondering, I'm 
going fifty miles per hour, and I speed up 2 miles per hour every second and 
I'm wondering, at the end of ten seconds, how much is my speed?   So, I'm 
still wondering how I get to the final speed. How would you explain that to 
me…as an 8th grader? 
D: I messed up in my last reasoning I guess. 
A: No, meaning, so far everything is good, I'm just trying to, you know, I'm 
being an annoying 8th grader who’s… 

 
Devon interrupts, noticing that he made the previous unit cancellation too 
complicated, because he tried to convert all the “hours” into “seconds,” which is 
unnecessary to show that the units work out.  He then initiates a Base + Change 
explanation of the equation, using some of the specific values he invented earlier. 

 
[00:30:33] 
D: …I don't know, I could just say, look at it this way. You’re going ten 
seconds, and you know you're going two miles per hour faster each second, so 
two times ten.  What is the total miles per hour you increase in that ten 
seconds then, so two times ten.  That's twenty, so twenty plus your initial fifty 
miles per hour, so the final would be 70 miles per hour.   There you go. 
A: 8th grader is happy. 

 
In this exchange, Ayush restates his question, trying to get Devon to articulate 

a deeper conceptual meaning.  Devon interprets this as a signal that he has given an 
incorrect explanation.  Ayush assures Devon that his reasoning so far is appropriate, 
but that he is playing the role of an “annoying 8th grader.”  Devon then plunges into 
an explanation incorporating Base + Change: the rate times the time tells you “the 
total miles per hour you increase in that ten seconds” and so adding that to the initial 
speed will give the final speed.  Ayush comments that this satisfies the annoying 8th 
grader.   
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 Devon here begins his explanation with one similar to his explanation of the 
velocity equation, a computational tool, and moves to one similar to his explanation 
of the money equation, incorporating the Base + Change symbolic form.  In this shift, 
the effect of Ayush’s continued questioning is apparent.  Ayush has expressed some 
dissatisfaction with Devon’s first answer, so he gives another.  In this way, Ayush 
signals that he is seeking a deeper explanation, which Devon initially interprets as 
signaling an error, and he takes up the question as requiring a different type of 
explanation.  Had Ayush expressed such dissatisfaction with Devon’s reasoning on 
the velocity problem, it’s possible that Devon may have given a symbolic forms-
based interpretation of the velocity equation.   
  
Possible hypotheses of what Devon will do on the Two Cars Problem 

Based on the interview so far, what reasoning should we expect from Devon 
on the Two Cars Problem?  There is evidence to suggest two different possibilities.   

Devon may use symbolic forms-based reasoning here.  By this time in the 
interview, Devon has shown facility in using Base + Change to explain the money 
and speed equations and on the Two Accounts Problem.  On the money prompts, he 
showed facility in using Base + Change to explain the equation he constructed, and 
he used a blended processing solution on the Two Accounts Problem.  Devon has 
been building connections between the problems, explicitly pointing out the similar 
structure of the three equations.  All of this supports the use of Base + Change on the 
Two Cars Problem for blended processing. 
 However, there is also reason to suspect that that Devon will not use symbolic 
forms-based reasoning here.  Devon has pointed out here that thinking about speed is 
a little more difficult than thinking about tangible quantities like money.  His initial 
explanation is more computational (“just plug it in here”), and it is only from the 
further prompting from Ayush that Devon starts to articulate symbolic forms-based 
reasoning.  So it is reasonable to project that Devon’s solution to the Two Cars 
Problem will be more computational, at least before further prompting from the 
interviewer.  
  
Devon’s reasoning on the Two Cars Problem: an initial computation use of 
equations, followed by a shift to symbolic forms use 

What actually happens is neither of these two predictions: Devon starts down 
a computational path, and then spontaneously sees the blended processing solution on 
his own. 

Devon starts out by referencing the previous numerical computation he 
performed for his initial explanation to the 8th grader in the previous prompt, but then 
realizes the applicability of the blended processing shortcut from the previous 
problems: 
 

[00:31:43] 
D: I’d do it the same way I did it in the last problem, but just do it twice, and 
then find the difference.   So I can just say this is car one and this is, s0 would 
be five miles per hour plus um ten is your rate, ten miles per hour is your rate, 
times for each second, times the five seconds that it’s asking for and so those 
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cross out, and you’re left with five plus fifty equals fifty five miles per hour.  
So that would do it for car two, except make the s0 be 7... oh, man, I'm 
so stupid. [laughs]  Duh.  It’s just the 2 miles per hour difference.  I didn’t 
even have to do all that. [laughs]  I’m realizing it, like, that that was 
extraneous math. 

 
 
 

 
 

Figure 4.1. Devon’s written work on the Two Cars Problem 
 
Figure 4.1 shows Devon’s work up until the point that he makes his realization.  The 
use of “oh” in the moment when he makes his realization signals the beginning of a 
repair activity, where the reasoning that comes after is meant to replace what came 
before (Schiffrin, 1999).  Devon explicitly says that the previous reasoning was 
extraneous, and he goes on to articulate another solution to the problem: the blended 
processing solution. 

 
A: Why do you say that? 
D: Because the rate at which they speed up is the same so, and the time 
allotted for the problem, five seconds for each car so, the rate is the same, so 
you know that it's going to be the same difference at the end, after you add 
the initial speed. It's just like the other problem with the, with Lisa, it’s just 
like the money problem, yeah, in that I didn’t even have to do the math 
because I knew fifty minus zero is fifty, and here seven minus five is two, so 
yeah. 
I: So you could have, so somebody could have answered this question 
without doing the calculations? 
D: Yes. Because the added miles per hour added to each car is the same. How 
much you add to the initial, that's why, so it doesn't matter if it's after the five 
seconds or not.  Since they’re speeding up at the same rate, you just take 
whatever the initial speed is to find the difference. 

Devon explicitly connects his solution to the Two Accounts Problem, where he didn’t 
have to do the math.  His solution uses the same blended processing schema in the 
Two Accounts Problem.  He refers explicitly to a Change being added onto a Base  
(“…the added miles per hour added to each car is the same. How much you add to the 
initial…”). 
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What explains these shifts between computational and symbolic forms-based 
interpretations of the speed equation?  Of the three differences I described earlier 
between the prompts – (1) differences in the specific content (velocity vs. money vs. 
speed), (2) differences in explanation versus construction of an equation in the 
prompts, and (3) differences in the persistence of interviewer questioning – the 
second and the third are easily excluded.  Although the “explain the money equation” 
and “explain the speed equation” prompts are different from the “explain the velocity 
problem” in that they require construction of an equation in addition to explanation, 
none of the Two [X] Problems differ in this way.  If he could immediately see the 
blended processing solution on the Two Accounts Problem, there wasn’t any obvious 
difference in what the Two Cars Problem was asking Devon to do that would 
obviously lead to added difficulty in seeing this same.  Similarly, although Ayush 
asks Devon for an elaboration, it is after Devon himself realizes that the problem can 
be solved through blended processing, so the shift cannot be explained simply with 
further interviewer questioning.   

One relevant difference is the difference in content, from money to the speed 
of the car.  The topic of speed brings the interview prompts back to kinematics, 
although slightly less formally and more related to everyday experience and language.  
Devon explicitly says that more abstract concepts such as speed are harder to explain 
than more tangible objects, like money.  

In addition to differing levels of abstractness, I argue that the differences 
between velocity, money, and speed are also connected to different epistemological 
stances.  Money is both more “concrete” and also connected to, in this interview, 
epistemological stances that better support symbolic forms use than velocity is.  That 
Devon’s reasoning with equations on the speed prompts shift from more 
computational or “plug-and-chug” approaches to symbolic forms use suggests that 
there is some feature of the prompts that is, in some sense, “in-between” the two 
epistemological stances he espoused earlier.   

Supporting this interpretation, at the end of the interview, Devon provides 
evidence that he viewed the Two Cars Problem as “in-between” in terms of his 
epistemological stances.   After the three sets of prompts, the interview again moves 
to the topics of Devon’s future plans and his experiences with math and physics.  
Ayush then asks Devon whether he viewed the Two Cars Problem as a “math” or 
“physics” problem.   

 
 [00:45:23] 

A: So I'm wondering, when you saw the Lisa problem, or when you were 
looking at the whole "how much do you earn" kind of thing, did you think of 
it as kind of a math thing or a physics thing? 
D: A math thing. 
A: But when we came to the car problem, did you look upon that as a…? 
D: Not really.   I still looked at it like math.  I like problems like these, but 
when it gets to kinematics and advanced concepts, that's when it starts.   

 
Although, ultimately, Devon viewed the Two Cars Problem as “math,” he also states 
that this problem is close to kinematics concepts in physics.  When he refers to “when 
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‘it’ starts,” he is plausibly referring to his epistemological stance that physics consists 
of many disconnected concepts and equations.  That Devon views the Two Cars 
Problem as both “math” and as starting to get into physics concepts helps to explain 
the shifts in Devon’s approaches on “explain the speed equation” and the Two Cars 
Problem.  One way to explain why Devon doesn’t immediately leverage the 
isomorphism between the money prompts and the speed prompts to immediately 
assert a solution that avoids explicit computation or the Base + Change interpretation 
of the equation is that he initially views this problem as starting to deal with physics 
concepts, and therefore requiring his usual approach with physics problems and 
equations. This plausibly explains why Devon’s initial explanation of the speed 
equation similarly doesn’t leverage symbolic forms. 
 By the end of his work on the speed prompts, Devon has used symbolic forms 
on the two speed prompts.  It could be that after some initial work, Devon was able to 
see the similarity between the speed prompts and the money prompts.  What is 
consequential for my explanation is that Devon finally saw the Two Cars Problem as 
“math”.  This supports the idea that Devon’s shift towards symbolic forms-based 
reasoning reflects an overall shift in his epistemological framing, which then also 
includes a shift to an epistemological stance that supports making sense of equations.  
 

DISCUSSION 

Establishing a Connection Between Symbolic Forms-based Reasoning and 
Coherence Epistemological Stances 
 The coding of Alex’s interview, Pat’s interview, and 4 others for symbolic 
forms use and coherence/disconnected epistemological stances support the initial 
prediction in the research question: symbolic forms use tends to co-occur with 
coherence epistemological stances.  Although this fits with previous research on the 
connection between student reasoning and student epistemologies, previous studies 
have not investigated this connection between epistemology and specific cognitive 
elements, such as symbolic forms, which correspond to specific ways of reasoning 
with mathematical equations in physics.  Although 3 interviews break this pattern, 
closer analysis of the specific responses in the interview hint at the coarseness of this 
coding scheme for epistemology and suggests possible revisions could increase 
alignment between the coherence epistemology coding scheme with epistemologies 
that plausibly relate to and support symbolic forms use.  This work can inform the 
design of future studies that increase standardization and sample size, to study the 
broad generalizability of this connection that we illustrate across 6 interview case 
studies.   

Although not generalizable, these 6 case studies that illustrate the connection I 
seek to show, pointing towards epistemology being consequential for student 
reasoning and away from descriptions of reasoning that only consider conceptual 
knowledge.  Again, it must be that knowledge of and facility in using symbolic 
forms-based reasoning is important, but that models of student reasoning that only 
consider conceptual knowledge miss this connection to epistemology, providing a 



 

 95 
 

plausible alternative, in some cases, to pure knowledge deficit explanations of 
“naïve” student reasoning. 
 

Manifold Cognitive Frameworks as a Theoretical Lens for Seeing Where 
Students Are and Where They Can Go 

In Devon’s case study, one factor connected to his reasoning on the different 
problems is his epistemology - specifically, his epistemological stances towards math 
and physics in this interview.  However, the way in which this connection is modeled, 
either as instantiations of a unitary or of a manifold cognitive network, is 
consequential for diagnosing where students are and for plotting a trajectory of how 
to help these students develop problem-solving expertise. 

Beyond just Devon, unitary and manifold frameworks for cognition lead to 
different interpretations of the coding results in phase 1.  The coding broadly 
categorizes interviews for the tendencies to use symbolic forms or espouse a 
coherence epistemological stance.  These tendencies can be interpreted in two ways.  
Through a unitary lens, interviews that tend not to include symbolic forms-based 
reasoning or coherence epistemologies suggest deficits in those two areas.  These 
unitary interpretations would prescribe explicit instruction on symbolic forms – what 
they are and how to interpret particular equations with them in explanations and 
problem solving – or explicit instruction to develop more sophisticated 
epistemologies.   

However, for Devon, a different intervention was successful in eliciting 
symbolic forms-based reasoning.  The interviewer asks Devon to reason about other 
equations, on which it is expected that he will more likely use symbolic forms such as 
Base + Change, and this leads to symbolic forms-based reasoning in the interview.  
The success of this weaker intervention precludes a knowledge deficit interpretation 
of Devon’s initial “plug-and-chug” explanation of the velocity equation.  The 
interview built towards helping Devon see a facet of his own existing knowledge as 
relevant for reasoning with the velocity equation.  It must be that Devon’s knowledge 
about equations is manifold: multifaceted and contextually activated.   

Devon’s case study also suggests that his changing reasoning with equations 
in the interview is tied to changing epistemological stances towards understanding 
equations.  The non-physics prompts were designed from the research team’s intuitive 
expectations that they would elicit more everyday types of reasoning.  Devon’s 
responses in the interview suggest that the non-physics prompts accomplish this by, 
in part, supporting different epistemological stances towards knowing equations.  Just 
as with Devon’s reasoning with equations, the interview did not include explicit 
epistemological instruction.  It must be that Devon’s epistemology is also manifold: 
multifaceted and contextually activated. 

In the education literature, conceptual change is a hotly debated process.  How 
can we model individuals’ knowledge from their expressed reasoning, and how can 
we understand how that system of knowledge evolves in the progression from novice 
to expert?  One approach is to investigate and model microgenetic change in short, 
detailed episodes (e.g. Barth-Cohen, 2012; Gupta & Elby, 2011; Levrini & diSessa, 
2008; Rosenberg et al., 2006; Schoenfeld, Smith, & Arcavi, 1993).  These studies 
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differ from pre-post survey studies by aiming to study how student reasoning changes 
over a brief episode, in order to understand processes of change.  Devon’s case study 
is one such example: through a sequence of interview prompts, Devon’s reasoning 
with equations changes.  In this case, Devon’s reasoning throughout the interview 
illustrates one possible trajectory for learning to reason intuitively about physics 
equations by building on productive pieces of prior knowledge for interpreting 
algebraic equations more generally rather than requiring the acquisition of completely 
foreign knowledge and ways of thinking.  Additionally, the success of the non-
physics prompt sequence in tapping into Devon’s productive knowledge for 
interpreting equations in intuitive ways suggests a possible design for instructional 
sequences. 
 

Instructional Implications 
  Although this interview is not explicitly a teaching experiment, Devon’s 
reasoning throughout the interview provides a possible instructional sequence for 
helping students see the intuitive meaning embedded in physics equations.  By posing 
isomorphic, but more everyday and familiar, problems to Devon, the interviewer 
seeks to help Devon tap into the symbolic forms-based reasoning that he himself, in 
other contexts, uses.  Although Devon’s shifting reasoning on the speed prompts 
points to possible disruptions in the connection between Base + Change and the 
velocity equation for Devon by the end of the interview, this sequence could provide 
a starting point for helping students to see the symbolic forms in physics equations.  
Similarly, instructors could devise other sets of mathematically isomorphic equations 
and problems that might help students see how other ways in which students already 
understand equations are useful for understanding physics equations.   

To evaluate the efficacy of Devon’s interview as a possible instructional 
sequence, I present here the end of Devon’s interview, where he is asked to 
reconsider the Two Balls Problem, the problem that Devon originally does not want 
to attempt to answer.  At the end of the interview, Devon sees the blended processing 
solution to the Two Balls Problem. 

 
[00:46:33] 
D: I'm thinking, so you throw one ball down with an initial speed.   When you 
throw it down, does that mean there’s a force that you add to it to make it go 
at that initial speed? 
A: Yeah, One ball I throw down.   I throw one at 2 m/s and the other one I just 
let go.   So one I let go and the other, I’m throwing it down at the same 
instant. 
D: Uh... alright, well, alright, I’ll just take a guess.  I guess it’s going to be 
equal to 2 m/s because, treating this, see, I don't even understand if it works 
this way, but treating this like the other ones, you have your initial speed and 
it's 2, whereas the other ball is zero and it goes down at the same rate and the 
same amount of time, so, well, ‘cause the rate.  The acceleration due to gravity 
is always the same for any object in free fall, 9.8 m/s, 10 m/s, so I guess just 
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like that, times the five seconds to get your meters per second and then you 
add that to initial to get your final. 
A: OK 
D: But like, the reason I’m wary is I don't, I mean, I know that if it's in free 
fall, I’m just so confused. I know if it's in free fall, then acceleration due to 
gravity is 10 m/s2, but I don’t know if it changes if there’s a force added to it.  
Yeah, so I'm just confused about stuff like that, you know? 

 
Devon’s reasoning with the Two Balls Problem at the end of the interview 

indicates two aspects of the success of the interview sequence.  First, Devon sees the 
blended processing solution that he used on the Two Accounts Problem and 
(eventually) on the Two Cars Problem as possibly fitting the Two Balls Problem, 
which he did not express initially in the interview. 

Second, Devon also explains a conceptual confusion that keeps him from 
answering with certainty: the acceleration changes if the applied force changes, and 
Devon expresses his confusion about whether the thrown ball experiences an extra 
force from the throw that changes the acceleration during its fall.  This is consistent 
with documented student ideas that applied forces persist with objects (McCloskey, 
1983). 

In previous work (Kuo et al., 2013), we argued that because symbolic forms 
directly leverage intuitive conceptual ideas rather than formal physics concepts, 
students can learn to use symbolic forms in understanding physics equations in 
parallel with, rather than after, learning difficult physics concepts.  Here, Devon 
shows that the blended processing solution may even provide an opportunity for 
articulating and grappling with a difficult physics concept.  
 It’s important to note that this conceptual difficulty cannot be responsible for 
the lack of symbolic forms-based reasoning in explaining the velocity equation, 
because the “explain the velocity equation” prompt doesn’t contain any references to 
any applied forces, nor does Devon reference a difficulty in determining the 
acceleration from the force. For these reasons, this conceptual difficulty alone can’t 
explain Devon’s initial “plug-and-chug” explanation of the velocity equation.   
 Along with symbolic forms-based reasoning, coherence epistemological 
stances are also a target of physics instruction for two reasons: (1) such stances are 
connected to success in learning physics (Hammer et al., 2005; Perkins et al., 2005) – 
and specifically, in this study, symbolic forms use – and (2) coherence 
epistemological stances themselves are an intrinsic goal of science education and a 
marker of scientific expertise (Bing & Redish, 2012; Redish et al., 1998).  Using 
isomorphic equations that get closer and closer to physics concepts, the goal is to 
scaffold Devon into drawing on both symbolic forms and epistemological stances that 
support seeking an underlying meaning and understanding of why equations make 
sense.  In fact, the success of the money and speed prompts in helping Devon activate 
symbolic forms-based reasoning in the interview depends on these prompts tapping 
into certain epistemological stances that support symbolic forms use.  The success of 
instructional sequences for developing symbolic forms-based reasoning with physics 
equations depends crucially on whether this sequence can tap into these 
epistemological stances.  
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How the Case Study Supports (and Goes Beyond) the Coding 
 This case study of Devon illustrates how such analyses can support our 
original coding scheme.  By studying Devon’s work on the velocity prompts and the 
money prompts, along with his explicit epistemological stances towards math and 
physics equations, the differences between Devon’s symbolic forms and 
epistemological coding on the physics and non-physics prompts can be understood.  
This case study builds on the coding for understanding Devon’s shifting reasoning in 
the interview.   

Additionally, this case study goes beyond the original coding by showing 
shifts that are finer-grained than those captured in the coding.  In the coding scheme, 
Devon’s reasoning on the “explain the speed equation” and Two Cars Problem 
segments are both simply coded as “used symbolic forms.”  Because the coding 
scheme attends only to the presence or absence of symbolic forms-based reasoning, 
the shifts present in Devon’s reasoning were not even initially apparent.  Yet, in order 
to fully understand Devon’s reasoning, these shifts add on another layer of moment-
to-moment understanding of Devon’s reasoning and his epistemological stances.  
 Another aspect lost by the coding is time ordering.  By summing over the 
symbolic forms and epistemological interview segments for the physics and non-
physics prompts, the sense of Devon’s trajectory through the interview is lost.  The 
non-physics prompts were designed as a sequence that would cue symbolic forms 
use, eventually bringing the problems closer to the original kinematics problem 
content.  The coding loses this sense of a trajectory, totally ignoring a sense that each 
prompt is connected to and building on what has come before.  As an extreme 
example, Devon’s reasoning on the Two Balls Problem is simply coded as “used 
symbolic forms,” neither taking into account his initial apprehension towards the 
problem nor how his final answer depends on the long sequence of prompts in the 
interview that came before. 
 

Beyond Just Conceptual Knowledge and Epistemology 
 To make the case that it is productive to look beyond conceptual knowledge to 
understand the presence or absence of symbolic forms-based reasoning in 
undergraduate physics students’ reasoning with equations, I, in this paper, point out 
that certain epistemological stances are aligned with symbolic forms use.  However, 
this is not to say that conceptual knowledge and epistemology are the only factors 
relevant for understanding student reasoning.   
 For example, for Devon, it is clear that his affect plays a role in his reasoning 
in the interview.  When the Two Balls Problem is initially posed, Devon’s uncertainty 
towards physics and nervousness in the interview support his not wanting to even 
attempt the problem.  One possible influence of the interview could be that it puts him 
at ease and makes him feel that it’s safe to articulate his thinking on the Two Balls 
Problem when posed at the end of the interview.   

In other parts of the interview not presented in this paper, Devon talks about 
his personal histories with physics and math, and how negative experiences in physics 
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and positive ones related to math have led him to shift his major from engineering to 
secondary math education.  The disciplines of physics and math in this interview 
carry different affective responses in addition to the different epistemological stances 
Devon takes towards understanding equations.  Future work can enrich the 
understanding of cases such as Devon’s by layering on attention to other factors, such 
as affect, in addition to attention to conceptual knowledge and epistemology to 
understand the dynamics of student reasoning.   
 

CONCLUSION 
 In this paper, I have made several arguments.   
 

1) The absence of symbolic forms-based reasoning does not necessarily imply a 
knowledge deficit.  Symbolic forms are a cognitive element that are connected 
to epistemological stances that value coherence between physics equations 
and underlying conceptual meaning as well as coherence between the formal 
ideas of physics and everyday life.  Therefore, the absence of symbolic forms 
from reasoning with equations could be due alignment with a disconnected 
epistemological stance. 

2) Manifold models of cognition that treat reasoning as the dynamic activation of 
a subset of an individual’s cognitive resources are more productive for 
understanding Devon’s reasoning and shifts between his different modes of 
reasoning with equations. 

3) Although the coding scheme is beneficial for illustrating broad patterns, it 
misses these fine-grained shifts in reasoning and ignores the consequentiality 
of the time ordering in the interview, which can be recovered by case study 
analysis. 

4) The case study helps illustrate the two coherent modes around Devon’s 
reasoning, as well as finer-grained shifts between the modes of reasoning.  But 
more than classifying Devon’s reasoning or epistemology, this illustrates one 
way that students can tap into their prior knowledge for viewing symbolic 
forms as useful in understanding and using physics equations and suggests 
one type of instructional sequence for doing so. 
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Chapter 5:  Looking Beyond Content and Structure to 
Understand Transfer of Mathematical Approaches Across 

Disciplinary Contexts  
 

INTRODUCTION 
The transfer of content knowledge across courses in different disciplines is a 

common goal in a multidisciplinary education system.  This is especially true in, 
although not unique to, physics, which relies heavily on mathematics– a reliance that 
is reflected in the prerequisite mathematics courses required for enrollment in most 
physics courses.  Physics instructors hope that students will use the mathematics they 
learn in math class in order to make sense of and solve problems in physics.  Just as 
introductory physics courses build on ideas from calculus, electrical engineering 
courses build on ideas from differential equations, and introductory biology courses 
build on ideas from introductory chemistry and physics. 

However, sequencing disciplinary courses hierarchically to build on one 
another appears to be an inefficient or ineffective method for aiding students in 
learning that content and bringing it into another disciplinary course.  Many efforts in 
aligning content across courses in different disciplines have been documented (e.g. 
Al-Holou et al., 1999; Dunn & Barbanel, 2000; Elliott, Oty, McArthur, & Clark, 
2001; Loverude, Kautz, & Heron, 2002; Plomer, Jessen, Rangelov, & Meyer, 2010; 
Watkins, Coffey, Redish, & Cooke, 2012).  These courses typically reorganize the 
topics covered in two or more disciplinary courses such that related topics are 
covered at the same time in an organized manner.  The common goals of these 
multidisciplinary reforms are to avoid haphazard coverage and content misalignment 
while also decreasing the compartmentalization of content knowledge in order to 
encourage transfer (Al-Holou et al., 1999).   
  These goals align with views of transfer that focus on the content as 
explanatory in understanding why transfer succeeds or fails.  Yet, more modern 
perspectives on transfer look beyond this attention to content and structure.  I argue 
that interdisciplinary efforts can similarly benefit by shifting their attention beyond 
the alignment of content knowledge.  In this paper, I show that attending to both a 
student’s epistemological stances and his feelings of being accountable towards 
recalling particular pieces of knowledge can help explain why he takes different 
approaches to solve similarly structured problems that are situated in different 
disciplinary surface features.  In other words, attending to these features, and other 
features of this type beyond the content the problems, can aid in understanding what 
impedes the transfer of knowledge across disciplines. 
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LITERATURE REVIEW: WHAT KINDS OF FACTORS CAN 
EXPLAIN SUCCESS OR FAILURE IN TRANSFER? 

The phenomenon of transfer has been defined as “the ability to extend what 
has been learned in one context to new contexts” (Bransford et al., 1999, p. 74).  
While this phenomenon is clearly central to the interests of education research, there 
is much theoretical disagreement about what is learned, what is transferred, and what 
counts as a valid or useful investigation of transfer (Beach, 1999; Greeno et al., 1993; 
Lave, 1988; Lobato, 2006; Schwartz, Bransford, & Sears, 2005).  Yet, even in light of 
these theoretical disagreements, having students extend, in some way, what is learned 
in one disciplinary context to another remains an important goal.   

Attempts to support transfer across disciplines typically focus on the relevant 
content knowledge or similarities and differences in the structures of the disciplinary 
problem contexts.  However, there are cases where this attention to content and 
structure is insufficient for fully understanding the transfer of relevant content 
knowledge.  In this paper, I argue that newer transfer perspectives that expand their 
focus beyond content and structure can provide useful tools for understanding the 
transfer of knowledge across disciplines.  In what follows, I elaborate on how this 
argument is instantiated in the literature. 

 

Views of Transfer that Focus on Content and Structure 
Most research into transfer attends primarily to the content knowledge being 

transferred or how this content is tied to the structure of the different problems across 
which knowledge is to be transferred (Barnett & Ceci, 2002; Schwartz & Nasir, 
2003).  Classical notions of transfer depend on constructions of mental 
representations of an initial learning and transfer situation.  Transfer of knowledge 
occurs when these two representations are similar enough that knowledge or 
approaches applicable to the initial situation can be seen as also productive in the 
transfer situation (Anderson et al., 1996; Singley & Anderson, 1989). In a series of 
seminal studies, Gick and Holyoak (1980, 1983) performed a series of experiments to 
see whether individuals can sufficiently abstract the structure of a problem in one 
domain in order to apply its solution on a similarly structured problem in another 
domain. They argue that successful transfer depends on a learner’s ability to induce 
an abstract schema from the concrete problems.  This abstract schema helps learners 
see the similarities in the deep, conceptual structure across problem contexts, 
facilitating transfer.  Based on their experimental findings, they argue that increased 
alignment between the deep structures of the problems increases transfer (Gick & 
Holyoak, 1980) and that providing multiple analogous cases in the learning condition 
helps subjects develop an abstract schema focused on the deep structure rather than 
idiosyncratic surface features of any one problem (Gick & Holyoak, 1983).  The 
classical transfer literature has strongly attended to seeing the commonalities in deep 
structure between learning and transfer problems, which has been a continued focus 
of the transfer literature (Bassok, 1990; A. L. Brown, Kane, & Echols, 1986; Chi & 
VanLehn, 2012; Gentner, Loewenstein, & Thompson, 2003; Novick, 1988; Reed, 
Dempster, & Ettinger, 1985; Reed et al., 1974; Spencer & Weisberg, 1986). 
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Similarly, typical efforts to align courses across two disciplines focus on 
aligning content and highlighting the common deep structure between different 
disciplinary problems.  For example, Plomer et al. (2010) developed a tighter 
coupling between a physics course and a neurophysiology course.  Designing physics 
laboratories to connect physics concepts to neuroscience contexts improved student 
facility in relating physical ideas about electric circuits and optics to neuroscience 
problems on a transfer post-test.  Similarly, Dunn and Barbanel (2000) co-taught an 
integrated physics/calculus sequence that aligned the content of the disciplines such 
that relevant calculus and physics topics were taught together.  This produced 
enhanced opportunities for connections between the disciplines – for example, 
developing a physical interpretation of the divergence theorem in terms of sources 
and sinks and connecting that mathematical theorem to Gauss’ law – but also led to 
some difficulties in helping students negotiate different notation and disciplinary 
approaches.  Al-Holou et al. (1999) reviewed a series of programs that aligned 
content across engineering, physics, mathematics, and other disciplinary courses in 
order to reduce the compartmentalization of knowledge and improve connections 
across disciplines.  These interdisciplinary course reforms align with classical transfer 
perspectives that similarly attend to the presentation of content and structure across 
problems and situations. 

 

More Modern Perspectives on Transfer Attend to Content and Structure in 
New Ways 

Some more recent perspectives in transfer move beyond abstracted schemata 
or experimenter-defined structural similarities as the crucial mediators of transfer, 
while maintaining the focus on relevant conceptual knowledge and similar problem 
structures.  I elaborate on several of these more modern perspectives to show how 
they disagree with classical notions of schema acquisition and analogical transfer 
while maintaining a similar focus on content and structure. 

Rather than the application of intact, generalized mental schema to different 
situations, Wagner (2006) describes transfer as the construction and coordination of 
different pieces of knowledge as applied to new situations.  Transfer of knowledge is 
not the washing out of contextual details and application of a previously learned 
generalized concept or schema.  Rather, it is the activation and coordination of 
knowledge elements in conjunction with specific contextual features that helps 
learners see how prior knowledge is relevant in new situations. In this way, consistent 
success in transferring knowledge comes not from an abstracted schema that ignores 
contextual features but facility in activating and building up the same underlying 
knowledge in ways that incorporate contextual features.   

Greeno, Moore, and Smith (1993) exchange purely cognitive, mental 
constructs for situated activity in their studies of transfer.  Their definition of transfer 
is the transformation of a current activity based on past activity.  In one experiment, 
subjects throw darts at an underwater target.  Because the apparent position of the 
underwater target is distorted by refraction, only darts aimed below where the target 
appears to be will hit the target.  Of the two experimental groups, one that receives 
explicit instruction on the physics of refraction and one that does not, the one that 
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received the refraction lesson performs better when the depth of the water changes, 
increasing the distortion of the apparent position of the target.  In the original study, 
Scholckow and Judd (described in Judd, 1908) explain this finding by positing that 
instructed students had sufficient conceptual knowledge of the physics of refraction to 
guide adjustment in a new situation.  Greeno et al. on the other hand argue that it’s 
not conceptual physics knowledge that leads to better performance in the transfer 
situation but rather attention to particular affordances of the activity.  For example, 
instruction on refraction could attune subjects to certain perceptual affordances of the 
situations, such as the apparent bending of the dart’s path after it enters the water.  In 
a situated theory of transfer, adjusting to the transfer situation requires tapping into 
this affordance to transform the activity in appropriate ways (i.e. aiming farther from 
the apparent position of the target to compensate for the increased deviation from the 
“apparent path” of the darts).  In this situated approach to understanding transfer, it is 
the affordances and constraints of activities that are attuned to in transfer across 
problem situations, not an application of abstract conceptual knowledge.  

An actor-oriented transfer perspective (Lobato et al., 2012; Lobato, 2003) 
focuses on what problem features students attend to.  By not testing whether or not 
students are able to transfer particular pieces of knowledge that are pre-defined by the 
researcher, this attention to what students notice assumes that connections are always 
being made and asks how what features are noticed by learners influences what 
knowledge is transferred-in.  For example, in working on algebra problems related to 
slope, students from two different classes attended to different features of a linear 
graph (Lobato et al., 2012).  Students who attended to the x-y coordinates of points on 
the line were successful in calculating the slope, whereas students who attempted to 
use the gridlines on the graph to find “rise over run” were unsuccessful, because the 
irregular scaling of the gridlines made “counting boxes” more difficult.  For these 
students, although success in their courses indicated that they had “learned” how to 
calculate slopes, differences in what students had been trained to notice in such 
problems led to differential success on a transfer problem.  The actor-oriented 
perspective makes the case that students do not attend only to general mathematical 
similarities in the structure of these slope problems, but also to differences in the 
representational details that cue different approaches.   

Yet, for all of their differences from classical transfer perspectives, these 
studies maintain an attention to the content and structure of the problems or activities.  
Wagner’s “transfer-in-pieces” perspective maintains that the factors to consider in 
transfer are conceptual knowledge and how seeing similarity between problem 
contexts relies on that conceptual knowledge.  Greeno et al.’s attention to the 
affordance of the apparent bending of the dart is a reinterpretation of what is similar 
in the structure and activity of two problem situations.   Lobato et al. redefine the 
grain-size of what structural similarities are attended to, maintaining the importance 
of structural similarities associated with the relevant conceptual knowledge.  
Although these perspectives expand beyond the development of an abstracted general 
schema, the similarities in the structural features of the problems remain central to 
understanding transfer. 
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Transfer Mechanisms Beyond Content and Structure 
There are many critiques of the classical perspective on transfer, suggesting 

factors beyond content and structure.  In this study, I investigate how a student 
reasons similarly and differently on two problems designed to share the same deep 
structure.  Therefore, I limit the discussion of transfer mechanisms to those 
potentially relevant to a “two-problem transfer paradigm,” (Lave, 1988) where the 
relevant phenomenon is transfer of content knowledge from one problem to another.  

Pugh and Bergin (2006) review the literature on how transfer depends on three 
aspects of motivation: achievement goals, interest, and self-efficacy.  Although there 
are limited transfer studies in these areas, they argue that these motivational factors 
are correlated with successful transfer.  Pugh and Bergin suggest that these factors 
can support a “motivation to transfer” and support persistence in transfer tasks.  In 
this view, transfer does not depend only on an individual’s ability to see similarity in 
different problems but also depends on motivation to seek out and persist in searching 
for similarity supporting transfer. 

Engle and colleagues suggest that how individuals frame a learning situation 
as connecting to future situations affects transfer (Engle et al., 2012; Engle, 2006).  
Expansive framing of learning situations connects these initial learning contexts to 
future times and broader spaces, whereas bounded framing limits the learning 
situation to being relevant only to the present time and room in which the activity is 
occurring.  Additionally, expansive framing promotes ownership and agency over the 
content in the learning situation, whereas bounded framing limits the student’s role as 
understanding and regurgitating a source text.  Expansive framing promotes transfer, 
because individuals expect that what was learned before is relevant to future 
situations and they take agency and authority to use and transform ideas from the 
initial learning situation for use in the transfer situation.   

Importantly, the framework of expansive framing attends to factors involved 
in transfer that are broader than just the particular structure or knowledge content 
involved in the learning or transfer task, such as expectations that this learning 
activity will be relevant for future activities and authorship over the relevant content.  
Although Engle and colleagues do not ignore the importance of structural or content 
similarities between the learning and transfer situations, the notion of expansive 
framing suggests that structure and content are not the only relevant factors in 
understanding why transfer does or does not occur.  A bounded framing could impede 
transfer even in the face of structural or conceptual similarity between two problems. 

Other models of “transfer” describe the framing as epistemological, 
responding to “what kinds of knowledge or approaches are appropriate here?” 
(Hammer et al., 2005).  In one example, Louis describes his approach to learning in 
physics and chemistry as starting from equations and memorizing facts.  The 
instructor suggests that Louis should attempt to make a commonsense analogy to 
understand electric circuits, rather than starting with the relevant equation.  In 
response, Louis comes up with an everyday analogy between electric circuits and 
dump trucks driving down the highway.  This use of such analogies in learning 
physics (what some would describe as transfer-in of everyday knowledge) improves 
Louis’ performance in the course.  Importantly, the “learning condition” didn’t aim to 
teach Louis about the structural similarities between dump trucks carrying cargo and 
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electric circuits.  Instead, asking Louis to come up with an analogy shifted his 
epistemological stance towards what kinds of knowledge are appropriate for 
understanding circuits, then leading to the construction of a productive analogy that 
builds on Louis’ prior everyday knowledge.  This is not to say that recognition of the 
structural similarities between cargo trucks and electric circuits are not crucial for 
constructing a valid analogy.  However, this attention to structure alone does not 
explain the success of the instructor’s intervention in leading to the construction of 
this analogy.   

These perspectives on transfer all attend to features other than substantive 
content knowledge to be transferred.  In the next section, I describe the purpose of 
this study and how looking beyond content knowledge can prove productive for 
studies of transfer as well as instructional efforts aiming to connect knowledge across 
disciplinary contexts. 
 

“IT’S NOT A TRANSFER TEST, BUT CAN IT TELL US ABOUT 
TRANSFER?”  

In this study, I show how one student, Will, reasons on two isomorphic 
problems in a clinical interview.  The problems, situated in either physics or calculus 
content, are isomorphic in that they both ask Will to compare a mathematical 
expression to the first few terms of an infinite series, asking when one is a good 
approximation for the other.  Although involving two isomorphic problems, this does 
not fall into the typical “two-problem transfer paradigm” for two reasons.   

The first is that neither problem is the learning situation or the transfer 
situation.  We pose both problems to Will with no explicit instruction, to see how he 
would reason on both.  While Will’s prior knowledge of physics and calculus are 
likely candidates to be “transferred-in,” there is not a clear pre-defined delineation of 
learning and transfer situations.   

Second, the criterion for successful transfer across these problems is not well 
defined.  That is, there is no canonical solution for this type of problem that 
researchers or instructors would necessarily agree should be transferred to indicate 
expertise or success; we would expect both novices and experts to provide a range of 
reasoning and justification in their solutions.  However, even though not a formal 
transfer test, I propose that Will’s reasoning on these two problems has implications 
for studies of transfer.   
 

The Purpose of This Study 
A common result of transfer studies is the identification of factors that support 

or suppress transfer.  The classical transfer question is whether the same pieces of 
content knowledge can be and are applied to different problems that share the same 
deep structure.  Common approaches to this question attend to the content and 
structure of the problems as explanatory.  In this paper, I aim to show how a focus on 
content and structure alone is insufficient to capture the factors relevant to Will’s 
different approaches. 
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Although the two problems in this study are designed to be similar, Will uses 
different knowledge and approaches on these two problems.  Even though successful 
transfer between these two problems is not well defined, Will illustrates that, for him, 
knowledge and approaches on one problem are not necessarily relevant for the other.  
In this case, Will’s interview aligns with typical transfer experiments in that both 
provide the possibility for identifying differences that impede transfer of knowledge 
across isomorphic situations.  This study contributes by illustrating what kinds of 
differences students may perceive in these isomorphic physics/calculus problems that 
may support different approaches and modes of reasoning on these two problems. 

Specifically, drawing from factors that explain success or failure in transfer, I 
seek to identify factors that contributed to Will’s different approaches to the two 
problems.  I show that some of these factors are related to content and structure, but 
that Will’s different epistemological stances towards and his differential senses of 
accountability to the disciplinary content of the two problems also contribute.  
Although factors related to content and structure are important, they cannot totally 
explain differences in Will’s reasoning on these two problems.  These additional 
factors have instructional implications for both disciplinary courses that rely on 
content from other disciplines and interdisciplinary efforts that explicitly aim to 
bridge content across disciplinary contexts. 

 

METHODOLOGY 

Setting 
The data presented in this study was collected as part of a cross-institution, 

interdisciplinary research project studying how students reason about approximations 
in physics and calculus.  The study was driven by two broad research questions: 1) 
“how do students approach approximation similarly/differently in calculus and 
physics?” and 2) “what factors support this similar/different reasoning?”   

Students were interviewed at two universities, a large west coast public 
university and a large east coast public university.  These students were either 
enrolled in or had completed within the past year a second-semester calculus course 
covering integration and Taylor series and a physics course covering oscillations.  
Interviewed students were asked two or three questions, asking them to make or 
consider approximations in the contexts of physics or calculus.  At the end of the 
interviews, students were asked to reflect on the differences between the problems 
and how they approached them. 

The interviews were semi-structured in that the interviewer (Eric Kuo) was 
free to ask follow-up questions, revoice student ideas and selectively zoom in on and 
probe deeper into particularly interesting topics (Lee et al., 2012).  In this way, the 
interviewer was not beholden to a set structure but was free to investigate interesting 
points and explore in-the-moment hypotheses.  This allowed for the interviewer to 
seek out additional depth in an interviewee’s reasoning to help distinguish between 
different interpretations of what they were saying, as well as explore emergent facets 
of an interviewee’s reasoning not originally anticipated by the interviewer.  Because I 
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aim to understand each interview on its own terms rather than to seek patterns across 
the interviews, standardization across interviews is unnecessary.  

Because the interview is an interaction between interviewee and interviewer, 
it is likely that the interviewee’s reasoning is affected by this interaction.  As such, I 
do not claim ecological validity: that the responses in these interviews represent how 
these interviewees would reason in other, more naturalistic situations.  

 

Two Problems for Student Reasoning Across Calculus and Physics 
In order to investigate how students reason with infinite series expressions and 

approximations in physics and calculus, two problems were designed to contain 
similarly structured mathematics.  In the physics problem, the infinite series is an 
equation for the period of a pendulum.  In the calculus problem, the infinite series is 
the Taylor series expansion about x = 0 for the arctangent function. These two 
problems are shown in Figures 5.1 and 5.2, respectively.   
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Figure 5.1: The Pendulum problem 
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Figure 5.2: The Arctan problem 

 
These problems were designed to share a common structure in the following 

way: both problems asked students to make judgments about when the series 
expansion parameter, x or θ, gets so large that the exact expression is no longer close 
to what a truncated series would give.  In a classical transfer perspective, the same 
abstract schema could be applied onto both problems: a schema related to “judging 
whether two expressions, an exact expression and a truncated series, are ‘close 
enough.”  These problems were paired to see whether students bring similar or 
different approaches to both problems and what factors might contribute to those 
similar or different approaches. 
 

Analysis of the Interview 
Based in our research questions, the initial analysis focused on characterizing 

the content of students’ reasoning, identifying similarities and differences in how the 
same student approaches the Pendulum and Arctan problems.  This involved both 
understanding the substance of a student’s final answer, as well as the knowledge and 
approaches that a student takes to arrive at that answer.   

Once the differences in a student’s reasoning on these two problems were 
characterized, the analysis moved beyond the content of and approaches in the 
student’s reasoning to investigate factors that plausibly contribute to the development 
of that reasoning.  The analysis focused in particular to the kinds of factors identified 
in the transfer literature that have been shown to influence students’ reasoning, such 
as, but not limited to: 

 
Content and structural factors of the problems: Does the particular content of 
the problems (pendulum or Taylor series) and how the problems are 
structured support the reasoning or approaches students’ bring to the 
problem? 
Epistemological stances: What are students’ notions of what kinds of 
knowledge are appropriate for these problems and do they cohere with and 
support students’ reasoning on these problems? 
Expansive framing: How do students’ view these problems as connected to 
previous times and places?  Do students have a sense of authorship and/or 
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agency with respect to the relevant content?  Does this contribute to how 
students’ reasoning on these problems develops? 
Motivational factors: How do achievement goals, interest, or self-efficacy 
influence students’ reasoning on these problems? 
 
In this study, I present the case study of one student, Will, working on the 

Pendulum and Arctan problems.  Again, this single case study is not meant to 
illustrate any generalizable pattern.  Here, Will’s interview is used as a proof-of-
concept of the usefulness in attending to factors beyond content and structure in 
answering questions of transfer across disciplines.  Will’s interview stood out because 
of the unusual amount of depth and articulateness with which he spoke about more 
than just his reasoning on the problem, providing data that points to three factors that 
cohere with and support the differences in his reasoning: differences in content and 
structure, differences in his epistemological stances towards what kinds of knowledge 
are useful for solving these problems, and differences in his sense of accountability 
towards the content of the problems.   

Will’s interview is unique, because at the time of the interview in July, he had 
completed the second-semester calculus course but had not yet started the second-
semester physics course in which he was enrolled in for the fall.  Unlike the other 
interviewees, he had not yet seen the relevant pendulum equation in his college 

physics course, although he expresses familiarity with the equation , from 

his high school physics course.   
 

SUMMARY OF WILL’S REASONING ON THE PENDULUM AND 
ARCTAN PROBLEMS 

Will’s final answers to the Pendulum and Arctan problems are similar in some 
ways: he defines a range within which the approximation will be good from bounds 
derived in the problem situations.  However, his approaches to these problems are 
very different.  I start by summarizing key features of how he approaches the 
problems differently on the Pendulum and Arctan problems and then pointing to three 
factors that may have supported these different approaches on the two problems.   
 

Will’s Approach on the Pendulum Problem: Making Sense and Exploring
Making sense of an unfamiliar equation 

Will starts the problem by noting that he hasn’t seen this problem before.  In 
reading through the problem, Will starts to make sense of what the problem is asking, 
noting that a good approximation has the two expressions for the period being equal 
to each other.  He also notices that the two expressions are the same except for the 
additional term in the series expression.  Moreover, he views this 
extra term as added to “make up for the error that occurs…when the angle gets too 
big.”  That is, when the angle is small, this extra term is small, so the two expressions 
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are approximately equal.  But when the angle gets large, then the extra term becomes 
large, so the approximation is no longer good.   

Will moves to speak more broadly about the form of the series equation.  
From the decreasing coefficients and increasing powers of theta, he concludes that the 
terms in the series must get progressively smaller.  He connects this to ideas in “calc 
2” dealing with power series, but he also connects this idea to everyday life, saying “I 
think that that’s how we do, like, everything.”  He goes on to explain how this 
connects to learning to shoot a basketball: when you start learning, you improve 
quickly, because you’re learning the basics.  As you continue, you make small 
adjustments to perfect your shot that you don’t notice, because the changes are so 
small.   
 
Bounded guess-and-check, based in a physical understanding of pendulum motion 

At the beginning of the problem, Will also considers that one possible method 
is to plug in angles into the expression  and see when it 
becomes larger than 1, but he rejects this idea, stating that an analytic solution would 
be preferable even though he doesn’t know exactly how to go about finding one. 

A few minutes later in the interview, Will sets an upper bound on the angle of 
the pendulum, which he uses as a starting point for plugging in angles to see how 
different the two expressions for period will be.  He sets this upper bound from his 
understanding of the physical motion of the pendulum. 
 

[00:13:53] 
W: Alright, so since I'm, like, not really sure how to do it, um, what I would 
do is look at the picture, which I know is dumb, but I would do that. 
E: Ok. 
W: I would just get an idea, and I would know that this angle, um, it's in 
radians, right?  So my answer cannot be above pi over 2, is what I would say, 
or it wouldn't be, yeah, I would keep it in this quadrant.  I don't know why, but 
I feel like that's a better chance. 
E: Just 'cause the picture? 
W: Just because of the way it looks.  I doubt it would fly all the way up here. 
[motions with his hand swinging up past 90 degrees] Maybe it would, and I'm 
being wrong, but once you get up to a certain point up here, I feel like it 
wouldn't.  That wouldn't be the way the problem works.  And it's possible it 
does, but if I don't know how to do a problem, I'd rather just sort of guess at 
an answer than leave it blank.  So I would try to confine my answer to, um, 
zero and pi over 2, and then, I guess I would start, if I had a calculator, by 
plugging in pi over 2 and seeing what answer it gave me.  And then I'd try to 
find bounds for it and guess somewhere in the middle.   
 
The interviewer then points to the calculator on the table, and Will evaluates 

the truncated series at θ = π/2 and gets 1.17.  He finds that the  term comes 
out as .02, so he concludes that the additional higher-order terms will be even smaller 
and therefore negligible.  He concludes that 1.17 is too different from 1.  In his 
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physics course experience, being within 0.1 is close enough, so, in a test situation, he 
would try angles less than π/2 to try to bring the series expression closer to 1.  

 
Exploring and evaluating algebraic manipulations for an analytic solution 

After his “bounded guess-and-check,” I, the interviewer, ask Will to consider 
how he would approach this problem if there weren’t the time pressure of a test 
situation.  Will declares that, given that extra time, he would try to manipulate the 
equations to find an analytic solution.  He then sets the two equations for period equal 
to each other, yielding this equation: .  Will seems not to like 
this expression.  I point out that θ = 0 would work mathematically, to which Will 
counters that that would be impossible, for physical reasons: 

 
[00:27:33] 
W: Well, yeah.  But that wouldn't be, that would be impossible. 
E: Ok. 
W: Theta equaling zero means that it would just be sitting there, right?
… 
[00:28:31] 
W: 'Cause they're asking what the, ok, what's the angle for this, uh, for the 
equation for the period that doesn't work for small oscillations?  When the 
angle equals zero?  Well, then it's not even moving.  And then there's like no 
per-, ok, I mean it's true, there's like no period, because it's just sitting there.  
Um, although technically if theta were equal, yeah, if theta were equal to zero, 
the two equations would equal each other, but it wouldn't be doing anything.  
It would just be hanging straight down.  You can't really have a period when 
it's just sitting there not moving.
E: Mhm. 
W: So that's why I wouldn't, I just, anytime I get an answer like that, I make 
absolutely sure it makes sense, and then, and then, 'cause a lot of times if you 
make a mistake, that's what you get.  You get, like, a ridiculous answer. 
 
In the end, Will decides that there must be a way to perform algebraic 

manipulations that lead to an analytic answer, but he can’t figure it out.  He goes back 
and reiterates his bounded guess-and-check as the final answer he would have to give 
in lieu of a more analytic solution.   

Will’s Approach on the Arctan Problem: Recalling Formal Knowledge 
After Will’s work on the Pendulum problem described above, followed by a 

brief reflection on what score he would expect to receive if the Pendulum problem 
was on a test in his physics class, Will begins work on the next task: the Arctan 
problem. 

 
Connecting this problem to ideas from calculus class 

Will starts by summarizing the problem and pointing out that he doesn’t 
remember the general method for finding the Taylor series of a function, but he 
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recognizes this problem as the kind he has done before in calculus class.  He notes 
that arctangent has asymptotes but can’t remember what they are.  He focuses in on 
the “about x = 0” in the definition of the Taylor series and tries to remember what it 
means and how it is relevant for this problem.  

Later on, after trying out some values for x, he tries to remember the Taylor 
series equations for sine and cosine.  He also tries to recall the general formula for 
Taylor series: 
 

[00:50:40] 
W: Um, 'cause I know the, I'm trying to remember the stuff for, like, sine and 
cosine and sort of do it from there.  Because you know, you don't really 
memorize stuff for arctangent, but like, you do for sin(x).  Um, and I know 
that that we, like, it's frustrating, because we did learn, like, this exact thing.  
It's where it goes from, uh, the co-, uh, the power's always, uh, odd, and it's, 
alternates subtraction and, uh, addition.  It's like one over, how do you do a 
[inaudible].  I'm trying to remember the very, just the very basic one, for a 
Taylor series.   
 
Will struggles with the meaning of “bad approximation,” feeling that there 

must be a formal definition to remember.  He continues this line of reasoning by 
trying to remember equations “from that chapter of the book.”  He continues to try to 
figure out the relevance of “about x = 0.”  He also tries to remember the bounds of 
arctangent and the general formula for Taylor series expansions.  

 
Bounded guess-and-check, based on recalling ideas from calculus class 

After his initial recognition of the problem, Will uses the calculator provided 
in the interview to start to define bounds for a good approximation.  He chooses x = 2 
as a value to try and finds that it would be a bad approximation, because it makes the 
series evaluate to a negative number.  However, he notes that he has no principled 
reason for not wanting the approximation to be negative. 

In trying to remember ideas from his calculus course, he vaguely remembers 
conclusions of the various convergence tests for infinite series, recalling that there are 
ones where “n has to be less than 1, otherwise…it explodes.”   He then sets the 
bounds for  to be between zero to one, although he recognizes that this 
arbitrary and is not the “right way to do it.” 

In response to Will’s statement that he can’t remember much from that section 
in calculus, I ask him what information he would look up to help him do the problem.  
He asks for two things, 1) the asymptotic bounds of arctangent and 2) the general 
formula for Taylor series about x = a, which were given to him.  After he continues 
struggling with the problem for a short time, I provide him with these two facts.  He 
uses the range of arctangent (-π/2 to π/2) to set the bounds , 
since the approximation should not go “beyond what [the] function is defined as.”  
Will attempts to use the general formula for Taylor series to derive the Taylor series 
for arctangent about x = 0 but, realizing that he has to take derivatives of arctangent, 
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eventually decides to drop that line of inquiry.  In the end, he concludes that the 
general formula for Taylor series is not helpful for him here. 

 
Attempting to recall an equation that can solve this problem 

Throughout his work on the Arctan problem, Will seeks to recall the method 
from his calculus class that he believes can be used to solve this problem.  As such, 
he seeks to recall ideas from his math course: the general formula for Taylor series, 
the Taylor series for sine and cosine, the asymptotes of arctangent, and the various 
convergence tests for infinite series.  Throughout the problem, Will’s approach is 
driven by an underlying assumption that there exists a relevant method from calculus 
class that can be used to solve this problem quickly. 

At the end of the interview, when Will is comparing his different approaches 
on the two problems, I ask him if he could have pursued a solution that involved 
algebraic manipulations, like his work on the Pendulum problem.  Will responds that 
he could not, because problems like this require specific methods and approaches: 

 
[01:22:33] 
W: No, you couldn't really do algebraically there.  You have to prove it by, 
you know, using, you can't really, you know, you can't really, with Taylor 
series you don't, like, break it apart and say "x equals this."  You use, like, all 
the different methods of approximation they have, or what do they have 
again?  They have, like depending on what you need, they have different 
methods.  Um, I just don't remember them.  Uh, and if you don't know them, 
then you can't do the problem. 
E: Ok.  So there's somethin-, there's some method they have that you just have 
to remember. 
W: Yeah.  There's a way to do this, that problem.  Takes, like, 2 minutes or 
even less, but if you don't know how to do it like that, you're screwed.  Good 
luck. 
 

DIFFERENCES IN CONTENT AND STRUCTURE THAT SUPPORT 
DIFFERENCES IN WILL’S REASONING 

Attending to the content of Will’s reasoning on the two problems, there are 
some similarities in how Will approaches the problem.  In both the Pendulum and 
Arctan problems, he sets bounds for what counts as a good approximation, 
determined by the specifics of the problem situation, and uses these bounds to 
constrain his guess-and-check attempts.  This application of “bounded guess-and-
check,” though instantiated in two slightly different ways, is a similarity in how he 
approaches these two problems.  This similarity in approach between the problems is 
likely supported by the similar deep structures of the problems, requiring judgment as 
to how good an approximation a truncated series is for the whole series.   

Yet, there are also differences in Will’s reasoning across these two problems.  
I point out two such differences, along with the structural or content features of the 
problems that could have plausibly contributed to these in a classical transfer 
perspective.  Although the target knowledge to be transferred is not pre-defined, the 
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classical transfer lens can be used to investigate differences in the particular content 
or structural details of the problems that may guide students’ reasoning in different 
directions.  

 

A Difference in How the Bounds Are Set: Physical Intuition Versus Formal 
Mathematical Knowledge 

In both problems, Will uses the problem features in order to set bounds on 
what a good approximation is.  However, there is a difference in what knowledge 
Will draws on to set these bounds.  On the Pendulum problem, the bounds are set 
according to Will’s physical understanding of the motion of the pendulum, whereas 
the bounds in the Arctan problem are set according to the range of a mathematical 
function.  This is not a surprise, because one problem is set against a physical 
backdrop and the other is not.  Therefore, on the Pendulum problem, an everyday 
understanding of physical motion can set constraints upon the mathematics that 
define that motion.    Furthermore, the presence of a diagram in the Pendulum 
problem, which Will explicitly points his attention to, likely cues or supports 
reasoning about the physical motion of the pendulum.  If there had been an analogous 
diagram in the Arctan problem (i.e. a graph of y = arctan(x)), it seems reasonable that 
Will could similarly have defined bounds for arctangent without needing to ask me 
for the asymptotes of the function. 

 

Different Approaches for Seeking an Analytic Solution 
Will’s “bounded guess-and-check” is not his preferred approach to either 

problem.  For both, he would prefer more analytic solutions: formal manipulations 
that will deterministically lead to a well-defined boundary for a “good 
approximation.”  Yet, he seeks out different kinds of analytic approaches on these 
two problems.  On the Pendulum problem, his approach is to set the two expressions 
equal to each other and attempt algebraic manipulations to reach a solution.  In 
attempting these algebraic approaches, he checks his approaches against common 
sense and points out why his solution is not physically reasonable.  On the Arctan 
problem, his approach is to try to recall relevant knowledge that may point to a 
correct method or approach rather than attempting algebraic manipulations. 

There are two structural differences between the problems that may support 
these different lines of reasoning.  The first is that the Arctan problem is explicitly 
labeled as being a Taylor series problem.  As such, Will recognizes that this problem 
is explicitly connected with content from his calculus course.  Although Will 
recognizes the “power series” in the Pendulum problem, neither the problem nor he 
explicitly references “Taylor series,” a phrase which likely cues Will’s knowledge 
from calculus class on the Arctan problem. 

The second difference is in the complexity of the mathematics involved.  In 
the Pendulum problem, the two expressions are algebraic, the only difference 
between the two being the additional polynomial terms added in the series expression.  
The Arctan problem contains a transcendental function, arctan(x), which makes 
solving for x analytically impossible.  Because of the relative simplicity of the 
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pendulum expressions, algebraic manipulations can be used to solve for an exact 
expression for θ. 

 

Implications of a Classical Transfer Perspective Focusing on Content and 
Structure 

Taking a classical transfer perspective, differences in the content and structure 
of the two problems can help explain differences in Will’s reasoning.  The next step, 
according to the perspective, would be to test the consequentiality of these differences 
in problem structure by redesigning the problems to align along some of these 
structural features.  For example, the Arctan problem could be changed to ask about 
the Taylor series of , so that algebraic manipulation of the equations could be 
used to solve for x.  Students’ approaches to this problem could be used as evidence 
to argue for or against the relevance of this structural feature in how students 
approach this problem.  Additionally, an instructional intervention could help draw 
students’ attention away from surface differences and towards the underlying 
structural similarity of these two problems in order to support the application of 
similar reasoning on the two problems. 

 

Looking Beyond Content and Structure To Seek Out Explanations for Other 
Differences 

I have argued that the classical transfer lens here provides some insight into 
Will’s different reasoning on these two problems.  However, there are some issues 
that are not addressed from this focus on the content and structure of the problems.   

More than differences in the content of his two approaches, his approaches to 
seeking out those solutions differ.  On the Pendulum problem, Will takes an approach 
I label as making sense and exploring: he reads the unfamiliar problem to make sense 
of what the question is asking and tries out different ways to manipulate the equations 
to reach a solution.  He tries out different manipulations to see if they’ll produce an 
answer, evaluating his approaches to see why they fail.  I label his approach on the 
Arctan problem as recalling formal knowledge: Will spends much of the problem 
attempting to remember Taylor series ideas from his calculus class, believing that 
there exists a particular equation that can solve this problem.   

Given that Will cannot remember the relevant ideas from his calculus course, 
why does he not switch to an alternative approach?  Why does he spend so much time 
failing to recall, rather than attempting to make sense of and explore different 
approaches as he does on the Pendulum problem?   

In the following sections, I elaborate on these differences in how Will seeks a 
solution on these two problems and propose that these differences are supported by 
his epistemological stances towards each of these problems, as well as his feelings of 
accountability for the content of the problems. 
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HOW WILL’S EPISTEMOLOGICAL STANCES SUPPORT 
DIFFERENT APPROACHES 

In this section, I argue that Will’s epistemological stances of what kinds of 
knowledge and reasoning are appropriate for the two problems contributes to his 
making sense and exploring approach on Pendulum and his recalling formal 
knowledge approach on Arctan.  Specifically, Will views “logical reasoning” and 
making connections as appropriate on the Pendulum problem, whereas the reasoning 
appropriate for the Arctan problem is “not natural” and needs to be learned in class.   
 

Logical Reasoning Is Appropriate on the Pendulum Problem 
 

In between his reasoning on the Pendulum problem and the Arctan problem, 
Will recognizes that his solution to the Pendulum problem not “correct” and starts to 
explain his strategy for how he would attempt to get partial credit on problems such 
as this: 
 

[00:42:26]  
W: A lot of teachers, if you put something down that sort of makes sense, you 
won't get, if you just make it up, you'll get a zero, but if you put something 
down and you show logical thoughts and sort of show how you got to a semi-
close answer, they'll give you like a point or two and be like, “alright, nice try, 
but not even close.”  Um, and it's a big difference again between this stuff and 
like, history.  This kind of stuff you can, even if you don't know it, you can 
use logic and you can, uh, make connections and rationalize certain things and 
know that they're true just by looking at what you are given.  You don't need 
to know, I mean you've learned it over the years, but you don't need to know a 
specific date or a specific event to answer a question.  Like if they ask you, 
you know, “what's the Battle of Hastings?” and you don't know anything 
about the Battle of Hastings, you're not, you can't just be like a, “there were 
swordsmen.  They fight.”  You can't say that.  But this one you could say, 
alright I don't know what this equation really means, but I'm told, and I've 
never seen it before, but I do know that T should equal T when the number of, 
when the, um, degree of displacement of the oscillation is correct.  And you 
can show stuff like that.  And I think if you show that you're willing to do that, 
they'll give you a little bit.   
E: So you're saying like, here you can sort of use logic to figure it out. 
W: Yeah.  With these two things, told what L and G are, obviously. They 
won't just give you a variable and not tell you what it is.  Um, and you show 
that this has to be between a certain number to be correct, just if you just think 
about it and show that you were, that you rationalized your answer, that's what 
they want.  They want you to give an answer and then, if they think that you 
thought about it and used viable methods of reasoning to get there, that's what 
they are more likely to give credit for than just writing down numbers.   
E: I see. Versus in, like, history, you can't logic things out. 
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W: Yeah, you can't be like, “it's logical that in this battle, this happened.”  I 
mean, if you knew the date you could maybe say what weapons they used, 
something like that, but yeah, you can't just look at it and be like, “oh, clearly 
from this I can reason this happened.”  I don't know.  You just can't do that.  
So you know it or you don't.  This kind of stuff, eh, you may not know it, but 
you might know part of it or you might understand something and from there 
you, extrapolate information.  

 
Here, Will expresses an epistemological stance that “logical reasoning” is 

appropriate and valued on the Pendulum problem.  Even though he hasn’t seen the 
problem before, he can understand the problem enough to make connections and 
reason through the problem to produce solutions that will yield partial credit.  The 
fact that logical reasoning is appropriate and is valued by teachers is discipline-
dependent.  Will stresses that the logical reasoning that he believes is appropriate on 
the Pendulum problem is not possible in history, where prior knowledge of particular 
facts are required.   

Importantly, Will’s statements are epistemological in that he is reflecting not 
only on his approach to the Pendulum problem, but also on what kind of approach is 
appropriate here.  This is reflected especially in contrast to the types of reasoning 
that are appropriate for historical questions, such as “what was the Battle of 
Hastings?” 

Will’s epistemological stance towards the Pendulum problem coheres with 
and supports Will’s approach on this problem.  Given his stance that logical reasoning 
is appropriate, then it makes sense that Will would try to make sense of this 
unfamiliar problem rather than arguing that he doesn’t possess enough knowledge 
from physics to solve a pendulum oscillations problem.  As a specific example, in 
rejecting θ = 0 as an answer to the problem, Will argues that that answer must be 
wrong, not because his method was not canonical, but because it is physically 
ridiculous result: it means the pendulum is not moving, which means that there’s no 
period at all.  In this way, Will’s common sense reasoning in evaluating this solution 
is coherent with his epistemological stance that “logical reasoning” is appropriate, 
even when you lack prior knowledge.   

In contrast to his work on the Pendulum problem, his epistemological stance 
towards problems in history, where facts can’t be reasoned out and must be known, 
aligns with a recalling formal knowledge approach, further supporting the idea that 
the absence of recalling formal knowledge on the Pendulum problem is, in part, 
epistemological.  In the next section, I elaborate on Will’s epistemological stance 
towards the Arctan problem and its alignment with a recalling formal knowledge 
approach. 
 

Mathematical Reasoning Is Not Natural 
While trying to recall ideas from his calculus class, Will reflects on what is 

difficult about the Arctan problem, revealing his epistemological stance that the 
reasoning required for this problem is “not normal reasoning.” 
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[01:03:14]  
W: Um, but yeah.  It's 'cause I, I just don't remember those, uh, that 
information.  I don't think that, and I couldn't, this is, I hate, it's, that's why I 
hated these problems so much, that I couldn't reason through them.  I couldn't 
think, “oh well, infinity, you know, this happens.”  I just can't, it doesn't make 
any sense.   
E: It's not like the previous problem [i.e. the Pendulum problem], is what 
you're saying? 
W: No, not at all.  That's like concrete.  That's like, “ok, pendulum moving.  I 
can see that.”  That's why I hated Taylor series so much, is 'cause you can't see 
it.  It's, it's just, it's like pure mathematical reasoning that's, like, not normal 
reasoning.  It's, you think about it a different way.  You can't just think as a 
person like, “oh yeah it's, pendulum swings to a certain point, this happens.”  
You have to think about it in terms of, like, infinity and what happens when 
you go to infinity.  That's like, I don't think that's like in, humans don't think 
like that naturally, so you have to learn it. 
E: Ok. 
W: So I wouldn't be able to really, I, like, I couldn't get partial credit on this 
problem.  I'd be like, uh, uh, ok. 

 
Will articulates a difference between “pure mathematical reasoning” and 

“normal reasoning.”  The pure mathematical reasoning, such as reasoning about 
Taylor series or infinity, is more abstract and cannot be envisioned in the way that a 
pendulum’s motion can.  Pure mathematical reasoning does not make sense and isn’t 
how people naturally think.  Therefore, the ways of reasoning required for these 
problems must be learned in and recalled from class.  In this way, intuitive ways of 
reasoning or logical assumptions one might make, such as drawing conclusions from 
intuitions about a pendulum, are not appropriate on these types of problems.  This 
aligns with his previous description of the difference between problems like the 
Pendulum problem, where logical reasoning is appropriate, and history problems that 
require knowledge of certain facts that cannot simply be derived or intuited.  Here, 
because this type of pure mathematical reasoning cannot be reasoned out, Will would 
not succeed in getting partial credit in this problem, because he lacks knowledge of 
some requisite facts required for solving this problem. 

This epistemological stance that the pure mathematical reasoning required 
here doesn’t make sense coheres with his approach to the Arctan problem.  Making 
sense and exploring, finding ways to make sense of arctangent and the series equation 
and exploring and evaluating ways to determine the bounds of a “good 
approximation,” does not make sense as an approach if one views the mathematical 
content on the Arctan problem as not able to be reasoned through.  Instead, one must 
rely on recalling formal knowledge from calculus class.   

In fact, this epistemological stance towards the Arctan problem explains why 
Will would persist in recalling formal knowledge, even after he fails to recall the 
ideas he seeks.  If Will’s epistemological stance towards this problem is that the 
application of specific learned methods are required, then “logical reasoning” will not 
be productive – as Will says, he wouldn’t get any partial credit.     
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At the end of the interview, Will reflects again on the difference between the 
Pendulum and Arctan problems, describing an epistemological difference – that these 
problems require different kinds of reasoning and approaches.   
 

[01:15:59] 
W: But [the Pendulum problem] is just more fundamentally easy to grasp, 
because this, [the Arctan problem], you're dealing with polynomials.  You 
know, approximating them as it goes to infinity and breaking into a million 
pieces.  You know, just, it's not logical.  It, it requires a different method of 
reasoning than the physical world, because it's not physically real, you know? 
I: Ok. 
W: So this one [points to the Arctan problem], I would be completely lost if I 
had never been in calc 2.  I mean, I couldn't even look at it. 
 
Importantly, these epistemological stances towards these two problems do not 

necessarily represent context-independent epistemological beliefs about learning and 
reasoning in math and physics.  The fact that Pendulum is a relatively simple physical 
system with relatively simple mathematics likely contributes to Will’s 
epistemological stance that logical reasoning is appropriate.  One could imagine that 
Will may take a stance that more abstract physics problems are unintuitive and 
require formal knowledge of the relevant physical concepts and equations.  
Conversely, Will, in making sense and exploring on the Pendulum problem, does 
mention a connection between the series expression to ideas from power series in 
calculus, showing that calculus content does not always represent “unnatural 
reasoning” for Will. 

The point of this analysis is not to make broad claims about what  
epistemologically stances Will takes towards problems in calculus and physics but to 
point out the particular in-the-moment stances that Will takes towards these two 
problems.  These stances likely draw on some aspects of Will’s experiences with 
physics and calculus, but that does not necessarily imply that these particular 
epistemological stances are the only ones that Will can take when dealing with 
physics and calculus. 

 

HOW WILL’S SENSES OF ACCOUNTABILITY TOWARDS THE 
CONTENT OF THESE PROBLEMS SUPPORT DIFFERENT 
APPROACHES 

In addition to Will’s epistemological stances toward the problems, Will’s 
sense that he has seen problems like the Arctan problem before in his calculus class 
drives the search for those previously seen ideas.  I propose that Will’s sense of 
accountability towards ideas relevant to the Arctan problem supports his persistence 
in trying to recall those ideas, whereas a lack of accountability towards canonical 
physics ideas relevant to the Pendulum problem supports an approach of making 
sense and exploring.   
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Will Does Not Feel Accountable For Knowing About the Pendulum Problem 
One could assume that Will’s lack of exposure to the relevant content and to 

the type of problem presented in the Pendulum problem would mean that he could not 
feel accountable to those ideas. However, one possible interpretation of this interview 
situation is that it is testing how quickly a correct approach can be applied to this 
problem.  I argue that it is the initial interview interaction between Will and I that 
helps signal that Will is not being held accountable for the content of the problem.    

After being presented with the problem, Will reads the problem silently for 
about 20 seconds, after which he checks in to see if he needs to have seen this type of 
problem before: 
 

[00:02:54] 
W: And it's ok if you haven't seen this type of problem before, right? 
E: Uh, yeah.  That's fine. 
W: Ok. 
 

After this explicit confirmation that Will need not have seen this problem before, he 
continues to read silently for about one minute, after which he starts to confirm his 
understanding of the problem with me. 
 

[00:03:59] 
W: So this is the, this is the equation for the small angle oscillation, right? 
E: Mhm. 
W: So, but there's no angle in it. 
E: In this? 
W: In this one.  Right. 
E: Uh. 
W: But they're asking how big, how big can the angle of the pendulum be 
before that equation is no longer accurate? 
E: Yes. 
W: Ok.  [pause] So you don't want me to calc...you just want me to answer the 
question, right?  I don't have to do anything? 
E: Uh, yeah.  Yeah, I mean, does it make sense, what they're asking? 
W: Yeah, it makes sense.  I mean, I can understand what they're trying to say. 
E: Ok. 
W: I haven't done oscillations, but I can understand the idea that they're trying 
to get through. 
 
Here, Will poses questions to the me, both confirming his understanding of 

the problem and asking what his role in the interview should be (“So you don’t want 
me to calc-, you just want me to answer the question, right?  I don’t have to do 
anything?”).  I twice confirm Will’s questions.  These confirmations may support the 
interview interaction as me engaging to help Will make sense of this unfamiliar 
problem rather than testing what he already knows, a view that could have been 
supported had I withheld information.  Furthermore, I provided time for Will to 
silently read the problem, uninterrupted.  After this exchange, Will reads silently for 
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about another minute.  This could also contribute to a sense that Will is being given 
time to make sense of an unfamiliar problem, rather than having to immediately recall 
an answer.  Will’s final statement in this section indicates that he hasn’t seen this 
topic in his courses before, in part positioning himself as unfamiliar with this content.   

After the extended silence at the end of this section, Will starts to check in 
again, now checking more specifically about features of the problem.  I reiterate that I 
want to hear Will’s understanding of the problem, whether correct or incorrect: 
 

[00:05:47] 
W: Well, I would guess that these T's should be equal, right?  If they're going 
to be, they're both going to be accurate approximations. 
E: Ok. 
W: So at a certain point, when they're no longer roughly approximate is when 
your angle is getting too big that this one [the small angle approximation] 
breaks down, and this is the one [series equation] you have to use.  Is that 
correct? 
E: Um, well I mean, I mean, I just sort of want to figure out how you would 
think about it. 
W: Ok. 
E: So whether or not it's correct. 
W: Ok, so you want me to explain how I would think about it. 
E: Yeah. 
 
In response to this, Will’s talk switches from asking questions to confirm his 

understanding of the problem to stating his approach to making sense of the problem, 
and his understanding of the two expressions for the period.  This shift in Will’s talk 
suggests that Will is taking up an interpretation of the interview situation as one 
where his ideas, rather than the canonical physics ideas, take primacy.   

This interpretation of the interview situation plausibly supports a making 
sense and exploring approach to the Pendulum problem.  If the purpose of the 
interview is to hear how Will would think about the problem, he is not accountable to 
particular canonical ways of understanding and approaching this problem.  This likely 
supports the development of his own ideas on the problem and exploration and 
evaluation of possible algebraic solutions to the problem.  

  

Will Feels Accountable for Recalling Taylor Series Knowledge 
Given that the interview has thus far supported Will’s sense making and 

exploration and that I have explicitly and implicitly communicated that the goal of 
the interview is to find out how Will thinks about problems rather than testing 
whether he knows the canonically correct methods, it would be reasonable to expect 
that this lack of accountability would carry through to the Arctan problem.  However, 
this is not the case.  

At the very start of the problem, Will signals that he is familiar with Taylor 
series and this type of problem: 
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[00:46:15] 
W: Try to simplify it before you even start.  Um, I, don't you need to know 
how to formulate the Taylor series for, I don't know, you don't, I guess.  I 
don't even know how to formulate the Taylor series, so it's a good thing they 
kind of gave it to me.  Um, ok, I absolutely hate this stuff, but I have done this 
one before.  I have taken, like, calc 2, so I have done this before.  [reads the 
problem to himself again].   

 
In this initial reaction to the problem, Will signals not only familiarity with this type 
of problem from calculus, but also that he dislikes this kind of problem – possibly, 
because, as discussed earlier, Will dislikes that you can’t reason logically through the 
pure mathematical reasoning of Taylor series.   

Throughout the problem, Will signals that he feels accountable for this Taylor 
series knowledge by indicating his frustration at not being able to remember the 
relevant facts from math class: 

 
[00:58:27] 
W: And it's annoying, this one's really annoying, because I definitely have 
done this or something like it, so I should know how to do this one.  It's been 
in my mind before, um, but I did get a 40 on this test, so, didn't know it that 
well.  Uh, [laughs] let me think.   

 
Here, Will reiterates that he has seen the problem before so he should know the 
canonical method for solving it.  Throughout his work on the Arctan problem, Will 
holds himself accountable to this knowledge, and this accountability drives 
frustration at not being able to remember those ideas from calculus class.   

Later on, Will notes that it’s “upsetting” that he can’t remember the ideas 
from class.  I ask Will what information he would look up or ask someone, given the 
chance.  My attention on what canonical pieces of knowledge Will does not know 
likely supports feelings of accountability towards those pieces of knowledge.  
Similarly, receiving that knowledge later on from me may tacitly signal that recalling 
this information was crucial.   

At the end of the Arctan problem, he reiterates that not knowing how to do 
this problem is more upsetting than not knowing the correct approach to the 
Pendulum problem, because he is familiar with this type of problem:   

 
[01:11:52] 
W: Um, but yeah.  This one is more upsetting to me than the other one, 
because I did actually do these kinds of problems before.  And like, I don't 
really have, or see how to do these right, but that's how I would do it at this 
point, not remembering much. 
 

This accountability and frustration are compounded by the fact that he feels that this 
problem would be very simple to do if he could just remember the relevant method: 
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W: Um, so maybe if I brushed up a bit, I'd go, "oh, it's easy to do."  It's very 
possible that it only takes, like, two seconds.  This is a frust-, it's frustrating 
because I know that this is not difficult or doesn't seem that difficult, looks 
like a fairly, uh, commonplace, uh, Taylor series problem.  But since I don't 
remember how to do, do Taylor series at all, it's really hard for me to do. 

 
This sense of accountability and frustration towards not being able to 

remember how to solve these types of problems is distinct from, although related to, 
his epistemological stance towards the type of knowledge required for this problem: 
pure mathematical reasoning has to be learned in class and can’t be reasoned.  
Identifying the type of knowledge required for a problem is separate from feels about 
whether or not you should be responsible for and accountable to that knowledge.  For 
Will, this sense of accountability to the Taylor series knowledge required for this 
problem is connected to his history and familiarity with these ideas and drives his 
affective feelings of frustration in trying to recall the relevant Taylor series ideas. 

This sense of accountability towards Taylor series knowledge and, 
specifically, knowledge of the relevant method for solving this problem, adds to an 
understanding of why Will persists throughout the interview to try to remember facts 
from calculus class, rather than recognizing that he has forgotten the relevant 
knowledge, leading to a change in his approach.  One explanation is that his in-the-
moment epistemological stance towards this problem supports the view that this 
reasoning cannot be intuitively understood.  Rather, it can only be learned in calculus 
class, so recalling those ideas is crucial to solving the problem correctly.  Will’s sense 
of accountability towards this knowledge and his associated frustration at not being 
able to recall that knowledge may also support the activity of recalling formal 
knowledge.   

At the end of the interview, I directly ask Will how the general formula for 
Taylor series, the equation he sought throughout the interview and that was 
eventually supplied to him, was helpful.  Will connects this search for the general 
formula as (at least partially) fueled by his frustration at not being able to recall it: 
 

[01:13:01] 
W: Uh, it didn't, it ended up not really helping me.  Uh, I guess I just wanted 
to remember the basic, it was so frustrating to me that I couldn't remember the 
basic formula for Taylor series.  And when they ask you a question on, you 
know, Taylor series, uh, or anything, you just want to remember it.  And I 
know I'd done it before.  It was just frustrating me that I didn't remember the 
basic idea of it. 
 
Will’s sense of accountability is connected to the notion of authorship in 

expansive framing.  Taking an expansive framing lens towards understanding 
transfer, student authorship of knowledge supports adaptation of that knowledge to 
new situations, supporting transfer.  Here, I posit that a lack of accountability towards 
classroom knowledge provides Will with space to make sense and explore ways to 
adapt his prior knowledge of algebraic equations and physical motion of pendula in 
order to make sense of the Pendulum problem through mechanisms similar to the 
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ones described for authorship.  The reason I don’t use the language of authorship and 
expansive framing to explain Will’s behavior is that, on the Arctan problem, Will 
attempts to transfer-in his prior knowledge of Taylor series, knowledge over which he 
feels a lack of authorship.  Rather than making sense of the ideas in the problem, Will 
feels accountable to recalling those ideas and methods “from that chapter of the 
book.”  This is a different type of transfer than that sought by Engle and colleagues – 
the goal is not adaptation of knowledge, but accurate recall.  In this case, Will’s 
attempt to bring in his prior knowledge of Taylor series is supported by his 
accountability towards that knowledge, and the associated frustration at not being 
able to recall that knowledge, not a sense of authorship. 
 

A Role for Affect 
 Coupled with this sense of accountability towards these two problems are also 
Will’s affective responses to the problems.  For example, on the Pendulum problem, 
one role I could have played in the opening moments of Will’s work was to put Will 
at ease and to set up a comfortable situation in which he felt free to explore different 
approaches.  On the Arctan problem, Will’s affect relates to both his history with the 
topic of Taylor series (that he hated those kinds of problems because he couldn’t 
make sense of them, and that his low test performance in his calculus class could 
support anxiety and a lack of self-efficacy with the topic) as well as his frustration in 
the interview towards not being able to recall the Taylor series facts he seeks to 
remember.  Just as this work seeks to emphasize the advantages of incorporating 
individuals’ epistemological stances and senses of accountability towards the relevant 
knowledge to understand successes and failures in transfer, future work may 
incorporate other factors, such as students’ affective responses, to add onto our 
understanding of the factors that affect students reasoning in different contexts. 
 

DISCUSSION 

Factors that Influence the Transfer of Knowledge Across the Disciplines 
Attempts to foster transfer across disciplines typically focus on particular 

content that is common to those two disciplines.  The method of supporting this 
transfer is to align the content of different courses such that students are exposed to 
the same content in different disciplinary contexts.  This study contributes by 
showing that student reasoning on similar problems across two disciplines depends 
not only the similarities in the structure and content of the two problems, but also on 
factors beyond these considerations – in this case, students’ epistemological stances 
towards the problems and their senses of accountability towards the particular content 
of the problems.  That is, students may see and experience different kinds of 
differences between the problems where experts see only deep similarity in content 
and structure. 
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How Can Transfer Across Disciplines Be Fostered? 
The classical transfer perspective typically aims to foster transfer by providing 

sufficient examples to help the learners identify the common core structure in 
different problem contexts.  In interdisciplinary efforts to foster such transfer, this 
typically involves learning the same content knowledge in different disciplinary 
contexts at the same time (Al-Holou et al., 1999; Dunn & Barbanel, 2000; Plomer et 
al., 2010), mirroring transfer experiments that provide many analogous problems to 
help learners form a generalized schema for recognizing a common deep structure.   

Just as these interdisciplinary course reform efforts attend to content 
alignment, they could similarly attend to students’ epistemological stances towards 
what kinds of knowledge or approaches are needed to answer questions across these 
disciplines.  This could help students view problems such as the Pendulum and 
Arctan problems as similar.  Beyond the structural similarities in asking students to 
make judgments of when a good approximation becomes bad, instruction could also 
attend to what kinds of knowledge students see different disciplinary problems as 
requiring. 

These interdisciplinary reforms could also attend to differential levels of 
accountability towards the relevant content knowledge.  Supporting student 
authorship of ideas by asking students to explain their own ideas using an 
authoritative text as a resource and revoicing students’ ideas to credit the student with 
authorship has been shown to support the transformation of prior knowledge for 
application in new situations within the same discipline (Engle et al., 2012).  
Similarly supporting authorship of ideas across the disciplines, rather than 
accountability to being able to recall and apply particular disciplinary content, could 
foster a willingness to transform those ideas learned in particular disciplinary contexts 
for use in another.   

Future work may expand the study of transfer by performing well-defined 
transfer experiments to explore the effect of these different factors on transfer across 
the disciplines.  Furthermore, studies of students’ epistemological stances and senses 
of authorship in interdisciplinary learning situations may aid in understanding the 
successes and failures of those situations in fostering transfer across disciplines. 
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Chapter 6:  Summary and Future Directions 
 

SUMMARY 
In chapter 1, I describe how, although it is very focused on qualitative 

conceptual understanding, the PER community has not attended nearly as much to 
how physics equations can be conceptually understood.  This dissertation consists of 
three separate studies, relating to how physics students make intuitive or conceptual 
sense with symbolic equations, as well as studying factors that support and suppress 
this type of reasoning. 

Chapter 3 began by studying the nature of how undergraduate physics 
students conceptually understand physics equations.  I show that symbolic forms use 
provides a good description of one way this conceptual understanding of physics 
equations is instantiated.  Furthermore, a symbolic forms-based understanding of the 
equation can support heuristic problem-solving shortcuts that leverage the equation in 
ways that avoid explicit algorithmic computation.  Symbolic forms use in reasoning 
with equations is one component of problem-solving expertise in physics. 

Chapter 4 investigates connections between how students reason conceptually 
with equations and their in-the-moment epistemological stances towards what kinds 
of knowledge and reasoning are appropriate.  A novel coding scheme shows the 
plausibility of a connection between symbolic forms use and epistemological stances 
that value coherence, either between (1) formal physics reasoning and everyday 
reasoning or (2) physics equations and physics concepts.  Beyond this, I show that 
individuals are not static in how they reason about equations or in their 
epistemological stances towards learning and understanding equations.  Even students 
who don’t appear to know how to use symbolic forms in interpreting physics 
equations may be able to do so in other contexts.  Studying the dynamics in how 
students reason with physics equations bolsters both theoretical understanding in 
conceptual/epistemological dynamics and instructional intuitions about how to 
develop this problem-solving expertise by starting from what students already know. 
 Chapter 5 uses different disciplinary problem contexts to investigate what 
factors affect how students reason with mathematics.  Although students’ reasoning 
likely depends on the particular content and structure of the problems, students 
perceive additional differences between the problems that are not obvious.  Students’ 
different epistemological stances towards those problems, as well as different degrees 
of accountability towards the particular content knowledge in the problems can 
support the development of different reasoning trajectories while working on different 
disciplinary problems.  
 

FUTURE DIRECTIONS 
This dissertation starts work in how symbolic forms can be leveraged in 

problem solving for the blended processing of equations.  Although this dissertation 
thoroughly deals with blended processing with the Base + Change symbolic form on 
a small set of similarly structured problems, more examples of blended processing 
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need to be documented to better understand how symbolic forms can be leveraged for 
heuristic blended processing solutions. 

At the same time, this study of symbolic forms is limited to algebraic 
equations, with which undergraduate students have a lot of experience (and plausibly 
also a lot of intuitions about).  As shown with Devon, helping students use symbolic 
forms in introductory physics can involve showing students that their intuitive 
understandings of other algebraic equations are useful.  But physics goes beyond 
algebra and includes difficult advanced mathematics: calculus, vector calculus, 
differential equations, and linear algebra, for example.  Work needs to be done to 
understand what it looks like to intuitively understand this advanced mathematics in 
physics, and how to support the development of these forms of reasoning in students 
when the level of math becomes more complex.  Certainly more students will see the 
intuitive ideas in the money equation than then intuitive ideas in second order 
differential equations. 

In a different direction, future work could extend the claims of 
consequentiality for how a student’s reasoning with equations develops as they work 
on a problem.  Although I identified two factors that play roles in the development of 
a student’s in-the-moment reasoning, these are not the only relevant factors.  The 
interaction with the interviewer in these situations also plays an important role.  I 
explicitly touch on this issue in chapter 5, where I argue that the development of 
accountability in the interview is partially supported through interaction between 
interviewer and interviewee.  More work needs to be done to continue to understand 
the role the interviewer plays in these case studies of Devon and Will, and how the 
interviewer’s choices contribute to expressed reasoning in that situation. 

 

Symbolic Forms Are Valuable Tools, But Only in the Service of 
Sensemaking 
 Another area for future study is how symbolic forms can be incorporated into 
the physics curriculum.  Although this dissertation suggests symbolic forms as an 
instructional target, I will suggest that the way that they are taught is also important.  
Consider the explicit problem-solving procedures that direct students to start problem 
solving by drawing a diagram.  This move makes sense as the problem-solving 
research showed that experts start by drawing physics diagrams of the situation.  
From this, it seems that teaching students to begin problem-solving episodes by 
drawing a diagram would plausibly support problem-solving expertise. 

One example of prompting students to draw free-body diagrams shows that 
this is not always the case.  Heckler (2010) showed that students who were explicitly 
directed to draw a free body diagram less frequently used solutions that were aligned 
with those diagrams than students for whom no diagram was prompted.   Case study 
interviews showed that students prompted to draw diagrams may view the production 
of the diagram as a required step divorced from seeking a solution to the problem.  In 
contrast, students who were not directed to draw diagrams often still would, but as a 
step that contributes to making sense of and solving the problem.  Although most 
students started the problem-solving episode by drawing a diagram, not all did so as a 
part of making sense of and finding a solution to the problem.  In fact, explicitly 
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prompting students to draw a diagram led to it being a disconnected step from solving 
the problem. 

Similarly, explicit teaching of symbolic forms as a rote and required problem-
solving tool may not be desirable.  Symbolic forms use evidences problem-solving 
expertise only if used for authentic sense-making practices.  Said another way, 
symbolic forms are valuable as useful tools in the epistemological pursuit of making 
sense of physical phenomena and formal physics content. Care is needed to prevent 
symbolic forms from becoming another rote requirement.     
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